1
|
Felippe WQ, Barbosa IR, Oliveira AA, da Costa GL, Echevarria A. Antifungal effects of thiosemicarbazone-chalcones on Aspergillus, Candida and Sporothrix strains. Arch Microbiol 2025; 207:24. [PMID: 39754673 DOI: 10.1007/s00203-024-04229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
The frequency of opportunistic fungal infections has been increasing, impacting agriculture, food, and health sectors. In this work, four thiosemicarbazone-chalcones (TC) were synthesized and evaluated by the radial diffusion method against filamentous fungi. All TCs were effective against Aspergillus parasiticus, especially the fluor-substituted one, with radial growth inhibition of 62,9% and 74,4% at the lower (0.209 µmol/ml) and highest (1.670 µmol/ml) concentrations tested, respectively. On the other hand, the non-substituted derivative was the most active against A. carbonarius, inhibiting radial growth by 47,9% and 74,1% at 0.222 µmol/ml and 1.777 µmol/ml, respectively. Additionally, the compounds were evaluated against the dimorphic fungi Sporothrix brasiliensis, S. schenckii, and a clinical strain of Sporothrix spp, exhibiting minimum inhibitory concentrations (MICs) in the range of 0.396-1.777 µmol/ml. When tested against four yeasts of the Candida genus, the thiosemicarbazone-chalcones demonstrated greater activity against C. krusei (MICs 0.011-0.026 µmol/ml).
Collapse
Affiliation(s)
- William Q Felippe
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, BR 465, km 7, Seropedica, RJ, Brazil
| | - Igor R Barbosa
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, BR 465, km 7, Seropedica, RJ, Brazil
| | - Aguida A Oliveira
- Institute of Veterinary, Federal Rural University of Rio de Janeiro, BR 465, km 7, Seropedica, RJ, Brazil
| | - Gisela L da Costa
- Laboratory of Taxonomy, Biochemistry and Bioprospecting in Fungi, Institute of Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aurea Echevarria
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, BR 465, km 7, Seropedica, RJ, Brazil.
| |
Collapse
|
2
|
Hegazy MGA, Ahmed ARM, Yousef AF, Ali WM, Nasr A, Elshazly EH, Shalaby ME, Teiba II, Al-Bedak OAM. Effectiveness of some plant extracts in biocontrol of induced onion basal rot disease in greenhouse conditions. AMB Express 2024; 14:72. [PMID: 38874641 PMCID: PMC11178699 DOI: 10.1186/s13568-024-01721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
One of Egypt's most notable and historically significant vegetable crops is the Liliaceae plant, Allium cepa L. In this study, the effectiveness of methanolic extracts of Artemisia absinthium leaves, Calotropis procera latex, Moringa oleifera seeds, and Syzygium aromaticum clove was investigated in vitro and, in a greenhouse, setting against Fusarium oxysporum, the pathogen that causes onion basal rot in Assiut Governorate, Egypt. The S. aromaticum extract exhibited the inhibition peak (63.3%), whereas the A. absinthium extract had the lowest inhibition impact against F. oxysporum growth (41.1%). The gas chromatography-mass spectroscopy (GC-MS) analysis revealed that 82 important compounds, with abundances ranging from low to high, were present in the tested S. aromaticum's methanolic extract. The primary components were acetaldehyde, hydroxy- and 2-propanone, 1,1,3,3-tetrachloro-(42.71%), 1,2-ethanediol, and methyl alcohol (34.01%). In comparison to the infected control, the disease severity was significantly reduced by 20% with the use of a plant extracts mixture and Dovex 50% and increased by 62.22% with the use of an extract from A. absinthium. When compared to the infected control, onion plant fresh weight and dry weight were considerably higher under the clove extract therapy. The plant extracts used in this study's testing contain a number of active ingredients, including amino acids, vitamins, minerals, antioxidants, and enzymes, which is probably why they have such positive impacts. The application of a combination of plant extracts was suggested as a feasible strategy for improving the growth and productivity of onion plants by the study's findings. More research is needed to comprehend the mechanisms by which plant extracts promote plant development and to optimize the concentration and timing of administration.
Collapse
Affiliation(s)
- Mohamed G A Hegazy
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt.
| | - Abdel-Raddy M Ahmed
- Department of Agronomy (Biochemistry), Faculty of Agriculture, Al-Azar University (Assiut Branch), Assiut, 71524, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, Faculty of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Waleed M Ali
- Department of Horticulture, Faculty of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Alyaa Nasr
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkom, 32511, Egypt
| | - Ezzat H Elshazly
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed E Shalaby
- Department of Plant Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| | - Osama A M Al-Bedak
- Assiut University Mycological Centre, Assiut, 71511, Egypt.
- ERU Science& Innovation Center of Excellence, Egyptian Russian University, Badr city, 11829, Egypt.
| |
Collapse
|
3
|
Jeewon R, Pudaruth SB, Bhoyroo V, Aullybux AA, Rajeshkumar KC, Alrefaei AF. Antioxidant and Antifungal Properties of Cinnamon, Cloves, Melia azedarach L. and Ocimum gratissimum L. Extracts against Fusarium oxysporum Isolated from Infected Vegetables in Mauritius. Pathogens 2024; 13:436. [PMID: 38921734 PMCID: PMC11206713 DOI: 10.3390/pathogens13060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Fusarium species, a group of economically destructive phytopathogens, are poorly studied in Mauritius where agriculture holds much significance. Furthermore, the increasing popularity of organic farming has prompted interest in alternatives to chemical fungicides. METHODS After gaining an overview of Fusarium prevalence in Mauritius fields through a survey, the pathogen was isolated from infected crops and identified based on morphological and molecular characteristics. Methanol and water extracts were then prepared from Melia azedarach, Ocimum gratissimum, cinnamon and cloves before determining their phytochemical profiles. Additionally, the antioxidant and antifungal effects of different concentrations of aqueous extracts were assessed. RESULTS The isolate was confirmed as Fusarium oxysporum, and cloves inhibited its growth by up to 100%, especially at 60 and 90 g/L, with the results being significantly higher than those of the synthetic fungicide mancozeb. Over 50% inhibition was also noted for cinnamon and Ocimum gratissimum, and these effects could be linked to the flavonoids, phenols and terpenoids in the extracts. CONCLUSION This study presented the aqueous extracts of cloves, cinnamon and Ocimum gratissimum as potential alternatives to chemical fungicides. It also confirmed the prevalence of Fusarium infection in Mauritius fields, thereby highlighting the need for additional studies on the pathogen.
Collapse
Affiliation(s)
- Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Shaan B. Pudaruth
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Vishwakalyan Bhoyroo
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Aadil Ahmad Aullybux
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., MACS Agharkar Research Institute, G. G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Behera A, Dharmalingam Jothinathan MK, Saravanan S, Tamil Selvan S, Rajan Renuka R, Srinivasan GP. Green Synthesis of Selenium Nanoparticles From Clove and Their Toxicity Effect and Anti-angiogenic, Antibacterial and Antioxidant Potential. Cureus 2024; 16:e55605. [PMID: 38586722 PMCID: PMC10995455 DOI: 10.7759/cureus.55605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.
Collapse
Affiliation(s)
- Archana Behera
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | | | - Saantosh Saravanan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Silambarasan Tamil Selvan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Guru Prasad Srinivasan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
5
|
Alimi D, Hajri A, Jallouli S, Sebai H. Toxicity, repellency, and anti-cholinesterase activities of bioactive molecules from clove buds Syzygium aromaticum L. as an ecological alternative in the search for control Hyalomma scupense (Acari: Ixodidae). Heliyon 2023; 9:e18899. [PMID: 37600394 PMCID: PMC10432207 DOI: 10.1016/j.heliyon.2023.e18899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The goal of the current study is to evaluate the acaricidal and repellent properties of the ethanolic extract, essential oil, and primary component eugenol from Syzygium aromaticum against Hyalomma scupense cattle ticks. Their potential mechanisms of action were also examined, using an in vitro assay. Methods Clove essential oil was extracted using hydrodistillation technique. Gas chromatography-mass spectrometry (GC-MS) was performed to identify the chemical composition of clove. To evaluate the adulticidal, ovicidal, larvicidal and repellent proprieties of clove essential oil, eugenol and ethanolic extract on H. scupense, in vitro assays were performed using the adult immersion test (AIT), the ovicidal test, the larval packet test (LPT), the filter paper test and anti-acetylcholinesterase (AChE) activity. Results After treatment, eugenol, the primary phytoconstituent of clove oil, which accounts for 97.66% of the whole oil, had 99.22% acaricide activity and inhibited egg hatching at a concentration of 10 mg/mL. Eugenol and clove essential oil showed potent adulticidal effect at high concentrations (10 mg/mL), achieving 100 and 93.76% mortality, respectively. The ethanolic extract exhibited moderate activity. At high concentration, the larvicidal activity of S. aromaticum oil, eugenol, and ethanolic extract were 100, 100, and 77.18%, respectively. In filter paper experiments, when tested at the concentration 5 mg/mL; eugenol showed the longest repellent effect up to 6 h. We also found that eugenol was the most active AChE inhibitor (IC50 = 0.178 mg/mL). Nevertheless, additional investigations are required to confirm the accurate mechanism and the relevance of clove in practical application. Conclusion Overall, our research indicated that, because its effectiveness as acaricide, S. aromaticum essential oil and its phytoconstituent eugenol may offer an alternative source for the control of H. scupense cattle ticks.
Collapse
Affiliation(s)
- Dhouha Alimi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja, Habib Bourguiba Street, Box 382, 9000, Beja, University of Jendouba, Tunisia
| | - Azhar Hajri
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja, Habib Bourguiba Street, Box 382, 9000, Beja, University of Jendouba, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, Box 901 Hammam-Lif 2050, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja, Habib Bourguiba Street, Box 382, 9000, Beja, University of Jendouba, Tunisia
| |
Collapse
|
6
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
7
|
Roa Cordero MV, Romero Pineda MF, Guerrero Rodríguez JM, López Ortíz JG, Leal Pinto SM. Exploring the potential of eco-friendly silver nanoparticles to inhibit azole-resistant clinical isolates of Candida spp. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:31-38. [PMID: 36724546 DOI: 10.1080/10934529.2023.2172267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The antimicrobial activity and biological efficiency of silver nanoparticles (AgNps) have been widely described and can be modeled through stabilizing and reducing agents, especially if they exhibit biocidal properties, which can enhance bioactivity against pathogens. The selective action of AgNps remains a major concern. In this regard, the use of plant extracts for the green synthesis of nanoparticles offers advantages because it improves the toxicity of Nps for microorganisms and is harmless to normal cells. However, biological evaluations of the activity of AgNps synthesized using different reducing agents are determined independently, and comparisons are frequently overlooked. Thus, we investigated and compared the antifungal and cytotoxic effects of two ecological AgNps synthesized from Moringa oleifera aqueous leaf extract (AgNp-M) and glucose (AgNp-G) against azole-resistant clinical isolates of Candida spp. and nontumor mammalian cells. Synthesized AgNps exhibited an antifungal effect on planktonic cells of drug-resistant C. albicans and C. tropicalis (MIC 0.21-52.6 µg/mL). The toxicity was influenced by size. However, the use of M. oleifera extracts allows us to obtain AgNps that are highly selective and nongenotoxic to Vero cells due to modifications of the shape and surface. Therefore, these results suggest that AgNp-M has antimicrobial potential and deserves further investigation for biomedical applications.
Collapse
Affiliation(s)
- Martha Viviana Roa Cordero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| | - María Fernanda Romero Pineda
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
| | - Julián Mauricio Guerrero Rodríguez
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
- Facultad de Ingeniería Química, Grupo de Investigación Interfase, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Sandra Milena Leal Pinto
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| |
Collapse
|
8
|
Abdulrahman MD, Hama HA. Anticancer of genus Syzygium: a systematic review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:273-293. [PMID: 37205310 PMCID: PMC10185443 DOI: 10.37349/etat.2023.00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 05/21/2023] Open
Abstract
Aim One in eight fatalities globally are considered cancer-related. The need for cancer therapy is growing. Natural products continue to play a role in drug development, as up to 50% of authorized drugs in the last 30 years have been isolated from natural sources. Methods Anticancer, antioxidant, antibacterial, antifungal, antiviral, analgesic, anti-inflammatory, and other actions have all been reported in research papers using plants from the Syzygium genus in the treatment and prevention of disease. Results Results from the anticancer test showed that the genus, especially Syzygium aqueum, Syzygium samarangense, and Syzygium cumini had significant promise as an anticancer agent in vitro against several cancer cell lines. Numerous factors, including phytochemical composition, increased apoptotic activity, decreased cell proliferation, stopped angiogenesis, and reduced inflammation. Conclusions These results, despite preliminary, show promise for further purification and investigation of bioactive compounds and extracts within the genus Syzygium for their anticancer properties.
Collapse
Affiliation(s)
- Mahmoud Dogara Abdulrahman
- Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
- Correspondence: Mahmoud Dogara Abdulrahman, Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq. ;
| | - Harmand A. Hama
- Biology Education Department, Faculty of Education, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
| |
Collapse
|