1
|
Hu X, Luo H, Tan G, Li Y, Qin B. The expression of interleukin-1β in patients with chronic hepatitis B treated with pegylated-interferon-alpha combined with tenofovir disoproxil fumarate and monotherapy. BMC Gastroenterol 2023; 23:163. [PMID: 37208599 DOI: 10.1186/s12876-023-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Anti-hepatitis B virus (HBV) treatment uses tenofovir disoproxil fumarate (TDF) along with Pegylated-interferon-alpha (Peg-IFN-α), which is more effective than TDF/Peg-IFN-α monotherapy. We have previously shown that interleukin-1beta (IL-1β) is related to the effectiveness of IFN-α treatment in chronic hepatitis B (CHB) patients. The aim was to investigate the expression of IL-1β in CHB patients treated with Peg-IFN-α combination with TDF and TDF/Peg-IFN-α monotherapy. METHODS Huh7 cells infected with HBV were stimulated by Peg-IFN-α and/or Tenofovir (TFV) for 24h. A single-center cohort study of prospective recruitment of CHB patients: untreated CHB (Group A), TDF combined with Peg-IFN-α therapy (Group B), Peg-IFN-α monotherapy (Group C), TDF monotherapy (Group D). Normal donors served as controls. The clinical datas and blood of patients were collected at 0, 12, and 24 weeks. According to the early response criteria, Group B and C were divided into two subgroups: the early response group (ERG) and the non-early response group (NERG). Stimulation of HBV-infected hepatoma cells with IL-1β to validate the antiviral activity of IL-1β. To test the blood sample, cell culture supernatant, and cell lysates and to assess the expression of IL-1β and HBV replication levels in various treatment protocols, Enzyme-Linked Immunosorbent Assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used. SPSS 26.0 and GraphPad Prism 8.0.2 software were used for statistical analysis. P values < 0.05 was considered to be statistically significant. RESULTS In vitro experiments, Peg-IFN-α plus TFV treatment group expressed higher IL-1β and inhibited HBV more effectively than monotherapy. Finally, 162 cases were enrolled for observation (Group A (n = 45), Group B (n = 46), Group C (n = 39), and Group D (n = 32)), and normal donors (n = 20) were enrolled for control. The early virological response rates of Group B, C, and D were 58.7%, 51.3%, and 31.2%. At 24 weeks, IL-1β in Group B(P = 0.007) and C(P = 0.034) showed higher than at 0 week. In Group B, the IL-1β showed an upward trend at 12w and 24w in the ERG. IL-1β significantly reduced HBV replication levels in hepatoma cells. CONCLUSION The increased expression of IL-1β may enhance the efficacy of TDF combined with Peg-IFN-α therapy in achieving an early response for CHB patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zhao D, Zhang X, Tang Y, Guo P, Ai R, Hou M, Wang Y, Yuan X, Cui L, Zhang Y, Zhao S, Li W, Wang Y, Sun X, Liu L, Dong S, Li L, Zhao W, Nan Y. Identification and Validation of Novel Biomarkers for Hepatocellular Carcinoma, Liver Fibrosis/Cirrhosis and Chronic Hepatitis B via Transcriptome Sequencing Technology. J Hepatocell Carcinoma 2022; 9:389-403. [PMID: 35592243 PMCID: PMC9112460 DOI: 10.2147/jhc.s357380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The aim of this study was to identify and validate novel biomarkers for distinguishing among hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), liver fibrosis/liver cirrhosis (LF/LC) and chronic hepatitis B (CHB). Patients and Methods Transcriptomic sequencing was conducted on the liver tissues of 5 patients with HCC, 5 patients with LF/LC, 5 patients with CHB, and 4 healthy controls. The expression levels of selected mRNAs and proteins were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining, and were verified in validation set (n=200) and testing set (n=400) via enzyme-linked immunosorbent assay (ELISA). Results A total of 9 hub mRNAs were identified by short time-series expression miner and weighted gene co-expression network analysis. Of note, the results of qRT-PCR and IHC staining demonstrated that SHC adaptor protein 1 (SHC1), SLAM family member 8 (SLAMF8), and interleukin-32 (IL-32) exhibited gradually increasing trends in the four groups. Subsequent ELISA tests on the validation cohort indicated that the plasma levels of SHC1, SLAMF8 and IL-32 also gradually increased. Furthermore, a diagnostic model APFSSI (age, PLT, ferritin, SHC1, SLAMF8 and IL-32) was established to distinguish among CHB, LF/LC and HCC. The performance of APFSSI model for discriminating CHB from healthy subjects (AUC=0.966) was much greater compared to SHC1 (AUC=0.900), SLAMF8 (AUC=0.744) and IL-32 (AUC=0.821). When distinguishing LF/LC from CHB, APFSSI was the most outstanding diagnostic parameter (AUC=0.924), which was superior to SHC1, SLAMF8 and IL-32 (AUC=0.812, 0.684 and 0.741, respectively). Likewise, APFSSI model with the greatest AUC value displayed an excellent performance for differentiating between HCC and LF/LC than other variables (SHC1, SLAMF8 and IL-32) via ROC analysis. Finally, the results in the test set were consistent with those in the validation set. Conclusion SHC1, SLAMF8 and IL-32 can differentiate among patients with HCC, LF/LC, CHB and healthy controls. More importantly, the APFSSI model greatly improves the diagnostic accuracy of HBV-associated liver diseases.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuhui Tang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Peilin Guo
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Rong Ai
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Mengmeng Hou
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yiqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Luyao Cui
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Wencong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yang Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoye Sun
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Lingdi Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Lu Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Wen Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Yuemin Nan, Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei Province, 050051, People’s Republic of China, Tel +86 311-66781227, Fax +86 311-66781289, Email
| |
Collapse
|
3
|
The Use of Molecular Dynamics Simulation Method to Quantitatively Evaluate the Affinity between HBV Antigen T Cell Epitope Peptides and HLA-A Molecules. Int J Mol Sci 2022; 23:ijms23094629. [PMID: 35563019 PMCID: PMC9105472 DOI: 10.3390/ijms23094629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic hepatitis B virus (HBV), a potentially life-threatening liver disease, makes people vulnerable to serious diseases such as cancer. T lymphocytes play a crucial role in clearing HBV virus, while the pathway depends on the strong binding of T cell epitope peptide and HLA. However, the experimental identification of HLA-restricted HBV antigenic peptides is extremely time-consuming. In this study, we provide a novel prediction strategy based on structure to assess the affinity between the HBV antigenic peptide and HLA molecule. We used residue scanning, peptide docking and molecular dynamics methods to obtain the molecular docking model of HBV peptide and HLA, and then adopted the MM-GBSA method to calculate the binding affinity of the HBV peptide–HLA complex. Overall, we collected 59 structures of HLA-A from Protein Data Bank, and finally obtained 352 numerical affinity results to figure out the optimal bind choice between the HLA-A molecules and 45 HBV T cell epitope peptides. The results were highly consistent with the qualitative affinity level determined by the competitive peptide binding assay, which confirmed that our affinity prediction process based on an HLA structure is accurate and also proved that the homologous modeling strategy for HLA-A molecules in this study was reliable. Hence, our work highlights an effective way by which to predict and screen for HLA-peptide binding that would improve the treatment of HBV infection.
Collapse
|
4
|
Zhong S, Zhang T, Tang L, Li Y. Cytokines and Chemokines in HBV Infection. Front Mol Biosci 2021; 8:805625. [PMID: 34926586 PMCID: PMC8674621 DOI: 10.3389/fmolb.2021.805625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a leading cause of hepatic inflammation and damage. The pathogenesis of chronic hepatitis B (CHB) infection is predominantly mediated by persistent intrahepatic immunopathology. With the characterization of unique anatomical and immunological structure, the liver is also deemed an immunological organ, which gives rise to massive cytokines and chemokines under pathogenesis conditions, having significant implications for the progression of HBV infection. The intrahepatic innate immune system is responsible for the formidable source of cytokines and chemokines, with the latter also derived from hepatic parenchymal cells. In addition, systemic cytokines and chemokines are disturbed along with the disease course. Since HBV is a stealth virus, persistent exposure to HBV-related antigens confers to immune exhaustion, whereby regulatory cells are recruited by intrahepatic chemokines and cytokines, including interleukin-10 and transforming growth factor β, are involved in such series of causal events. Although the considerable value of two types of available approved treatment, interferons and nucleos(t)ide analogues, effectively suppress HBV replication, neither of them is sufficient for optimal restoration of the immunological attrition state to win the battle of the functional or virological cure of CHB infection. Notably, cytokines and chemokines play a crucial role in regulating the immune response. They exert effects by directly acting on HBV or indirectly manipulating target immune cells. As such, specific cytokines and chemokines, with a potential possibility to serve as novel immunological interventions, combined with those that target the virus itself, seem to be promising prospects in curative CHB infection. Here, we systematically review the recent literature that elucidates cytokine and chemokine-mediated pathogenesis and immune exhaustion of HBV infection and their dynamics triggered by current mainstream anti-HBV therapy. The predictive value of disease progression or control and the immunotherapies target of specific major cytokines and chemokines in CHB infection will also be delineated.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianling Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Boreika R, Sitkauskiene B. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? J Interferon Cytokine Res 2021; 41:235-243. [PMID: 34280028 DOI: 10.1089/jir.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atopic diseases, such as atopic dermatitis (AD), allergic asthma (AA), and allergic rhinitis (AR), are increasingly becoming a worldwide issue. This atopic triad originates at an early age and on a multifactorial basis, causing significant discomfort to susceptible individuals. The global case number is now reaching new highs, so exploring immune system regulation and its components is becoming critical. One cytokine, interleukin-32 (IL-32), is involved in inflammation and regulation of the immune system. It has nine isoforms that show varying degrees of expression, both intracellularly and extracellularly. IL-32 is secreted by immune cells, such as monocytes, macrophages, natural killer cells, and T cells, and by nonimmune cells, including fibroblasts, keratinocytes, and endothelial cells. Its production is regulated and augmented by microorganisms, mitogens, and other cytokines. Early studies demonstrated that IL-32 was an immune regulator that functioned to protect against inflammatory diseases, including AD, AA, and AR, and proposed a proinflammatory role for IL-32 in immune regulation and symptom exacerbation. However, several later reports suggested that IL-32 is downregulated in inflammatory diseases and exerts an anti-inflammatory effect. This review article focuses on recent findings regarding the detrimental and protective roles of IL-32 in development and management of inflammatory diseases. The exact role of IL-32 in AD, AA, and AR still remains to be elucidated. Future research should explore new avenues of IL-32 functionality in human inflammatory diseases.
Collapse
Affiliation(s)
- Rytis Boreika
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Tung CH, Li CY, Chen YC, Chen YC. Association between nucleos(t)ide analogue therapy for hepatitis B and Sjögren's syndrome: 15-year analysis of the national database of Taiwan. J Viral Hepat 2021; 28:809-816. [PMID: 33550705 DOI: 10.1111/jvh.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/23/2021] [Indexed: 12/09/2022]
Abstract
Hepatitis B virus (HBV) infection has been proposed to play a role in the development of Sjögren's syndrome. However, to date, there are no reports on the risk of SS in HBV-infected patients following nucleos(t)ide analogue therapy. Due to Taiwan has higher prevalence of HBV infection and therapy was well recorded in the Taiwan's single-payer national health insurance database, we hypothesized that a long-term retrospective analysis of the risk of Sjögren's syndrome in HBV-infected patients following nucleotide therapy will increase our understanding of Sjögren's syndrome development following HBV infection. We identified 26,147 adults diagnosed with HBV infection between 1997 and 2012 in claims data. Finally, a total of 3268 HBV-infected patients who ever received nucleotide therapy (treated cohort) were frequency-matched on age and sex at 1:4 ratios to select a control group of 13,072 counterparts without therapy (untreated cohort). To identify Sjögren's syndrome risk, competing risk analysis adjusted for all covariates was performed. The risk was significantly lower in the treated cohort (15-year cumulative incidence, 2.4%; 95% confidence interval [CI], 1.4%-3.7%) than in the untreated cohort (7.1%; 95% CI, 2.5%-15.2%) (p = .015), and the adjusted HR was 0.6 (95% CI, 0.41-0.88; p = .009). Multivariable stratified analysis further verified the consistent associations between nucleoside therapy and risk reduction of Sjögren's syndrome across all strata. Our finding suggests that HBV infection treated with nucleotides is associated with lower risk of Sjögren's syndrome, implying a potential role of HBV infection in the development of Sjögren's syndrome.
Collapse
Affiliation(s)
- Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yi Li
- Department and Graduate Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yen-Chun Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yi-Chun Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
7
|
Relationships between IL-1β, TNF-α genetic polymorphisms and HBV infection: A meta-analytical study. Gene 2021; 791:145617. [PMID: 33775848 DOI: 10.1016/j.gene.2021.145617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND IL-1β and TNF-α have been demonstrated as pro-inflammatory cytokines to participate in the innate immune response and suppression of HBV infection. However, the exact relationship between IL-1β, TNF-α gene polymorphisms and HBV infection remains unknown. Our study aims to assess the associations between IL-1β, TNF-α gene polymorphisms and HBV infection. METHODS A systematic literature search of PubMed and Embase databases was conducted through February 2020, and studies that were included in the present meta-analysis should fulfil the following conditions: (1) case-control studies focusing on the associations between IL-1β, TNF-α polymorphisms and HBV infection; (2) patients in the case group should be tested positive for the HBsAg and/or HBV-DNA without liver cirrhosis or hepatocellular carcinoma; (3) the control group including healthy population or HBV spontaneous clearance population; (4) odds ratios (ORs) and their 95% confidence intervals (CIs) could be calculated based on the allele and genotype frequencies provided in articles. The quality of included studies was assessed according to the Newcastle-Ottawa scale (NOS) assessment system. Pooled ORs and 95% CIs were used to analyze the strength of associations. Subgroup analysis was performed according to ethnicity and control type. RESULTS In the present meta-analysis, 49 articles including 10,218 cases and 9,557 controls were enrolled and seven polymorphisms (IL-1β rs16944, rs1143634, TNF-α rs1799724, rs1799964, rs1800629, rs1800630, rs361525) were studied. In overall meta-analysis, significant associations were found in IL-1β rs1143634, TNF-α rs1799724 and TNF-α rs1799964. For subgroup analysis under ethnicity, TNF-α rs1799724 and rs1800630 were markedly related to HBV infection in both Asian and Caucasian populations. In terms of control type subgroup, TNF-α rs1799724, rs1799964, rs1800630 were significantly associated with HBV persistence in HBV spontaneous clearance group. CONCLUSION In the present study, we identified that three polymorphisms (IL-1β rs1143634, TNF-α rs1799724, rs1799964) might serve as potential genetic biomarkers in HBV infection.
Collapse
|
8
|
Zhu M, Zhang X. Effect of IL-18 on intrauterine infection of HBV in mice on cell molecular level. Saudi J Biol Sci 2020; 27:1685-1690. [PMID: 32489312 PMCID: PMC7254044 DOI: 10.1016/j.sjbs.2020.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022] Open
Abstract
Objective The objective of this study is to investigate the effect of IL-18 on intrauterine infection of HBV (Hepatitis B Virus) in mice based on cellular and molecular level, and to analyze its mechanism, as well as the relationship between IL-18 and intrauterine infection of HBV. Methods Pregnant rats are taken as the study subjects and divided into two groups according to infection and non-infection, namely the study group and the control group. Firstly, the peripheral blood of rats and the blood of newborn mice are collected for the determination of hepatitis B in two-and-a-half pairs. Then, the levels of interleukin-18 (IL-18), interferon-γ (IFN-γ) and interleukin-4 (IL-4) in peripheral serum are detected by ELISA (Enzyme Linked Immunosorbent Assay). Finally, the two groups of horizontal values are compared and analyzed. The effect of IL-18 on intrauterine infection of HBV in mice is investigated based on the level of cell and molecular. Results The levels of IL-18, IFN-γ, IL-4 and IFN-γ/IL-4 in the two groups are compared and analyzed. The levels of IL-18, IFN-γ and IFN-γ/IL-4 in the study group are significantly lower than those in the control group, with statistical significance. However, the level of IL-4 in the study group is higher than that in the control group, with statistical significance. Conclusion It is found that the decrease of HL-type specific response and the enhancement of Th2-type specific response in pregnant mice are closely related to HBV intrauterine infection. Moreover, the decrease of IL-18 secretion in peripheral blood may cause intrauterine infection of HBV. This study can make people better realize the mechanism of HBV intrauterine infection, and effectively help clinical prevention and treatment of intrauterine infection.
Collapse
Affiliation(s)
| | - Xiaoqi Zhang
- Corresponding author at: Obstetrical Department, Hanzhong Central Hospital of Shaanxi Province, No.22 Kangfu Road, Hantai District, Hanzhong, 723000 Shaanxi Province, China.
| |
Collapse
|