1
|
Promden W, Lophaet A, Sripadung P, Sungthong B, Samsee T, Ploylearmsang C, Kijjoa A, Seephonkai P. α-Glucosidase Inhibitory Activity of Prenylated Pyranocoumarins from Clausena excavata: Mechanism of Action, ADMET and Molecular Docking. Chem Biodivers 2024; 21:e202401141. [PMID: 38923383 DOI: 10.1002/cbdv.202401141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Three naturally occurring prenylated pyranocoumarins, nordentatin (1), dentatin (2), and clausarin (3), isolated from the roots of Clausena excavata (Family Rutaceae), and O-methylclausarin (4) which was obtained by methylation of 3, were investigated for their α-glucosidase inhibitory activity. The mechanism of action and the in silico prediction of their physicochemical and ADMET properties as well as the molecular docking were also studied. Compounds 1-4 exhibited stronger α-glucosidase inhibitory activity than the positive control, acarbose, through a non-competitive mechanism. Among them, 3 exhibited the highest activity, with an IC50 of 8.36 μM, which is significantly stronger than that of acarbose (IC50=430.35 μM). The prenyl group on C-3 and the hydroxyl group on C-5 in 3 may play important roles in enhancing the activity. Calculated physicochemical and ADMET parameters of 1-4 satisfied the Lipinski's and Veber's rules. Molecular simulation analysis indicated they are promising drug candidates with no hepatotoxicity. Compound 3 exhibited potent activity in the experiment and demonstrated good drug properties based on the calculations. A molecular docking study revealed that 3 showed H-bonding and π-π stacking interactions with selective Phe321, as well as interactions with thirteen other amino acid residues of the α-glucosidase.
Collapse
Affiliation(s)
- Worrawat Promden
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Aphiwat Lophaet
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Ployvadee Sripadung
- Integrative Pharmaceuticals and Innovative of Pharmaceutical Technology Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Bunleu Sungthong
- Integrative Pharmaceuticals and Innovative of Pharmaceutical Technology Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Thanatcha Samsee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Chanuttha Ploylearmsang
- Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Prapairat Seephonkai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| |
Collapse
|
2
|
Talukder MEK, Aktaruzzaman M, Siddiquee NH, Islam S, Wani TA, Alkahtani HM, Zargar S, Raihan MO, Rahman MM, Pokhrel S, Ahammad F. Cheminformatics-based identification of phosphorylated RET tyrosine kinase inhibitors for human cancer. Front Chem 2024; 12:1407331. [PMID: 39086985 PMCID: PMC11289668 DOI: 10.3389/fchem.2024.1407331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Rearranged during transfection (RET), an oncogenic protein, is associated with various cancers, including non-small-cell lung cancer (NSCLC), papillary thyroid cancer (PTC), pancreatic cancer, medullary thyroid cancer (MTC), breast cancer, and colorectal cancer. Dysregulation of RET contributes to cancer development, highlighting the importance of identifying lead compounds targeting this protein due to its pivotal role in cancer progression. Therefore, this study aims to discover effective lead compounds targeting RET across different cancer types and evaluate their potential to inhibit cancer progression. Methods This study used a range of computational techniques, including Phase database creation, high-throughput virtual screening (HTVS), molecular docking, molecular mechanics with generalized Born surface area (MM-GBSA) solvation, assessment of pharmacokinetic (PK) properties, and molecular dynamics (MD) simulations, to identify potential lead compounds targeting RET. Results Initially, a high-throughput virtual screening of the ZINC database identified 2,550 compounds from a pool of 170,269. Subsequent molecular docking studies revealed 10 compounds with promising negative binding scores ranging from -8.458 to -7.791 kcal/mol. MM-GBSA analysis further confirmed the potential of four compounds to exhibit negative binding scores. MD simulations demonstrated the stability of CID 95842900, CID 137030374, CID 124958150, and CID 110126793 with the target receptors. Conclusion These findings suggest that these selected four compounds have the potential to inhibit phosphorylated RET (pRET) tyrosine kinase activity and may represent promising candidates for the treatment of various cancers.
Collapse
Affiliation(s)
- Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Aktaruzzaman
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, Bangladesh
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Noimul Hasan Siddiquee
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, Bangladesh
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sabrina Islam
- Biological Sciences Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md. Obayed Raihan
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, United States
| | - Md. Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sushil Pokhrel
- Department of Biomedical Engineering, State University of New York at Binghamton SUNY, Binghamton, NY, United States
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
3
|
Ahad Hossain M, Sultana S, Alanazi MM, Hadni H, Bhat AR, Hasan I, Kawsar SM. In vitro antimicrobial, anticancer evaluation, and in silico studies of mannopyranoside analogs against bacterial and fungal proteins: Acylation leads to improved antimicrobial activity. Saudi Pharm J 2024; 32:102093. [PMID: 38737807 PMCID: PMC11087236 DOI: 10.1016/j.jsps.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Carbohydrate analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we explored the various therapeutic potential of methyl α-D-mannopyranoside (MαDM) analogs, including their ability to synthesize and assess their antibacterial, antifungal, and anticancer properties; additionally, molecular docking, molecular dynamics simulation, and ADMET analysis were performed. The structure of the synthesized MαDM analogs was ascertained by spectroscopic techniques and physicochemical and elemental analysis. In vitro antimicrobial activity was assessed and revealed significant inhibitory effects, particularly against gram-negative bacteria along with the prediction of activity spectra for substances (PASS). Concurrently, MαDM analogs showed good results against antifungal pathogens and exhibited promising anticancer effects in vitro, demonstrating dose-dependent cytotoxicity against Ehrlich ascites carcinoma (EAC) cancer cells while sparing normal cells from compound 5, with an IC50 of 4511.65 µg/mL according to the MTT colorimetric assay. A structure-activity relationship (SAR) study revealed that hexose combined with the acyl chains of decanoyl (C-10) and benzenesulfonyl (C6H5SO2-) had synergistic effects on the bacteria and fungi that were examined. Molecular docking was performed against the Escherichia coli (6KZV) and Candida albicans (1EAG) proteins to acquire insights into the molecular interactions underlying the observed biological activities. The docking results were further supported by 100 ns molecular dynamics simulations, which provided a dynamic view of the stability and flexibility of complexes involving MαDM and its targets. In addition, ADMET analysis was used to evaluate the toxicological and pharmacokinetic profiles. Owing to their promising drug-like properties, these MαDM analogs exhibit potential as prospective therapeutic candidates for future development.
Collapse
Affiliation(s)
- Md. Ahad Hossain
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Shahin Sultana
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sarkar M.A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
4
|
Afzal M, Qais FA, Abduh NA, Christy M, Ayub R, Alarifi A. Identification of bioactive compounds of Zanthoxylum armatum as potential inhibitor of pyruvate kinase M2 (PKM2): Computational and virtual screening approaches. Heliyon 2024; 10:e27361. [PMID: 38495183 PMCID: PMC10943388 DOI: 10.1016/j.heliyon.2024.e27361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
PKM2 (Pyruvate kinase M2) is the isoform of pyruvate kinase which is known to catalyse the last step of glycolysis that is responsible for energy production. This specific isoform is known to be highly expressed in certain cancerous conditions. Considering the role of this protein in various cancer conditions, we used PKM2 as a target protein to identify the potential compounds against this target. In this study, we have examined 96 compounds of Zanthoxylum armatum using an array of computational and in silico tools. The compounds were assessed for toxicity then their anticancer potential was predicted. The virtual screening was done with molecular docking followed by a detailed examination using molecular dynamics simulation. The majority of the compounds showed a higher probability of being antineoplastic. Based on toxicity, predicted anticancer potential, binding affinity, and binding site, three compounds (nevadensin, asarinin, and kaempferol) were selected as hit compounds. The binding energy of these compounds with PKM2 ranged from -7.7 to -8.3 kcal/mol and all hit compounds interact at the active site of the protein. The selected hit compounds formed a stable complex with PKM2 when simulated under physiological conditions. The dynamic analysis showed that these compounds remained attached to the active site till the completion of molecular simulation. MM-PBSA analysis showed that nevadensin exhibited a higher affinity towards PKM2 compared to asarinin and kaempferol. These compounds need to be assessed properties in vivo and in vitro to validate their efficacy.
Collapse
Affiliation(s)
- Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Naaser A.Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maria Christy
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Rashid Ayub
- Department of Science Technology and Innovation, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Hassan MA, Abd El-Aziz S, Nabil-Adam A, Tamer TM. Formulation of novel bioactive gelatin inspired by cinnamaldehyde for combating multi-drug resistant bacteria: Characterization, molecular docking, pharmacokinetic analyses, and in vitro assessments. Int J Pharm 2024; 652:123827. [PMID: 38253268 DOI: 10.1016/j.ijpharm.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS•+ were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Sarah Abd El-Aziz
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
6
|
Abchir O, Yamari I, Shtaiwi AM, Nour H, Kouali ME, Talbi M, Errougui A, Chtita S. Insights into the inhibitory potential of novel hydrazinyl thiazole-linked indenoquinoxaline against alpha-amylase: a comprehensive QSAR, pharmacokinetic, and molecular modeling study. J Biomol Struct Dyn 2024:1-18. [PMID: 38305802 DOI: 10.1080/07391102.2024.2310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The rising prevalence of diabetes necessitates the development of novel drugs, especially given the side effects associated with current medications like Acarbose and Voglibose. A series of 36 Hydrazinyl thiazole-linked indenoquinoxaline derivatives with notable activity against alpha-amylase were studied. To create a molecular model predicting alpha-amylase activity, a QSAR study was performed on these compounds. Molecular descriptors were calculated using Chem3D and Gaussian software and then correlated with their IC50 biological activities to form a dataset. This model data was refined using PCA and modeled with MLR. The model's performance was statistically verified (R2 =0.800; R adj 2 = 0.767; R cv 2 = 0.651) and its applicability domain was defined. It was predicted to possess high predictive power (R test 2 = 0.872). Based on this, new compounds were proposed, and their activities were predicted using the developed model. Additionally, their binding ability to the biological target was studied through molecular docking and dynamics. Their pharmacokinetics were also evaluated using ADMET predictions. Two designed compounds named AE and AB emerged as particularly promising, displaying properties that suggest substantial therapeutic potential and they can form stable complexes into the binding pocket of alpha-amylase enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | | | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mhammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohammed Talbi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
7
|
Zaki MEA, AL-Hussain SA, Al-Mutairi AA, Samad A, Masand VH, Ingle RG, Rathod VD, Gaikwad NM, Rashid S, Khatale PN, Burakale PV, Jawarkar RD. Application of in-silico drug discovery techniques to discover a novel hit for target-specific inhibition of SARS-CoV-2 Mpro's revealed allosteric binding with MAO-B receptor: A theoretical study to find a cure for post-covid neurological disorder. PLoS One 2024; 19:e0286848. [PMID: 38227609 PMCID: PMC10790994 DOI: 10.1371/journal.pone.0286848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 01/18/2024] Open
Abstract
Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800-793, Q2LOO = 0.734-0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit's docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2's main protease. Based on post-covid neurodegenerative episodes in Alzheimer's and Parkinson's-like disorders and MAO-B's role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2's primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR's COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.
Collapse
Affiliation(s)
- Magdi E. A. Zaki
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A. AL-Hussain
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A. Al-Mutairi
- Faculty of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharti Mahavidyalaya, Amravati, Maharashtra, India
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, DMIHER Deemed University, Wardha, India
| | - Vivek Digamber Rathod
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Pravin N. Khatale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Pramod V. Burakale
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| | - Rahul D. Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, Maharashtra, India
| |
Collapse
|
8
|
Souza HCA, Souza MDA, Sousa CS, Viana EKA, Alves SKS, Marques AO, Ribeiro ASN, de Sousa do Vale V, Islam MT, de Miranda JAL, da Costa Mota M, Rocha JA. Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2. Adv Respir Med 2023; 91:464-485. [PMID: 37987297 PMCID: PMC10660866 DOI: 10.3390/arm91060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.
Collapse
Affiliation(s)
- Hellen Cris Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Maycon Douglas Araújo Souza
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Cássio Silva Sousa
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Edilanne Katrine Amparo Viana
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Sabrina Kelly Silva Alves
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Alex Oliveira Marques
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Arthur Serejo Neves Ribeiro
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Vanessa de Sousa do Vale
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - João Antônio Leal de Miranda
- Department of Medicine, Senador Helvidio Nunes de Barros Center, Federal University of Piauí (UFPI), Picos 64607-670, PI, Brazil
| | - Marcelo da Costa Mota
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group—QUIMEBIO, São Bernardo Science Center, Federal University of Maranhão UFMA, São Bernardo 65080-805, MA, Brazil; (H.C.A.S.); (M.D.A.S.); (C.S.S.); (E.K.A.V.); (S.K.S.A.); (A.O.M.); (A.S.N.R.); (V.d.S.d.V.); (M.d.C.M.); (J.A.R.)
| |
Collapse
|
9
|
Mushebenge AGA, Ugbaja SC, Mbatha NA, B. Khan R, Kumalo HM. Assessing the Potential Contribution of In Silico Studies in Discovering Drug Candidates That Interact with Various SARS-CoV-2 Receptors. Int J Mol Sci 2023; 24:15518. [PMID: 37958503 PMCID: PMC10647470 DOI: 10.3390/ijms242115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The COVID-19 pandemic has spurred intense research efforts to identify effective treatments for SARS-CoV-2. In silico studies have emerged as a powerful tool in the drug discovery process, particularly in the search for drug candidates that interact with various SARS-CoV-2 receptors. These studies involve the use of computer simulations and computational algorithms to predict the potential interaction of drug candidates with target receptors. The primary receptors targeted by drug candidates include the RNA polymerase, main protease, spike protein, ACE2 receptor, and transmembrane protease serine 2 (TMPRSS2). In silico studies have identified several promising drug candidates, including Remdesivir, Favipiravir, Ribavirin, Ivermectin, Lopinavir/Ritonavir, and Camostat Mesylate, among others. The use of in silico studies offers several advantages, including the ability to screen a large number of drug candidates in a relatively short amount of time, thereby reducing the time and cost involved in traditional drug discovery methods. Additionally, in silico studies allow for the prediction of the binding affinity of the drug candidates to target receptors, providing insight into their potential efficacy. This study is aimed at assessing the useful contributions of the application of computational instruments in the discovery of receptors targeted in SARS-CoV-2. It further highlights some identified advantages and limitations of these studies, thereby revealing some complementary experimental validation to ensure the efficacy and safety of identified drug candidates.
Collapse
Affiliation(s)
- Aganze Gloire-Aimé Mushebenge
- Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
- Faculty of Pharmaceutical Sciences, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Samuel Chima Ugbaja
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nonkululeko Avril Mbatha
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
10
|
G F N, V V, M G, S M, M P. Surface enhanced Raman scattering investigation of tecovirimat on silver, gold and platinum loaded silica nanocomposites: Theoretical analysis (DFT) and molecular modeling. Heliyon 2023; 9:e21122. [PMID: 37916120 PMCID: PMC10616345 DOI: 10.1016/j.heliyon.2023.e21122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
As of today, there have been 612 million confirmed cases of coronavirus disease (COVID-19) around the world, with over 6 million fatalities. Tecovirimat (TPOXX) is an anti-viral drug, and it was the first drug approved for the treatment of anti-pox virus in the US. However, the effectiveness of this drug against COVID-19 has not yet been explored. Since TPOXX is an anti-viral drug, an attempt has been made to determine its ability to act as a COVID inhibitor. Recent medical advances have resulted in the development of nano cage-based drug delivery. Drug delivery clusters based on nano cages have recently been used in the medical industry. As such, we used DFT coupled to the B3LYP/LANL2DZ basis set to study the adsorption behavior of the anti-viral drug TPOXX on Au/Ag/Pt⋯SiO2loaded silica nanocomposites. In order to identify the active site of the molecule, we have used the frontier molecular orbital (FMO) theory of molecular electrostatic potential (MEP). The compound and its complexes obey Lipinski's rule of five and have good drug-likeness properties based on the bioactivity evaluation. The biological properties of organic molecules and nano metal clusters were compared. The TPOXX with its nanocomposites was also studied in terms of Electron Localization Function (ELF) and Localized Orbital Locator (LOL). Molecular docking was performed for both pure molecule and its silica nanocomposites-doped derivatives with the chosen proteins to discuss the protein-ligand binding properties. These results could be more helpful in designing the drug and exploring its application for the inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Nivetha G F
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| | - Vetrivelan V
- Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli, 620012, Tamilnadu, India
| | - Govindammal M
- Department of Physics, Government Arts College, Dharmapuri, 636705, India
| | - Muthu S
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - Prasath M
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| |
Collapse
|
11
|
Guo X, Lin Y, He F, Jin Y, Chen S, Li T, Wu C, Zhang L, Chen X. Identification of active compounds of traditional chinese medicine derived from maxing shigan decoction for COVID-19 treatment: a meta-analysis and in silico study. Expert Rev Anti Infect Ther 2023; 21:871-889. [PMID: 37481738 DOI: 10.1080/14787210.2023.2238899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Coronavirus 2019 (COVID-19) poses a serious threat to human health. In China, traditional Chinese medicine (TCM), mainly based on the Maxing Shigan decoction (MXSGD), is used in conjunction with western medicine to treat COVID-19. RESEARCH DESIGN AND METHODS We conducted a network meta-analysis to investigate whether MXSGD-related TCM combined with western medicine is more effective in treating COVID-19 compared to western medicine alone. Additionally, using network pharmacology, cross-docking, and molecular dynamics (MD) simulation to explore the potential active compounds and possible targets underlying the therapeutic effects of MXSGD-related TCM. RESULTS MXSGD-related TCM combined with western medicine was better for treating COVID-19 compared to western medicine alone. Network pharmacological analysis identified 43 shared ingredients in the MXSGD-related TCM prescriptions and 599 common target genes. Cross-docking of the 43 compounds with 154 proteins that matched these genes led to the identification of 60 proteins. Pathway profiling revealed that the active ingredients participated in multiple signaling pathways that contribute to their efficacy. Molecular docking and MD simulation demonstrated that MOL007214, the most promising molecule, could stably bind to the active site of SARS-CoV-2 3CLpro. CONCLUSION This study demonstrates the important role of MXSGD-related TCM in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yihua Lin
- Department of Respiratory and Critical Care Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Jin
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, School of Medicine, Xiamen University, Xiamen, China
| | - Simian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ting Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Lin Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Wang Y, Gao Q, Yao P, Yao Q, Zhang J. Multidimensional virtual screening approaches combined with drug repurposing to identify potential covalent inhibitors of SARS-CoV-2 3CL protease. J Biomol Struct Dyn 2023; 41:15262-15285. [PMID: 36961210 DOI: 10.1080/07391102.2023.2193994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused an unprecedented global pandemic, and new cases are still on the rise due to the absence of effective medicines. However, developing new drugs within a short time is extremely difficult. Repurposing the existing drugs provides a fast and effective strategy to identify promising inhibitors. Here we focus on the screening of drugs database for discovering potential covalent inhibitors that target 3-chymotrypsin-like protease (3CLpro), an essential enzyme mediating viral replication and transcription. Firstly, we constructed a receptor-ligand pharmacophore model and verified it through decoy set. The importance of pharmacophore features was evaluated by combining molecular dynamics simulation with interaction analyses. Then, covalent docking was used to perform further screening. According to docking score and Prime/Molecular Mechanics Generalized Born Surface Area (MM-GBSA) score, total ten compounds obtained good scores and successfully established covalent bonds with the catalytic Cys145 residue. They also formed favorable interactions with key residues in active sites and closely integrated with 3CLpro with binding modes similar to known 3CLpro inhibitor. Finally, the top four hits DB08732, DB04653, DB01871 and DB07299 were further subjected to 100 ns molecular dynamics (MD) simulation and MM-GBSA binding free energy calculations. The results suggest that the four candidates show good binding affinities for 3CLpro, which warrants further evaluation for their in-vitro/in-vivo activities. Overall, our research methods provide a valuable reference for discovering promising inhibitors against SARS-CoV-2 and help to fight against the epidemic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physical Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiushuang Gao
- Department of Physical Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Peng Yao
- Department of Physical Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ji Zhang
- Department of Physical Chemistry, China Pharmaceutical University, Nanjing, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Nag A, Dasgupta A, Sengupta S, Lai TK, Acharya K. An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput Biol Med 2023; 152:106433. [PMID: 36565483 PMCID: PMC9767885 DOI: 10.1016/j.compbiomed.2022.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The main protease is an important structural protein of SARS-CoV-2, essential for its survivability inside a human host. Considering current vaccines' limitations and the absence of approved therapeutic targets, Mpro may be regarded as the potential candidate drug target. Novel fungal phytocompound Astrakurkurone may be studied as the potential Mpro inhibitor, considering its medicinal properties reported elsewhere. METHODS In silico molecular docking was performed with Astrakurkurone and its twenty pharmacophore-based analogues against the native Mpro protein. A hypothetical Mpro was also constructed with seven mutations and targeted by Astrakurkurone and its analogues. Furthermore, multiple parameters such as statistical analysis (Principal Component Analysis), pharmacophore alignment, and drug likeness evaluation were performed to understand the mechanism of protein-ligand molecular interaction. Finally, molecular dynamic simulation was done for the top-ranking ligands to validate the result. RESULT We identified twenty Astrakurkurone analogues through pharmacophore screening methodology. Among these twenty compounds, two analogues namely, ZINC89341287 and ZINC12128321 showed the highest inhibitory potentials against native and our hypothetical mutant Mpro, respectively (-7.7 and -7.3 kcal mol-1) when compared with the control drug Telaprevir (-5.9 and -6.0 kcal mol-1). Finally, we observed that functional groups of ligands namely two aromatic and one acceptor groups were responsible for the residual interaction with the target proteins. The molecular dynamic simulation further revealed that these compounds could make a stable complex with their respective protein targets in the near-native physiological condition. CONCLUSION To conclude, Astrakurkurone analogues ZINC89341287 and ZINC12128321 can be potential therapeutic agents against the highly infectious SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Adhiraj Dasgupta
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Sutirtha Sengupta
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Metropolitan College, Kolkata, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
14
|
Insight into the Interaction Mechanism of HSA with Aztreonam: A Multispectroscopic and Computational Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227858. [PMID: 36431957 PMCID: PMC9698515 DOI: 10.3390/molecules27227858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Aztreonam is a Gram-negative bacteria-targeting synthetic monobactam antibiotic. Human serum albumin (HSA) plays an important role in the transference of pharmaceuticals, hormones, and fatty acids, along with other compounds, determining their biodistribution and physiological fate. Using several biophysical and in silico approaches, we studied the interaction of aztreonam with HSA under physiological environments in this study. Results confirm the formation of HSA-aztreonam complex where aztreonam showed moderate affinity towards HSA. A static mode of quenching was confirmed from the steady state fluorescence data. FRET findings also showed that there was a significant feasibility of energy transfer between HSA and aztreonam. Site marker displacement experimental conclusion suggested the binding site of aztreonam was the sub-domain IB of HSA. Circular dichroic spectroscopic analysis suggested that aztreonam interaction decreases the α-helical content of HSA. Changes in microenvironment were studied through synchronous fluorescence data. According to molecular docking results, the HSA-aztreonam complex is mostly maintained by non-covalent forces, with a binding energy of 7.7 kcal mol-1. The presence of a hydrogen bond, van der Waal interaction, and pi-anion interaction in the binding process, as well as conformational changes in HSA after binding with aztreonam, are all confirmed by molecular dynamic simulation.
Collapse
|