1
|
Shamaprasad P, Nădăban A, Iacovella CR, Gooris GS, Bunge AL, Bouwstra JA, McCabe C. The phase behavior of skin-barrier lipids: A combined approach of experiments and simulations. Biophys J 2024; 123:3188-3204. [PMID: 39030908 PMCID: PMC11447553 DOI: 10.1016/j.bpj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Skin barrier function is localized in its outermost layer, the stratum corneum (SC), which is comprised of corneocyte cells embedded in an extracellular lipid matrix containing ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). The unique structure and composition of this lipid matrix are important for skin barrier function. In this study, experiments and molecular dynamics simulation were combined to investigate the structural properties and phase behavior of mixtures containing nonhydroxy sphingosine CER (CER NS), CHOL, and FFA. X-ray scattering for mixtures with varying CHOL levels revealed the presence of the 5.4 nm short periodicity phase in the presence of CHOL. Bilayers in coarse-grained multilayer simulations of the same compositions contained domains with thicknesses of approximately 5.3 and 5.8 nm that are associated with elevated levels, respectively, of CER sphingosine chains with CHOL, and CER acyl chains with FFA chains. The prevalence of the thicker domain increased with decreasing CHOL content. This might correspond to a phase with ∼5.8 nm spacing observed by x-rays (other details unknown) in mixtures with lower CHOL content. Scissoring and stretching frequencies from Fourier transform infrared spectroscopy (FTIR) also indicate interaction between FFA and CER acyl chains and little interaction between CER acyl and CER sphingosine chains, which requires CER molecules to adopt a predominantly extended conformation. In the simulated systems, neighbor preferences of extended CER chains align more closely with the FTIR observations than those of CERs with hairpin ceramide chains. Both FTIR and atomistic simulations of reverse mapped multilayer membranes detect a hexagonal to fluid phase transition between 65 and 80°C. These results demonstrate the utility of a collaborative experimental and simulation effort in gaining a more comprehensive understanding of SC lipid membranes.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Fluhr JW, Menzel P, Schwarzer R, Nikolaeva DG, Darlenski R, Albrecht M. Clinical efficacy of a multilamellar cream on skin physiology and microbiome in an epidermal stress model: A controlled double-blinded study. Int J Cosmet Sci 2024; 46:566-577. [PMID: 39113314 DOI: 10.1111/ics.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Stratum corneum (SC) is essential for skin barrier function, mitigating water loss and shielding against potentially harmful substances and allergens. The SC's lipid matrix, arranged in a lamellar structure, is integral to its protective role. Our study explores the restoration effects of a multilamellar cream with an acidic pH compared to a basic placebo cream on skin physiology and its interaction with the skin microbiome after stress induction via tape stripping (TS). MATERIALS AND METHODS In this double-blind study, 14 healthy participants aged 21-58 years were assessed pre- and post-tape stripping, followed by a 14 days application of a multilamellar test cream and a placebo cream with evaluations on days 7, 14 and 17 for sustained effects. Skin physiology was analysed in terms of epidermal barrier function, SC hydration and surface pH. The microbiome was analysed by 16S rRNA amplicon sequencing the 16S rRNA gene using Illumina MiSeq, with subsequent species identification. RESULTS Our study showed significant improvements in skin barrier repair and SC hydration with verum, particularly after 14 days of application, while both creams initially enhanced stratum corneum hydration. No significant changes in surface-pH were detected. The skin microbiome analysis revealed that TS slightly decreased alpha diversity, a trend that verum significantly reversed, enhancing diversity beyond baseline levels after 14 days. Overall, while both creams contributed to a broader microbial phyla diversity over time, no significant changes in the abundance of specific genera or species were noted between treatments. DISCUSSION AND CONCLUSION Our study delineates the efficacy of a pH-optimized multilamellar cream in enhancing epidermal barrier recovery and SC hydration post-sequential TS, in contrast to an unstructured basic placebo. Verum cream significantly improved skin barrier function and SC hydration at day 14, with sustained effects evident beyond the treatment period. Furthermore, the multilamellar formulation facilitated the restitution of cutaneous microbiome diversity, a key indicator of healthy skin ecology, underscoring the symbiotic relationship between barrier integrity and microbial composition. These findings underscore the importance of multilamellar emollient structures in dermatological therapeutics, with potential implications for the design of advanced skincare interventions that holistically support cutaneous resilience and homeostasis.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Peter Menzel
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | | | - Dessyslava G Nikolaeva
- Department of Dermatology and Venereology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
- Euroderma Clinic, Sofia, Bulgaria
| | - Razvigor Darlenski
- Department of Dermatology and Venereology, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
- Department of Dermatology and Venereology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | | |
Collapse
|
3
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Nădăban A, Frame CO, El Yachioui D, Gooris GS, Dalgliesh RM, Malfois M, Iacovella CR, Bunge AL, McCabe C, Bouwstra JA. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13794-13809. [PMID: 38917358 PMCID: PMC11238587 DOI: 10.1021/acs.langmuir.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The lipids located in the outermost layer of the skin, the stratum corneum (SC), play a crucial role in maintaining the skin barrier function. The primary components of the SC lipid matrix are ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). They form two crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). In inflammatory skin conditions like atopic dermatitis and psoriasis, there are changes in the SC CER composition, such as an increased concentration of a sphingosine-based CER (CER NS) and a reduced concentration of a phytosphingosine-based CER (CER NP). In the present study, a lipid model was created exclusively forming the SPP, to examine whether alterations in the CER NS:CER NP molar ratio would affect the lipid organization. Experimental data were combined with molecular dynamics simulations of lipid models containing CER NS:CER NP at ratios of 1:2 (mimicking a healthy SC ratio) and 2:1 (observed in inflammatory skin diseases), mixed with CHOL and lignoceric acid as the FFA. The experimental findings show that the acyl chains of CER NS and CER NP and the FFA are in close proximity within the SPP unit cell, indicating that CER NS and CER NP adopt a linear conformation, similarly as observed for the LPP. Both the experiments and simulations indicate that the lamellar organization is the same for the two CER NS:CER NP ratios while the SPP NS:NP 1:2 model had a slightly denser hydrogen bonding network than the SPP NS:NP 2:1 model. The simulations show that this might be attributed to intermolecular hydrogen bonding with the additional hydroxide group on the headgroup of CER NP compared with CER NS.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
5
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Nădăban A, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Demé B, Bouwstra JA. The molecular arrangement of ceramides in the unit cell of the long periodicity phase of stratum corneum models shows a high adaptability to different ceramide head group structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184324. [PMID: 38688405 DOI: 10.1016/j.bbamem.2024.184324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
The stratum corneum (SC) lipid matrix, composed primarily of ceramides (CERs), cholesterol and free fatty acids (FFA), has an important role for the skin barrier function. The presence of the long periodicity phase (LPP), a unique lamellar phase, is characteristic for the SC. Insight into the lipid molecular arrangement within the LPP unit cell is imperative for understanding the relationship between the lipid subclasses and the skin barrier function. In this study, the impact of the CER head group structure on the lipid arrangement and barrier functionality was investigated using lipid models forming the LPP. The results demonstrate that the positions of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), two essentials CER subclasses, are not influenced by the addition of another CER subclass (N-(tetracosanoyl)-dihydrosphingosine (CER NdS), N-(2R-hydroxy-tetracosanoyl)-sphingosine (CER AS) or D-(2R-hydroxy-tetracosanoyl)-phytosphingosine (CER AP)). However, differences are observed in the lipid organization and the hydrogen bonding network of the three different models. A similar localization of CER NP and CER NS is also observed in a more complex lipid model, with the CER subclass composition mimicking that of human SC. These studies show the adaptability and insensitivity of the LPP unit cell structure to changes in the lipid head group structures of the CER subclasses.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Carrer de la Llum 2-6, Cerdanyola del Vallès 08290, Barcelona, Spain
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands.
| |
Collapse
|
7
|
Jiang Z, Liu S, Yuan S, Zhang H, Yuan S. Models of the Three-Component Bilayer of Stratum Corneum: A Molecular Simulation Study. J Phys Chem B 2024; 128:3833-3843. [PMID: 38603528 DOI: 10.1021/acs.jpcb.3c08461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (SCD), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogen-bond network was formed between the skin-lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin-lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.
Collapse
Affiliation(s)
- Zhaoli Jiang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Shasha Liu
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, P. R. China
| | - Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
8
|
Elhabal SF, Abdelaal N, Saeed Al-Zuhairy SAK, Elrefai MFM, Elsaid Hamdan AM, Khalifa MM, Hababeh S, Khasawneh MA, Khamis GM, Nelson J, Mohie PM, Gad RA, Rizk A, Kabil SL, El-Ashery MK, Jasti BR, Elzohairy NA, Elnawawy T, Hassan FE, El- Nabarawi MA. Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways. Int J Nanomedicine 2024; 19:3045-3070. [PMID: 38559447 PMCID: PMC10981898 DOI: 10.2147/ijn.s455270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Sandra Hababeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Gehad M Khamis
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jakline Nelson
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amira Rizk
- Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta, Egypt
| | - Soad L Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Kandeel El-Ashery
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Tayseer Elnawawy
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed A El- Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Elhabal SF, Abdelaal N, Al-Zuhairy SAS, Mohamed Elrefai MF, Khalifa MM, Khasawneh MA, Elsaid Hamdan AM, Mohie PM, Gad RA, Kabil SL, El-Ashery MK, Jasti BR, Elzohairy NA, Elfar N, Elnawawy T, Hassan FE, El-Nabarawi MA. Revolutionizing Psoriasis Topical Treatment: Enhanced Efficacy Through Ceramide/Phospholipid Composite Cerosomes Co-Delivery of Cyclosporine and Dithranol: In-Vitro, Ex-Vivo, and in-Vivo Studies. Int J Nanomedicine 2024; 19:1163-1187. [PMID: 38344440 PMCID: PMC10859058 DOI: 10.2147/ijn.s443812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Improving the treatment of psoriasis is a serious challenge today. Psoriasis is an immune-mediated skin condition affecting 125 million people worldwide. It is commonly treated with cyclosporine-A (CsA) and dithranol (DTH). CsA suppresses the activation of T-cells, immune cells involved in forming psoriatic lesions. Meanwhile, DTH is a potent anti-inflammatory and anti-proliferative drug that effectively reduces the severity of psoriasis symptoms such as redness, scaling, and skin thickness. CsA and DTH belong to BCS class II with limited oral bioavailability. We aim to develop a drug delivery system for topical co-delivery of CsA and DTH, exploring its therapeutic potential. Methods Firstly, we developed a niosomal drug delivery system based on ceramide IIIB to form Cerosomes. Cerosomes were prepared from a mixture of Ceramide, hyaluronic acid, and edge activator using a thin-film hydration technique. To co-deliver CsA and DTH topically for the treatment of psoriasis. These two hydrophobic drugs encapsulated into our synthesized positively charged particle cerosomes. Results Cerosomes had an average particle size of (222.36 nm± 0.36), polydispersity index of (0.415±0.04), Entrapment Efficiency of (96.91%± 0.56), and zeta potential of (29.36±0.38mV) for selected formula. In vitro, In silico, in vivo, permeation, and histopathology experiments have shown that cerosomes enhanced the skin penetration of both hydrophobic drugs by 66.7% compared to the CsA/DTH solution. Imiquimod (IMQ) induced psoriatic mice model was topically treated with our CsA/DTH cerosomes. We found that our formulation enhances the skin penetration of both drugs and reduces psoriasis area and severity index (PASI score) by 2.73 times and 42.85%, respectively, compared to the CsA/DTH solution. Moreover, it reduces the levels of proinflammatory cytokines, TNF-α, IL-10, and IL-6 compared to CsA/DTH solution administration. Conclusion The Cerosomes nano-vesicle-containing CsA/DTH represents a more promising topical treatment for psoriasis, giving new hope to individuals with psoriasis, compared to commercial and other conventional alternatives.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Soad L Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Kandeel El-Ashery
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Nehal Elfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Demiette, Egypt
| | - Tayseer Elnawawy
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed Ahmed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
11
|
Mijaljica D, Townley JP, Spada F, Harrison IP. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Prog Lipid Res 2024; 93:101264. [PMID: 37940006 DOI: 10.1016/j.plipres.2023.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The outermost epidermal layer of the skin, the stratum corneum, is not simply a barrier that safeguards skin integrity from external insults and invaders, it is also a delicately integrated interface composed of firm, essentially dead corneocytes and a distinctive lipid matrix. Together, the stratum corneum lipid matrix and sebum lipids derived from sebaceous glands give rise to a remarkably complex but quite unique blend of skin surface lipids that demonstrates tremendous heterogeneity and provides the skin with its indispensable protective coating. The stratum corneum lipid matrix is composed primarily of three major lipid classes: ceramides, non-esterified fatty acids and cholesterol, whereas sebum is a waxy mixture predominantly composed of acylglycerols, wax esters, non-esterified fatty acids, squalene, cholesterol and cholesterol esters. The balance of these skin surface lipids in terms of their relative abundance, composition, molecular organisation and dynamics, and their intricate interactions play a crucial role in the maintenance of healthy skin. For that reason, even minuscule alterations in skin surface lipid properties or overall lipid profile have been implicated in the aetiology of many common skin diseases including atopic dermatitis, psoriasis, xerosis, ichthyosis and acne. Novel lipid-based interventions aimed at correcting the skin surface lipid abnormalities have the potential to repair skin barrier integrity and the symptoms associated with such skin diseases, even though the exact mechanisms of lipid restoration remain elusive.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Joshua P Townley
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Fabrizio Spada
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Ian P Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| |
Collapse
|
12
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Nădăban A, Rousel J, El Yachioui D, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Rissmann R, Bouwstra JA. Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models. J Lipid Res 2023; 64:100400. [PMID: 37301511 PMCID: PMC10457584 DOI: 10.1016/j.jlr.2023.100400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol, and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study, we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement, and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well but might not be the main factor.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Robert Rissmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
14
|
Nicolaou A, Kendall AC. Current insights into skin lipids and their roles in cutaneous health and disease. Curr Opin Clin Nutr Metab Care 2023; 26:83-90. [PMID: 36574279 DOI: 10.1097/mco.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The unique and complex array of cutaneous lipids include essential components of the skin structure and signalling molecules mediating homeostasis and inflammation. Understanding skin lipid biology and metabolism can support our comprehension of health and disease, including systemic conditions with cutaneous involvement. RECENT FINDINGS Lipids found on the skin surface, produced by both the host and resident microbes, maintain and regulate the skin microbiome and the epidermal barrier, whilst altered contributions from either source can be detrimental to skin health. The unique lipid composition of the epidermal barrier is essential for its function, and recent studies have expanded our understanding of epidermal ceramide production. This has been supported by improved models available for skin research, including organotypic skin models enabling in-vitro production of complex acylceramides for the first time, and model systems facilitating in-silico exploration of the lipid profile changes observed in clinical samples. Studies have revealed further involvement of lipid mediators such as eicosanoids in cutaneous inflammation, as well as immune regulation in both healthy and diseased skin. SUMMARY Skin lipids offer exciting opportunities as therapeutic targets for many conditions, whether through topical interventions or nutritional supplementation.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
| |
Collapse
|
15
|
Positive Correlation of Triacylglycerols with Increased Chain Length and Unsaturation with ω-O-Acylceramide and Ceramide-NP as Well as Acidic pH in the Skin Surface of Healthy Korean Adults. Metabolites 2022; 13:metabo13010031. [PMID: 36676956 PMCID: PMC9861786 DOI: 10.3390/metabo13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triacylglycerols (TG) play an important role in skin homeostasis including the synthesis of ω-O-acylceramides (acylCER) required for skin barrier formation by providing linoleic acid (C18:2n6). However, the overall relationships of TG species with various ceramides (CER) including CER-NP, the most abundant CER, ω-O-acylCER, and another acylCER, 1-O-acylCER in human SC, remain unclear. Therefore, we investigated these relationships and their influence on skin health status in healthy Korean adults. Twelve CER subclasses including two ω-O-acylCER and two 1-O-acylCER were identified with CER-NP consisting of approximately half of the total CER. The ω-O-acylCER species exhibited positive relationships with TG 52:4 and TG 54:2 containing C18:2, while interestingly, 1-O-acylCER containing ester-linked C14:0 and C16:0 demonstrated positive relationships with TG 46-50 including C14:0 and C16:0, respectively. In addition, CER-NP and CER-NH showed positive correlations with TG 52-54 containing C18:2 or C18:3. A lipid pattern with higher levels of CER including CER-NP and ω-O-acylCER with TG 54 and TG with 5-6 double bonds was related to good skin health status, especially with acidic skin pH. Collectively, TG with increased chain length and unsaturation seemed to improve CER content, and profiles such as higher acylCER and CER-NP improved skin health status by fortifying skin barrier structure.
Collapse
|