1
|
Hong Y, Xi HT, Yang XY, Su WW, Li XP. Pathogenic genes and clinical prognosis in hypertrophic cardiomyopathy. World J Cardiol 2025; 17:99595. [PMID: 39866219 PMCID: PMC11755131 DOI: 10.4330/wjc.v17.i1.99595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy. It is one of the chief causes of sudden cardiac death in younger people and athletes. Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins. HCM has a relatively wide phenotypic heterogeneity, varying from asymptomatic to sudden cardiac death, because of the many different mutations and pathogenic genes underlying it. Many studies have explored the clinical symptoms and prognosis of HCM, emphasizing the importance of genotype in evaluating patient prognosis and guiding the clinical management of HCM. To elaborate the main pathogenic genes and phenotypic prognosis in HCM to promote a better understanding of this genetic disease. Retrospective analysis of literature to evaluate the association between underlying gene mutations and clinical phenotypes in HCM patients. As sequencing technology advances, the pathogenic gene mutation spectrum and phenotypic characteristics of HCM are gradually becoming clearer. HCM is a widespread inherited disease with a highly variable clinical phenotype. The precise mechanisms linking known pathogenic gene mutations and the clinical course of this heterogeneous condition remain elusive.
Collapse
Affiliation(s)
- Ying Hong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
- Department of Cardiology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Hu-Tao Xi
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Xin-Yi Yang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Wilber W Su
- Department of Cardiology, Banner-University Medical Center, Phoenix, AZ 85006, United States
| | - Xiao-Ping Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
2
|
Greve JN, Schwäbe FV, Taft MH, Manstein DJ. Biochemical characterization of cardiac α-actin mutations A21V and D26N implicated in hypertrophic cardiomyopathy. Cytoskeleton (Hoboken) 2024; 81:815-831. [PMID: 38459932 PMCID: PMC11615838 DOI: 10.1002/cm.21852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) affects .2% of the world's population and is inherited in an autosomal dominant manner. Mutations in cardiac α-actin are the cause in 1%-5% of all observed cases. Here, we describe the recombinant production, purification, and characterization of the HCM-linked cardiac α-actin variants p.A21V and p.D26N. Mass spectrometric analysis of the initially purified recombinant cardiac α-actin variants and wild-type protein revealed improper N-terminal processing in the Spodoptera frugiperda (Sf-9) insect cell system, compromising the labeling of the protein with fluorescent probes for biochemical studies. Therefore, we produced N-terminal deletion mutants lacking the N-terminal cysteine (ΔC2). The ΔC2 wild-type construct behaved similar to porcine cardiac α-actin purified from native Sus scrofa heart tissue and all ΔC2 constructs showed improved fluorescent labeling. Further analysis of untruncated and ΔC2 constructs showed that while neither the A21V nor the D26N mutation affects nucleotide binding, they cause a similar slowing of the rate of filament formation as well as a reduction in the thermal stability of monomeric and filamentous cardiac α-actin. In vitro motility assays and transient-kinetic studies probing the interaction of the actin variants with cardiac β-myosin revealed perturbed actomyosin interactions and a reduced motile activity for the p.D26N variant. Addition of the small molecule effector EMD 57033, which targets cardiac β-myosin, rescued the approximately 40% drop in velocity observed with the p.D26N constructs and activated the motile activity of wild-type and p.D26N to the same level of 1100 nm s-1.
Collapse
Affiliation(s)
- Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Frederic V. Schwäbe
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz‐Hartmann‐Centre for Medical ResearchHannoverGermany
- Division for Structural BiochemistryHannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Topriceanu CC, Pereira AC, Moon JC, Captur G, Ho CY. Meta-Analysis of Penetrance and Systematic Review on Transition to Disease in Genetic Hypertrophic Cardiomyopathy. Circulation 2024; 149:107-123. [PMID: 37929589 PMCID: PMC10775968 DOI: 10.1161/circulationaha.123.065987] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy and is classically caused by pathogenic or likely pathogenic variants (P/LP) in genes encoding sarcomere proteins. Not all subclinical variant carriers will manifest clinically overt disease because penetrance (proportion of sarcomere or sarcomere-related P/LP variant carriers who develop disease) is variable, age dependent, and not reliably predicted. METHODS A systematic search of the literature was performed. We used random-effects generalized linear mixed model meta-analyses to contrast the cross-sectional prevalence and penetrance of sarcomere or sarcomere-related genes in 2 different contexts: clinically-based studies on patients and families with HCM versus population or community-based studies. Longitudinal family/clinical studies were additionally analyzed to investigate the rate of phenotypic conversion from subclinical to overt HCM during follow-up. RESULTS In total, 455 full-text manuscripts and articles were assessed. In family/clinical studies, the prevalence of sarcomere variants in patients diagnosed with HCM was 34%. The penetrance across all genes in nonproband relatives carrying P/LP variants identified during cascade screening was 57% (95% CI, 52%-63%), and the mean age at HCM diagnosis was 38 years (95% CI, 36%-40%). Penetrance varied from ≈32% for MYL3 (myosin light chain 3) to ≈55% for MYBPC3 (myosin-binding protein C3), ≈60% for TNNT2 (troponin T2) and TNNI3 (troponin I3), and ≈65% for MYH7 (myosin heavy chain 7). Population-based genetic studies demonstrate that P/LP sarcomere variants are present in the background population but at a low prevalence of <1%. The penetrance of HCM in incidentally identified P/LP variant carriers was also substantially lower at ≈11%, ranging from 0% in Atherosclerosis Risk in Communities to 18% in UK Biobank. In longitudinal family studies, the pooled phenotypic conversion across all genes was 15% over an average of ≈8 years of follow-up, starting from a mean of ≈16 years of age. However, short-term gene-specific phenotypic conversion varied between ≈12% for MYBPC3 and ≈23% for MYH7. CONCLUSIONS The penetrance of P/LP variants is highly variable and influenced by currently undefined and context-dependent genetic and environmental factors. Additional longitudinal studies are needed to improve our understanding of true lifetime penetrance in families and in the community and to identify drivers of the transition from subclinical to overt HCM.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Alexandre C. Pereira
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - James C. Moon
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Gabriella Captur
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| | - Carolyn Y. Ho
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.-C.T., A.C.P., C.Y.H.). UCL Institute of Cardiovascular Science (C.-C.T., J.C.M., G.C.) and UCL MRC Unit for Lifelong Health and Ageing (G.C.), University College London, UK. Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK (C.-C.T., J.C.M.). The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Hampstead, London, UK (G.C.)
| |
Collapse
|
4
|
Li X, Shen Y, Xu X, Guo G, Chen Y, Wei Q, Li H, He K, Liu C. Genomic and RNA-Seq profiling of patients with HFrEF unraveled OAS1 mutation and aggressive expression. Int J Cardiol 2023; 375:44-54. [PMID: 36414043 DOI: 10.1016/j.ijcard.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex pathophysiological state characterized by inadequate delivery of blood and nutrients to the cardiac tissues. It is rarely curable and is commonly associated with a poor prognosis. In this study, we aimed to analyse exomic and RNA-Seq data from patients with HF to identify the key altered pathways in HF. METHODS Whole blood samples were collected from patients with HF and subjected to whole exome sequencing (WES) and RNA-Seq analysis. The gene expression and RNA-Seq data obtained were verified using gene chip analysis and RT-PCR. RESULTS Both exomic and RNA-Seq data confirmed the dysregulation of phosphorylation and immune signalling in patients with HF. Specifically, exomic analysis showed that TITIN, OBSCURIN, NOD2, CDH2, MAP3K5, and SLC17A4 mutations were associated with HF, and RNA-Seq revealed that S100A12, S100A8, S100A9, PFDN5, and TMCC2, were upregulated in patients with HF. Additionally, comparison between RNA-seq and WES data showed that OAS1 mutations are associated with HF. CONLCUSION Our findings indicated that patients with HF show an overall disruption of key phosphorylation and immune signalling pathways. Based on RNA-seq and WES, OAS1 mutations may be primarily responsible for these changes.
Collapse
Affiliation(s)
- Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Qingxia Wei
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China.
| | - Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China.
| |
Collapse
|
5
|
Effect of Actin Alpha Cardiac Muscle 1 on the Proliferation and Differentiation of Bovine Myoblasts and Preadipocytes. Animals (Basel) 2021; 11:ani11123468. [PMID: 34944244 PMCID: PMC8698029 DOI: 10.3390/ani11123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Marbling is an important factor affecting the quality of beef. The co-culture (myoblast-preadipocytes) system was successfully established in our lab in the early stage to simulate the internal environment of marbling. Within this environment, ACTC1 gene was a differentially expressed gene screened from the co-culture system. The gene was not expressed in monocultured adipocytes but was expressed in co-cultured adipocytes. Therefore, we hypothesize that the ACTC1 gene plays a role in the development of bovine myoblasts and preadipocytes. In this study, we explored the effect of ACTC1 gene on the proliferation and differentiation of bovine myoblasts and preadipocytes, aiming to discover the potential biological function of ACTC1 gene in muscle development and fat deposition. The results showed that ACTC1 could regulate the development of bovine myoblasts and preadipocytes, and ACTC1 could be used as an important target for improving beef quality in the future. Abstract Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.
Collapse
|
6
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Shirotani S, Minami Y, Saito C, Haruki S, Hagiwara N. B-type natriuretic peptide and outcome in patients with apical hypertrophic cardiomyopathy. J Cardiol 2020; 76:357-363. [PMID: 32439341 DOI: 10.1016/j.jjcc.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although elevated B-type natriuretic peptide (BNP) levels predict outcome in patients with hypertrophic cardiomyopathy (HCM), the association between BNP levels and outcome in patients with the apical phenotype of HCM remains unclear. We evaluated the impact of elevated BNP levels on outcome in a cohort of apical HCM patients. METHODS Among 432 HCM patients, 144 with an apical phenotype were examined. Plasma BNP levels were measured at the time of the initial evaluation. RESULTS The median (interquartile range) BNP level at initial evaluation in these patients was 188.5 (72.0-334.4) pg/mL. During a median follow-up period of 9.5 years, 34 patients experienced HCM-related adverse outcomes, including 2 patients with sudden death, 5 with appropriate implantable defibrillator shocks, 3 with stroke-related death, 8 with non-fatal stroke, and 16 with heart failure hospitalization. Receiver operating characteristic (ROC) curve analysis of the prognostic value of BNP for the combined endpoint gave an area under the ROC curve of 0.756, and optimal BNP cut-off point of 226.0pg/mL. Patients with high BNP levels (≥226.0pg/mL) were at significantly greater risk of the combined endpoint (log-rank p<0.001) than patients with low BNP levels. Multivariable analysis that included BNP levels and potential confounders showed that high BNP levels were an independent determinant of the combined endpoint (adjusted hazard ratio: 3.71; p=0.002). CONCLUSIONS Measuring BNP may help stratify the risk of HCM-related adverse outcome in apical HCM patients.
Collapse
Affiliation(s)
- Shota Shirotani
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuichiro Minami
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Chihiro Saito
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shintaro Haruki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|