1
|
Sert C, Başak N, Koruk İ. Electric and magnetic field pollution in near substations and investigation of anxiety and depressive effects on adult individuals living in this area. Electromagn Biol Med 2024; 43:145-155. [PMID: 38699873 DOI: 10.1080/15368378.2024.2348574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Exposure to electromagnetic fields causes a variety of health problems in living systems. We investigated EMF pollution in Şanlıurfa city center and also investigated anxiety-depression symptoms in individuals (18-40 years old) exposed to this pollution. For this purpose, electric field and magnetic field measurements were taken at Electricity Distribution Center and 44 substations (for each transformer), at 0 points, 1 meter away, 2 meters away and the house/office closest to the transformer. The experimental group was individuals living in electricity distribution center residences and individuals living near transformers (n = 55). The control group was selected from individuals who lived outside the city center of Şanlıurfa, did not have transformers or high transmission lines near their homes, and did not have any chronic diseases that could cause stress (n = 50). Anxiety and depression symptoms of the groups were measured using the Beck Anxiety Inventory Scale (BAI) and Beck Depression Inventory Scale (BDI). The relationship between EMF pollution and anxiety-depression was evaluated statistically. Maximum MF and EF values were recorded as 0.22 mT and 65.9 kV/m, respectively. All measured MF values were below standards, but EF values were above standards at some points. In conclusion, there is no statistically convincing evidence of a relationship between EMF exposure and anxiety-depression (p > 0.05). This result shows that there may be more meaningful results in places with higher EMF levels. We interpreted the fact that exposure to electromagnetic fields does not cause anxiety and depression in individuals, as the measured values are below the limit values.
Collapse
Affiliation(s)
- Cemil Sert
- Department of Biophysics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | | | - İbrahim Koruk
- Public Health Department, Harran University Faculty of Medicine, Sanliurfa, Turkey
| |
Collapse
|
2
|
Ivanov YD, Shumov ID, Kozlov AF, Valueva AA, Ershova MO, Ivanova IA, Ableev AN, Tatur VY, Lukyanitsa AA, Ivanova ND, Ziborov VS. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. MICROMACHINES 2024; 15:499. [PMID: 38675310 PMCID: PMC11052087 DOI: 10.3390/mi15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Alexander N. Ableev
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
3
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
4
|
The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. J Funct Biomater 2022; 13:jfb13040166. [PMID: 36278635 PMCID: PMC9590084 DOI: 10.3390/jfb13040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this research, the influence of a dodecahedron-shaped structure on the adsorption behavior of a horseradish peroxidase (HRP) enzyme glycoprotein onto mica substrates was studied. In the experiments, samples of an aqueous HRP solution were incubated at various distances (0.03 m, 2 m, 5 m, and control at 20 m) from the dodecahedron surface. After the incubation, the direct adsorption of HRP onto mica substrates immersed in the solutions was performed, and the mica-adsorbed HRP particles were visualized via atomic force microscopy (AFM). The effect of the increased HRP aggregation was only observed after the incubation of the enzyme solution at the 2 m distance from the dodecahedron. In addition, with respect to the control sample, spectrophotometric measurements revealed no change in the HRP enzymatic activity after the incubation at any of the distances studied. The results reported herein can be of use in the modeling of the possible influences of various spatial structures on biological objects in the development of biosensors and other electronic equipment.
Collapse
|
5
|
Hu C, Zuo H, Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health 2021; 9:691880. [PMID: 34485223 PMCID: PMC8415840 DOI: 10.3389/fpubh.2021.691880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.
Collapse
Affiliation(s)
- Cuicui Hu
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Shih YW, O'Brien AP, Hung CS, Chen KH, Hou WH, Tsai HT. Exposure to radiofrequency radiation increases the risk of breast cancer: A systematic review and meta-analysis. Exp Ther Med 2020; 21:23. [PMID: 33262809 PMCID: PMC7690245 DOI: 10.3892/etm.2020.9455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
The present systematic review and meta-analysis investigated the association between exposure to radiofrequency radiation and the risk of breast cancer. The published studies that were available in PubMed, Embase, Cochrane Library, Ovid MEDLINE, CINAHL Plus, Web of Science, Airiti Library, Networked Digital Library of Theses and Dissertations and ProQuest until May 2020 were investigated. A total of eight studies (four case-control and four cohort studies) were eligible for quantitative analysis. A significant association between radiofrequency radiation exposure and breast cancer risk was detected [pooled relative risk (RR)=1.189; 95% confidence interval (CI), 1.056-1.339]. Subgroup analyses indicated that radiofrequency radiation exposure significantly increased the risk of breast cancer susceptibility among subjects aged ≥50 years (RR=2.179; 95% CI, 1.260-3.770). Pooled estimates revealed that the use of electrical appliances, which emit radiofrequency radiation, such as mobile phones and computers, significantly increased breast cancer development (RR=2.057; 95% CI, 1.272-3.327), while occupational radiofrequency exposure and transmitters did not increase breast cancer development (RR=1.274; 95% CI, 0.956-1.697; RR=1.133; 95% CI, 0.987-1.300, respectively). It was concluded that radiofrequency radiation exposure significantly increased the risk of breast cancer, especially in women aged ≥50 years and in individuals who used electric appliances, such as mobile phones and computers. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-analysis, an evaluation protocol was prepared and registered with the PROSPERO database (registration no. CRD42018087283).
Collapse
Affiliation(s)
- Ya-Wen Shih
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Anthony Paul O'Brien
- Faculty of Health and Medicine, School of Nursing and Midwifery, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C
| | - Kee-Hsin Chen
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Evidence-based Knowledge Translation Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Cochrane Taiwan, Taipei 11031, Taiwan R.O.C
| | - Wen-Hsuan Hou
- Cochrane Taiwan, Taipei 11031, Taiwan R.O.C.,Department of Physical Medicine and Rehabilitation/Center of Evidence-Based Medicine in Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan R.O.C.,Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| |
Collapse
|
7
|
Bagheri Hosseinabadi M, Khanjani N, Norouzi P, Mirbadie SR, Fazli M, Mirzaii M. Oxidative stress associated with long term occupational exposure to extremely low frequency electric and magnetic fields. Work 2020; 68:379-386. [PMID: 32925155 DOI: 10.3233/wor-203244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Occupational exposure to extremely low frequency electromagnetic fields (ELF-EMFs) may have harmful effects on biologic systems and has raised many concerns in the last decades. OBJECTIVE The aim of this study was to determine the effects of exposure to extremely low frequency electric and magnetic fields on lipid peroxidation and antioxidant enzyme activities. METHODS This study was conducted on 115 power plant workers as the exposed group and 145 office workers as the non-exposed group. The levels of Malondialdehyde (MDA), superoxide dismutase (SOD), Catalase (Cat), and total antioxidant capacity (TAC) were measured in the serum of all subjects. Exposure to ELF-EMFs was measured based on spot measurements and the IEEE Std C95.3.1 standard. RESULTS The levels of MDA, SOD, and Cat in the exposed group were significantly higher than in the non-exposed group. However, the level of TAC was not significantly different between the exposed (2.45±1.02) and non-exposed (2.21±1.07) groups. The levels of MDA and SOD were higher among workers with higher exposure to electric fields than workers with low exposure. All oxidative stress indicators increased with increased exposure to magnetic fields, except TAC. CONCLUSIONS The antioxidant system imbalance among power plant workers may be related to long term occupational exposure to electromagnetic fields.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mozhgan Fazli
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Kuznetsov AV, Kuleshova ON, Pronozin AY, Krivenko OV, Zavyalova OS. Effects of low frequency rectangular electric pulses on Trichoplax (Placozoa). ACTA ACUST UNITED AC 2020. [DOI: 10.21072/mbj.2020.05.2.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of extremely low frequency electric and magnetic fields (ELF-EMF) on plants and animals including humans is quite a contentious issue. Little is known about ELF-EMF effect on hydrobionts, too. We studied the effect of square voltage waves of various amplitude, duration, and duty cycle, passed through seawater, on Trichoplax organisms as a possible test laboratory model. Three Placozoa strains, such as Trichoplax adhaerens (H1), Trichoplax sp. (H2), and Hoilungia hongkongensis (H13), were used in experiments. They were picked at the stationary growth phase. Arduino Uno electronics platform was used to generate a sequence of rectangular pulses of given duration and duty cycle with a frequency up to 2 kHz. Average voltage up to 500 mV was regulated by voltage divider circuit. Amlodipine, an inhibitor of calcium channel activity, was used to check the specificity of electrical pulse effect on voltage-gated calcium channels in Trichoplax. Experimental animals were investigated under a stereo microscope and stimulated by current-carrying electrodes placed close to a Trichoplax body. Variations in behavior and morphological characteristics of Trichoplax plate were studied. Stimulating and suppressing effects were identified. Experimental observations were recorded using photo and video techniques. Motion trajectories of individual animals were tracked. Increasing voltage pulses with fixed frequency of 20 Hz caused H2 haplotype individuals to leave “electrode zone” within several minutes at a voltage of 25 mV. They lost mobility in proportion to voltage rise and were paralyzed at a voltage of 500 mV. Therefore, a voltage of 50 mV was used in further experiments. An animal had more chance to move in various directions in experiments with two electrodes located on one side instead of both sides of Trichoplax. Direction of motion was used as a characteristic feature. Trichoplax were observed to migrate to areas with low density of electric field lines, which are far from electrodes or behind them. Animals from old culture were less sensitive to electrical stimulus. H2 strain was more reactive than H1 strain and especially than H13 strain; it demonstrated stronger physiological responses at frequencies of 2 Hz and 2 kHz with a voltage of 50 mV. Motion patterns and animal morphology depended on the duration of rectangular stimulation pulses, their number, amplitude, and frequency. Effects observed varied over a wide range: from direct or stochastic migration of animals to the anode or the cathode or away from it to their immobility, an increase of optical density around and in the middle of Trichoplax plate, and finally to Trichoplax folding and detach from the substrate. Additional experiments on Trichoplax sp. H2 with pulse duration of 35 ms and pulse delay of 1 ms to 10 s showed that the fraction of paralyzed animals increased up to 80 % with minimum delay. Nevertheless, in the presence of amlodipine with a concentration of 25 nM, almost all Trichoplax remained fast-moving for several minutes despite exposure to voltage waves. Experimental animals showed a total discoordination of motion and could not leave an “electrode trap”, when amlodipine with a concentration of 250 nM was used. Further, Trichoplax plate became rigid, which appeared in animal shape invariability during motion. Finally, amlodipine with a concentration of 50 μM caused a rapid folding of animal plate-like body into a pan in the ventral-dorsal direction and subsequent dissociation of Trichoplax plate into individual cells. In general, the electrical exposure applied demonstrated a cumulative but a reversible physiological effect, which, as expected, is associated with activity of voltage-gated calcium channels. Amlodipine at high concentration (50 μM) caused Trichoplax disintegration; at moderate concentration (250 nM), it disrupted the propagation of activation waves that led to discoordination of animal motion; at low concentration (25 nM), it prevented an electric shock.
Collapse
|
9
|
Nizhelska O, Marynchenko L, Piasetskyi V. Biological Risks of Using Non-Thermal Non-Ionizing Electromagnetic Fields. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.2.202452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Bagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Mousavi SH, Nazarkhani F. Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. J Occup Health 2020; 62:e12136. [PMID: 32710586 PMCID: PMC7382129 DOI: 10.1002/1348-9585.12136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study was designed to investigate the possible effect of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on occupational burnout syndrome and the severity of depression experienced among thermal power plant workers and the role of oxidative stress. METHODS In this cross-sectional study, 115 power plant workers and 124 administrative personnel of a hospital were enrolled as exposed and unexposed groups, respectively, based on inclusion and exclusion criteria. Levels of oxidative stress biomarkers, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity were measured in serum samples. Exposure to electric and magnetic fields was measured using the IEEE Std C95.3.1 standard at each workstation. The burnout syndrome and the severity of depression were assessed using the Maslach Burnout and Beck Depression Inventory. RESULTS The levels of MDA and SOD were significantly lower in the exposed group than the unexposed group. The exposed group reported a higher prevalence of burnout syndrome and higher depression severity. Multiple linear regression showed that work experience, MDA level, and levels of exposure to magnetic fields are the most important predictor variables for burnout syndrome and severity of depression. In addition, a decrease in the level of Cat was significantly associated with increased burnout syndrome. CONCLUSION The thermal power plant workers exposed to ELF-EMFs are at risk of burnout syndrome and depression. These effects may be caused directly by exposure to magnetic fields or indirectly due to increased oxidative stress indices.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | | | - Fereshteh Nazarkhani
- Department of Occupational Health, Faculty of HealthMazandaran University of Medical SciencesSariIran
| |
Collapse
|