1
|
Singh S, Gopi P, Sharma P, Rani MSS, Pandya P, Ali MS. Hemoglobin targeting potential of aminocarb pesticide: Investigation into dynamics, conformational stability, and energetics in solvent environment. Biochem Biophys Res Commun 2024; 736:150896. [PMID: 39471679 DOI: 10.1016/j.bbrc.2024.150896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Aminocarb (AMC), a carbamate pesticide, due to its prevalent usage exhibits increased accumulation in the environment affecting both insects and humans. It enters the human body via food grains and be transported through bloodstream. AMC's chemical structure, containing specific molecular frameworks and functional groups, enables it to bind with proteins like albumin and hemoglobin. Given that molecules with similar architecture are known to bind with hemoglobin, we aimed to explore Aminocarb's binding capability and the potential mechanism or mode of its interaction with hemoglobin. Hb being a tetramer with a profound interface between amino acid chains offers multiple binding sites. It is therefore important to investigate the structural aspects of binding of AMC by employing various spectroscopic and in-silico methods. The surface of the α1 chain near the α1β2 interface emerges as the preferred binding site for AMC, primarily due to its conformational restrictions. In its bound state, AMC tends to maintain a relaxed conformation, closely resembling its globally optimized geometry, and resides in close proximity to the α1 chain via multiple hydrophobic contacts and water bridge as observed in molecular dynamics (MD) simulations. Fluorescence quenching experiments showed moderate binding strength (7.7 × 10⁴ L M⁻1 at 288 K, 7.8 × 10⁴ L M⁻1 at 298 K, 7.9 × 10⁴ L M⁻1 at 308 K) and spontaneous binding, driven by hydrophobic and van der Waals interactions, as indicated by enthalpy (0.80-0.91 kJ mol⁻1), entropy (0.0970-0.0974 kJ mol⁻1), and Gibbs free energy (-27.13 to - 29.08 kJ mol⁻1). Circular dichroism experiments reveal no major structural changes in Hb. Quantum chemical calculations and MD simulations reveal conformation-dependent energy differences, enhancing our understanding of AMC's binding mechanism to Hb.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Kristu Jayanti College, Autonomous, Bengaluru, 560077, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India
| | - Palak Sharma
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Mody University of Science and Technology, Lakshmangarh, Rajasthan, 332311, India
| | - Majji Sai Sudha Rani
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; School of Sciences, Noida International University, Sector 17A, Uttar Pradesh, 203201, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India.
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Mbara KC, Fotsing MC, Ndinteh DT, Mbeb CN, Nwagwu CS, Khan R, Mokhetho KC, Baijnath H, Nlooto M, Mokhele S, Leonard CM, Tembu VJ, Tarirai C. Endoplasmic reticulum stress in pancreatic β-cell dysfunction: The potential therapeutic role of dietary flavonoids. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100184. [PMID: 38846008 PMCID: PMC11153890 DOI: 10.1016/j.crphar.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Diabetes mellitus (DM) is a global health burden that is characterized by the loss or dysfunction of pancreatic β-cells. In pancreatic β-cells, endoplasmic reticulum (ER) stress is a fact of life that contributes to β-cell loss or dysfunction. Despite recent advances in research, the existing treatment approaches such as lifestyle modification and use of conventional therapeutics could not prevent the loss or dysfunction of pancreatic β-cells to abrogate the disease progression. Therefore, targeting ER stress and the consequent unfolded protein response (UPR) in pancreatic β-cells may be a potential therapeutic strategy for diabetes treatment. Dietary phytochemicals have therapeutic applications in human health owing to their broad spectrum of biochemical and pharmacological activities. Flavonoids, which are commonly obtained from fruits and vegetables worldwide, have shown promising prospects in alleviating ER stress. Dietary flavonoids including quercetin, kaempferol, myricetin, isorhamnetin, fisetin, icariin, apigenin, apigetrin, vitexin, baicalein, baicalin, nobiletin hesperidin, naringenin, epigallocatechin 3-O-gallate hesperidin (EGCG), tectorigenin, liquiritigenin, and acacetin have shown inhibitory effects on ER stress in pancreatic β-cells. Dietary flavonoids modulate ER stress signaling components, chaperone proteins, transcription factors, oxidative stress, autophagy, apoptosis, and inflammatory responses to exert their pharmacological effects on pancreatic β-cells ER stress. This review focuses on the role of dietary flavonoids as potential therapeutic adjuvants in preserving pancreatic β-cells from ER stress. Highlights of the underlying mechanisms of action are also presented as well as possible strategies for clinical translation in the management of DM.
Collapse
Affiliation(s)
- Kingsley C. Mbara
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Marthe C.D. Fotsing
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Claudine N. Mbeb
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chinekwu S. Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Kopang C. Mokhetho
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, South Africa
| | - Shoeshoe Mokhele
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Carmen M. Leonard
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa J. Tembu
- Natural Products Chemistry Research Laboratory, Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clemence Tarirai
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Wang S, Wang M, Cui J, Lian D, Li L. Inhibition Effect of Okanin Toward Human Cytochrome P450 3A4 and 2D6 with Multi-spectroscopic Studies and Molecular Docking. J Fluoresc 2024; 34:203-212. [PMID: 37191827 DOI: 10.1007/s10895-023-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Okanin, a major flavonoid of a popular herb tea, Coreopsis tinctoria Nutt., showed strong inhibition on CYP3A4 and CYP2D6. The strong interaction between okanin and CYPs were determined by enzyme kinetics, multispectral technique and molecular docking. The inhibition type of two enzymes, CYP3A4 and CYP2D6, by okanin are mixed and non-competitive inhibition type, respectively. The IC50 values and the binding constant of okanin to CYP3A4 can be deduced that the interaction was stronger than that of CYP2D6. The Conformations of CYP3A4 and CYP2D6 were changed by okanin. The evidence from fluorescence measurement along with molecular docking verified that these two CYPs were bound with okanin by hydrogen bonds and hydrophobic forces. Our investigation suggested that okanin may lead to interactions between herb and drug by inhibiting CYP3A4 and CYP2D6 activities, thus its consumption should be taken with caution.
Collapse
Affiliation(s)
- Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
4
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Imtiaz F, Islam M, Saeed H, Ahmed A. Phenolic compounds from Tradescantia pallida ameliorate diabetes by inhibiting enzymatic and non-enzymatic pathways. J Biomol Struct Dyn 2023; 41:11872-11888. [PMID: 36597930 DOI: 10.1080/07391102.2022.2164059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic metabolic disorder marked by postprandial hyperglycemia due to several etiologies including abnormal carbohydrate digestion and glycation of hemoglobin. The prolong use of synthetic drugs results in characteristic side effects which necessitates the discovery of safe and cost-effective substitutes. The aim of the current study is to isolate and evaluate the antidiabetic potential of the phenolic compounds from the leaves of Tradescantia pallida. Syringic acid, p-coumaric acid, morin and catechin (compounds 1-4) were isolated and characterized from Tradescantia pallida leaves using column chromatography and spectroscopic techniques. The in vitro antidiabetic potential of the phenolic compounds were assessed using α-amylase and non-enzymatic glycosylation of hemoglobin protein assays. A mechanistic insight of interactions between phenolic compounds and human α-amylase and hemoglobin protein were scrutinized by employing molecular docking method. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were carried out to find the binding energies of the ligand-protein complexes. Morin and catechin were further analyzed to find the dynamic and thermodynamic constraints of the complexes under specific biological conditions using molecular dynamic simulation trajectories. The stability and flexibility of the complexes were justified by fluctuation of α-carbon chain, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and type of interactions involved which authenticated the in vitro inhibitory potential of morin and catechin against enzymatic and non-enzymatic pathways. The current study could be fruitful in rational designing of safe antidiabetic drugs of natural origin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
7
|
Bovine hemoglobin thermal stability in the presence of naringenin: Calorimetric, spectroscopic and molecular modeling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Liu G, Fan Y, Tao Y, Wang S, Wang M, Li L. Interactions of potato-derived and human recombinant 5-lipoxygenase with sec-O-glucosylhamaudol by multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121100. [PMID: 35272121 DOI: 10.1016/j.saa.2022.121100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
5-lipoxygenase (5-LOX) was a key enzyme involved in many inflammatory diseases. Sec-O-glucosylhamaudol (SOG) was a chromone found in Saposhnikovia divaricata (Turcz.) Schischk (S. divaricate). The potato-derived 5-LOX (p-5-LOX) and human recombinant 5-LOX (h-5-LOX) were selected as model protein due to their simple usability and high stability in this study. Thus, the binding interactions of p-5-LOX and h-5-LOX with SOG were investigated by multi-spectroscopy and molecular docking. As a result, the fluorescence intensities of the two 5-LOX were quenched statically by SOG. However, the binding ability of SOG to h-5-LOX was higher than that of p-5-LOX at the same temperature. The results of multi-spectroscopy revealed that the conformation and micro-environment of the two 5-LOX proteins were changed after binding with SOG. Fluorescence assay and molecular docking indicated that hydrogen bond and electrostatic gravitation were the main forces between the two 5-LOX and SOG. Our results here suggested that SOG may exert anti-inflammatory effect by inhibiting 5-LOX activity.
Collapse
Affiliation(s)
- Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
9
|
Mavani A, Ovung A, Luikham S, Suresh Kumar G, Das A, Ray D, Aswal VK, Bhattacharyya J. Biophysical and molecular modeling evidences for the binding of sulfa molecules with hemoglobin. J Biomol Struct Dyn 2022; 41:3779-3790. [PMID: 35380096 DOI: 10.1080/07391102.2022.2057358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanism of the heme protein, hemoglobin (Hb) interaction with sulfa molecule, sulfadiazine (SDZ) has been investigated through spectroscopic, neutron scattering and molecular modeling techniques. Absorption and emission spectroscopic studies showed that SDZ molecules were bound to Hb protein, non-cooperatively. The binding affinityof SDZ-Hb complex at standard experimental condition was evaluated to be around (4.2 ± 0.07) ×104, M-1with 1:1 stoichiometry. Drug induced structural perturbation of the 3 D protein moiety was confirmed through circular dichroism (CD), synchronous fluorescence and small angle neutron scattering methods. From the temperature dependent spectrofluorometric studies, the negative standard molar Gibbs energy change suggested the spontaneity of the reaction. The negative enthalpy and positive entropy change(s) indicated towards the involvement of both electrostatic and hydrophobic forces during the association process. Salt dependent fluorescence study revealed major contributions from non-poly-electrolytic forces. Molecular modeling studies determined the probable binding sites, types of interaction involved and the conformational alteration of the compactness of the Hb structure upon interaction with SDZ molecule. Overall, the study provides detailed insights into the binding mechanism of SDZ antibiotics to Hb protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A. Mavani
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Aben Ovung
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhi Das
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vinod K. Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| |
Collapse
|
10
|
Rout J, Swain BC, Subadini S, Mishra PP, Sahoo H, Tripathy U. Conformational dynamics of myoglobin in the presence of vitamin B12: A spectroscopic and in silico investigation. Int J Biol Macromol 2021; 192:564-573. [PMID: 34653439 DOI: 10.1016/j.ijbiomac.2021.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Myoglobin is an essential transport protein of heart and muscle tissues that acts as a local oxygen reservoir and a marker in different diseased conditions. On the other hand, Vitamin B12 is a vital nutrient that helps synthesize red blood cells, DNA, and proteins. To understand the ability of vitamin B12 to bind to the excess of myoglobin produced in the body under certain conditions (muscle injuries, severe trauma, etc.), it is essential to dig into the interaction between them. Therefore, the present study reports the binding interaction of vitamin B12 and myoglobin employing different spectroscopic and computational methods. The myoglobin's intrinsic fluorescence is quenched by vitamin B12 via static nature as observed from steady-state as well as time-resolved fluorescence measurements. The microenvironment of myoglobin's tryptophan residue gets affected, but there is no change observed in its α-helical content by vitamin B12 as seen from synchronous fluorescence and circular dichroism measurements. The probable binding of vitamin B12 on myoglobin was elucidated through molecular docking, and the interaction stability was studied by molecular dynamics simulation. The determination of vitamin B12's affinity to myoglobin and its effect on the conformational transitions of myoglobin might afford valuable insight for clinical pharmacology.
Collapse
Affiliation(s)
- Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Bikash Chandra Swain
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Suchismita Subadini
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Padmaja Prasad Mishra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
11
|
Alzahrani KA, Patel R. Dissociation of the DCF-Hb complex in presence of cationic micelles: A spectroscopic and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Gaurav M, Natesh A, Arundhati A, Mariam D. Biochemical aspects of hemoglobin-xenobiotic interactions and their implications in drug discovery. Biochimie 2021; 191:154-163. [PMID: 34474139 DOI: 10.1016/j.biochi.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Hemoglobin, a homodimeric globular protein, is found predominantly in red blood cells and in a small amount in blood plasma. Along with binding to certain native molecules, it also interacts with various xenobiotics. The present review aims at studying these interactions and the resultant tangible impact on the structure and function of the protein if any. The review also encompasses various analytical and computational approaches which are routinely used to study these interactions. A detailed discussion on types of interaction exhibited by individual xenobiotics has been included herein. Additionally, the effects of xenobiotic binding on the oxygen carrying capacity of hemoglobin have been reviewed. These insights would be of great value in drug design and discovery. Envisaging probable interactions of designed ligands with hemoglobin would help improvise the process of drug development. This would also open up new avenues for studying hemoglobin-mediated drug delivery.
Collapse
Affiliation(s)
- Mehta Gaurav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India
| | - Ahuja Natesh
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India
| | - Abhyankar Arundhati
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, India
| | - Degani Mariam
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India.
| |
Collapse
|
13
|
Dos Santos RV, Grillo G, Fonseca H, Stanisic D, Tasic L. Hesperetin as an inhibitor of the snake venom serine protease from Bothrops jararaca. Toxicon 2021; 198:64-72. [PMID: 33940046 DOI: 10.1016/j.toxicon.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
The majority (90%) of the snakebite envenomation in Brazil accounts for Bothrops from the Viperidae family. Some snake venom serine proteases provoke blood coagulation in ophidian accident victims because of their fibrinolytic activity, one of those proteases from Bothrops jararaca (B. jararaca) has been chosen for this study. Our objectives were to isolate and characterize the target serine protease; isolate, purify, and characterize the orange bagasse flavone (hesperetin, Hst), and investigate the interactions between the targets, enzyme, and hesperetin. The purified serine protease was named BjSP24 because of its molecular mass and proteolytic activity. BjSP24 was folded and characterized using circular dichroism and showed low alpha-helix contents (7.7%). BjSP24 exhibited sequence similarity to other known snake venom serine proteases as measured in the enzyme tryptic peptides' LC-MS/MS run. Hesperetin was obtained within the expected yield and with the predominance of 2S isomer (82%). It acted as a mixed inhibitor for the serine protease (SVSP) from Bothrops jararaca snake venom observed in three different in vitro experiments, fluorescence, kinetics, and SSTD-NMR. It is still to determine if hesperetin might aid-in reverting the on site blood clotting problems just after snakebite accidents.
Collapse
Affiliation(s)
- Roney Vander Dos Santos
- Biological Chemistry Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Giovanna Grillo
- Biological Chemistry Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Henrique Fonseca
- Biological Chemistry Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Organic Chemistry Department, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
14
|
Rodríguez García SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review. Crit Rev Food Sci Nutr 2021; 62:6446-6466. [PMID: 33792417 DOI: 10.1080/10408398.2021.1901651] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Food wastes imply significant greenhouse gas emissions, that increase the challenge of climate change and impact food security. According to FAO (2019), one of the main food wastes come from fruit and vegetables, representing 0.5 billion tons per year, of the 1.3 billion tons of total waste. The wastes obtained from fruit and vegetables have plenty of valuable components, known as bioactive compounds, with many properties that impact positively in human health. Some bioactive compounds hold antioxidant, anti-inflammatory, and anti-cancer properties and they have the capacity of modulating metabolic processes. Currently, the use of fruit and vegetable waste is studied to obtain bioactive compounds, through non-conventional techniques, also known as green extraction techniques. These extraction techniques report higher yields, reduce the use of solvents, employ less extraction time, and improve the efficiency of the process for obtaining bioactive compounds. Once extracted, these compounds can be used in the cosmetic, pharmaceutical, or food industry, the last one being focused on improving food quality.
Collapse
Affiliation(s)
- Sheila Lucía Rodríguez García
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Ovung A, Mavani A, Chatterjee S, Das A, Suresh Kumar G, Bhuiya S, Das S, Bhattacharyya J. On the Biophysical Investigation of Sulfamethazine‐Hemoglobin Binding and the Resulting Adverse Effects of Antibiotics. ChemistrySelect 2020. [DOI: 10.1002/slct.202003256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aben Ovung
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| | - A. Mavani
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Abhi Das
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Sutanwi Bhuiya
- Department of Chemistry Jadavpur University, Jadavpur Kolkata 700032 India
| | - Suman Das
- Department of Chemistry Jadavpur University, Jadavpur Kolkata 700032 India
| | - Jhimli Bhattacharyya
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima, Dimapur Nagalnd 797103 India
| |
Collapse
|
16
|
Dohare N, Siddiquee MA, Parray MD, Kumar A, Patel R. Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study. J Mol Recognit 2020; 33:e2841. [PMID: 32150309 DOI: 10.1002/jmr.2841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/23/2022]
Abstract
To get an idea about the pharmacokinetics and pharmacodynamics, it is important to study the drug-protein interaction. Therefore, herein, we studied the interaction of diclofenac sodium (DIC) with human hemoglobin. The binding study of nonsteroidal antiinflammatory drug, DIC with human hemoglobin (HHB) was done by utilizing fluorescence, UV-visible, time-resolved fluorescence and far-UV circular dichroism spectroscopy (CD). Various thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy change (ΔG) were also calculated. CD results showed that DIC induces secondary structure change in HHB. Fluorescence resonance energy transfer was also performed. Additionally, it was also observed that DIC inhibits the esterase-like enzymatic activity of HHB via competitive inhibition.
Collapse
Affiliation(s)
- Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mehrajud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Ioannou A, Varotsis C. Probing hemoglobin glyco-products by fluorescence spectroscopy. RSC Adv 2019; 9:37614-37619. [PMID: 35542272 PMCID: PMC9075759 DOI: 10.1039/c9ra05243g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescence mapping of hemoglobin AGE formation after hemoglobin modification by Maillard reaction products.
Collapse
Affiliation(s)
- Aristos Ioannou
- Cyprus University of Technology
- Department of Environmental Science and Technology
- Limassol
- Cyprus
| | - Constantinos Varotsis
- Cyprus University of Technology
- Department of Environmental Science and Technology
- Limassol
- Cyprus
| |
Collapse
|
18
|
Maurya N, Ud Din Parray M, Maurya JK, Kumar A, Patel R. Interaction of promethazine and adiphenine to human hemoglobin: A comparative spectroscopic and computational analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:32-42. [PMID: 29562212 DOI: 10.1016/j.saa.2018.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The binding nature of amphiphilic drugs viz. promethazine hydrochloride (PMT) and adiphenine hydrochloride (ADP), with human hemoglobin (Hb) was unraveled by fluorescence, absorbance, time resolved fluorescence, fluorescence resonance energy transfer (FRET) and circular dichroism (CD) spectral techniques in combination with molecular docking and molecular dynamic simulation methods. The steady state fluorescence spectra indicated that both PMT and ADP quenches the fluorescence of Hb through static quenching mechanism which was further confirmed by time resolved fluorescence spectra. The UV-Vis spectroscopy suggested ground state complex formation. The activation energy (Ea) was observed more in the case of Hb-ADP than Hb-PMT interaction system. The FRET result indicates the high probability of energy transfer from β Trp37 residue of Hb to the PMT (r=2.02nm) and ADP (r=2.33nm). The thermodynamic data reveal that binding of PMT with Hb are exothermic in nature involving hydrogen bonding and van der Waal interaction whereas in the case of ADP hydrophobic forces play the major role and binding process is endothermic in nature. The CD results show that both PMT and ADP, induced secondary structural changes of Hb and unfold the protein by losing a large helical content while the effect is more pronounced with ADP. Additionally, we also utilized computational approaches for deep insight into the binding of these drugs with Hb and the results are well matched with our experimental results.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mehraj Ud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore 562112, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
19
|
Grigoryan KR, Shilajyan HA. Analysis of the interaction of gallic acid and myoglobin by UV-vis absorption spectroscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Sammani MS, Clavijo S, Portugal L, Suárez R, Seddik H, Cerdà V. Use of multiresponse statistical techniques to optimize the separation of diosmin, hesperidin, diosmetin and hesperitin in different pharmaceutical preparations by high performance liquid chromatography with UV-DAD. Talanta 2017; 167:695-702. [PMID: 28340781 DOI: 10.1016/j.talanta.2017.02.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
A new method for the separation and determination of four flavonoids: hesperidin (HES), diosmin (DIO), hesperitin (HTIN), and diosmetin (DTIN) in pure form and pharmaceutical formulations has been developed by using high performance liquid chromatography (HPLC) with UV-DAD detection. Multivariate statistics (2k full factorial and Box Behnken Designs) has been used for the multiresponse optimization of the chromatographic separation, which was completed in 22min, and carried out on a symmetry® C18 column (250×3mm; 5µm) as stationary phase. Separation was conducted by gradient elution mode using a mixture of methanol, acetonitrile and water pH: 2.5 (CH3COOH), as mobile phase. Analytes were separated setting the column at 22°C, with a flow rate of 0.58mLmin-1 and detected at 285nm. Under the optimized conditions, the flavonoids showed retention times of: 8.62, 11.53, 18.55 and 19.94min for HES, DIO, HTIN and DTIN, respectively. Limits of detection and quantification were <0.0156µgmL-1 and <0.100µgmL-1, respectively. Linearity was achieved with good correlation coefficients values (r2=0.999; n=5). Intra-day and inter-day precision were found to be less than 3.44% (n=7). Finally, the proposed method was successfully applied to determine the target flavonoids in pharmaceutical preparations with satisfactory recoveries (between 95.2% and 107.9%), demonstrating that should also find application in the quality control, as well as in the pharmacokinetic studies of these drugs.
Collapse
Affiliation(s)
- Mohamad Subhi Sammani
- Departament of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain; Departament of Chemistry, University of Aleppo, University Square, Aleppo, Syria
| | - Sabrina Clavijo
- Sciware Systems, S.L., Spin-off of The University of the Balearic Islands, C/Pi 37, 07193 Bunyola, Spain.
| | - Lindomar Portugal
- Departament of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Ruth Suárez
- Departament of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Hassan Seddik
- Departament of Chemistry, University of Aleppo, University Square, Aleppo, Syria
| | - Víctor Cerdà
- Departament of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain; Sciware Systems, S.L., Spin-off of The University of the Balearic Islands, C/Pi 37, 07193 Bunyola, Spain
| |
Collapse
|
21
|
Maity S, Chakraborty S, Chakraborti AS. Critical insight into the interaction of naringenin with human haemoglobin: A combined spectroscopic and computational modeling approaches. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Khan AY, Kumar GS. Probing the binding of anticancer drug topotecan with human hemoglobin: Structural and thermodynamic studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:185-93. [DOI: 10.1016/j.jphotobiol.2016.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
|
23
|
An insight into the binding of an ester functionalized gemini surfactant to hemoglobin. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Feizi S, Jabbari M, Farajtabar A. A systematic study on solubility and solvation of bioactive compound chrysin in some water + cosolvent mixtures. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Maurya N, Maurya JK, Kumari M, Khan AB, Dohare R, Patel R. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies. J Biomol Struct Dyn 2016; 35:1367-1380. [PMID: 27141981 DOI: 10.1080/07391102.2016.1184184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.
Collapse
Affiliation(s)
- Neha Maurya
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Jitendra Kumar Maurya
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Meena Kumari
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Abbul Bashar Khan
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Ravins Dohare
- b Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Rajan Patel
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| |
Collapse
|
26
|
Sudha A, Srinivasan P, Thamilarasan V, Sengottuvelan N. Exploring the binding mechanism of 5-hydroxy-3',4',7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:170-181. [PMID: 26773261 DOI: 10.1016/j.saa.2015.12.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
The current study was carried out to investigate the binding mechanism of a potential flavonoid compound 5-hydroxy-3',4',7-trimethoxyflavone (HTMF) with bovine serum albumin (BSA) using ultraviolet-visible, fluorescence, circular dichroism (CD) spectral measurements along with molecular docking and molecular dynamics (MD) simulation. It was confirmed from fluorescence spectra that the intrinsic fluorescence of BSA was robustly quenched by HTMF through a static quenching mechanism. The number of binding sites (n) for HTMF binding on BSA was found to be about one. The thermodynamic parameters estimated from the van't Hoff plot specified that hydrophobic force was the predominant force in the HTMF-BSA complex and there also exist hydrogen bonds and electrostatic interactions. The effect of HTMF on the BSA conformation examined using CD studies revealed that there is a decrease in the helical content of BSA upon HTMF interaction. The results of molecular docking study shed light on the binding mode which exposed that HTMF bind within the hydrophobic pocket of the subdomain IIIA of BSA. The stability of HTMF-BSA complex with respect to free protein was analyzed from the molecular dynamic studies. The electronic structure analysis of HTMF was achieved by using density functional theory (DFT) calculations at B3LYP/6-31G** level to support its antioxidant role. The results of computational analysis are in good consistence with the experimental data and the present findings suggested that HTMF exhibits a good binding propensity to BSA protein which will be helpful for the drug design.
Collapse
Affiliation(s)
- A Sudha
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, India
| | - P Srinivasan
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, India; Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, India.
| | - V Thamilarasan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
| | - N Sengottuvelan
- Department of Chemistry, Directorate of Distance Education, Alagappa University, Karaikudi 630 004, India
| |
Collapse
|
27
|
Lipson SM, Ozen FS, Louis S, Karthikeyan L. Comparison of α-glucosyl hesperidin of citrus fruits and epigallocatechin gallate of green tea on the Loss of Rotavirus Infectivity in Cell Culture. Front Microbiol 2015; 6:359. [PMID: 25972850 PMCID: PMC4413797 DOI: 10.3389/fmicb.2015.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/09/2015] [Indexed: 12/02/2022] Open
Abstract
A number of secondary plant metabolites (e.g., flavonoids) possess antiviral/antimicrobial activity. Most flavonoids, however, are difficult to study, as they are immiscible in water-based systems. The relatively new semisynthetic α-glucosyl hesperitin (GH), and the natural plant product epigallocatechin gallate (EGCG) are unique among most flavonoids, as these flavonoids are highly soluble. The antiviral activity of these plant metabolites were investigated using the rotavirus as a model enteric virus system. Direct loss of virus structural integrity in cell-free suspension and titration of amplified RTV in host cell cultures was measured by a quantitative enzyme-linked immunosorbent assay (qEIA). After 30 min. 100 × 10(3) μg/ml GH reduced RTV antigen levels by ca. 90%. The same compound reduced infectivity (replication in cell culture) by a similar order of magnitude 3 to 4 days post inoculation. After 3 days in culture, EGCG concentrations of 80, 160, and 320 μg/ml reduced RTV infectivity titer levels to ca. 50, 20, and 15% of the control, respectively. Loss of RTV infectivity titers occurred following viral treatment by parallel testing of both GH and EGCG, with the latter, markedly more effective. Cytotoxicity testing showed no adverse effects by the phenolic concentrations used in this study. The unique chemical structure of each flavonoid rather than each phenolic's inherent solubility may be ascribed to those marked differences between each molecule's antiviral (anti-RTV) effects. The solubility of EGCG and GH obviated our need to use potentially confounding or obfuscating carrier molecules (e.g., methanol, ethanol, DMSO) denoting our use of a pure system environ. Our work further denotes the need to address the unique chemical nature of secondary plant metabolites before any broad generalizations in flavonoid (antiviral) activity may be proposed.
Collapse
Affiliation(s)
- Steven M. Lipson
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Fatma S. Ozen
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Samantha Louis
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Laina Karthikeyan
- Department of Biology, New York City College of Technology, The City University of New YorkBrooklyn, NY, USA
| |
Collapse
|
28
|
Choi MS, Gupta A, Seo JH, Velmathi S, Wilson JN, Park JS. Characteristic Fluorescence Response of (6-Hydroxy-2-naphthyl)ethenyl Pyridinium Dyes with Bovine Serum Albumin. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Myung-Seok Choi
- Department of Materials Chemistry and Engineering; Konkuk University; Seoul 143-701 Korea
| | - Ankush Gupta
- Department of Organic Material and Polymer Engineering; Dong-A University; Busan 604-714 Korea
| | - Jung Hwa Seo
- Department of Materials Physics; Dong-A University; Busan 604-714 Korea
| | - S. Velmathi
- Department of Chemistry; National Institute of Technology; Tiruchirappalli 620 015 India
| | - James N. Wilson
- Department of Chemistry; University of Miami; Coral Gables FL 33124 USA
| | - Jong S. Park
- Department of Organic Material and Polymer Engineering; Dong-A University; Busan 604-714 Korea
| |
Collapse
|
29
|
Pahari BP, Chaudhuri S, Chakraborty S, Sengupta PK. Ground and Excited State Proton Transfer of the Bioactive Plant Flavonol Robinetin in a Protein Environment: Spectroscopic and Molecular Modeling Studies. J Phys Chem B 2014; 119:2533-45. [DOI: 10.1021/jp508410v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswa Pathik Pahari
- Biophysics
and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Sudip Chaudhuri
- Gandhi
Centenary
B. T. College, Habra, Habra-Prafullanagar-743268, India
| | - Sandipan Chakraborty
- Department
of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Pradeep K. Sengupta
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|
30
|
He W, Dou H, Li Z, Wang X, Wang L, Wang R, Chang J. Investigation of the interaction between five alkaloids and human hemoglobin by fluorescence spectroscopy and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 123:176-186. [PMID: 24394533 DOI: 10.1016/j.saa.2013.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/17/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
This work studied the interaction of human hemoglobin (HHb) with aminophylline, acefylline, caffeine, theophylline and diprophylline systematically by UV-vis absorption spectroscopy and fluorescence spectroscopy in combination with molecular modeling. Five alkaloids caused the fluorescence quenching of HHb by the formation of alkaloids-HHb complex. The binding constants and thermodynamic parameters were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize these complexes. Results of thermodynamic analysis and molecular modeling showed that aminophylline was the strongest quencher and diprophylline was the weakest quencher.
Collapse
Affiliation(s)
- Wu He
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Huanjing Dou
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Zhigang Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Xiaogai Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Lvjing Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China.
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
31
|
Chatterjee S, Kumar GS. Targeting the heme proteins hemoglobin and myoglobin by janus green blue and study of the dye–protein association by spectroscopy and calorimetry. RSC Adv 2014. [DOI: 10.1039/c4ra06600f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The binding of the phenazinium dye janus green blue (JGB) to two heme proteins, hemoglobin (Hb) and myoglobin (Mb), was studied by biophysical and microcalorimetry techniques.
Collapse
Affiliation(s)
- Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|