1
|
Liu X, Guo W, Cui S, Tang X, Zhao J, Zhang H, Mao B, Chen W. A Comprehensive Assessment of the Safety of Blautia producta DSM 2950. Microorganisms 2021; 9:microorganisms9050908. [PMID: 33922843 PMCID: PMC8146736 DOI: 10.3390/microorganisms9050908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, Blautia has attracted attention for its role in ameliorating host diseases. In particular, Blautia producta DSM 2950 has been considered a potential probiotic due to its ability to mitigate inflammation in poly(I:C) induced HT-29 cells. Thus, to promote the development of indigenous intestinal microorganisms with potential probiotic function, we conducted a comprehensive experimental analysis of DSM 2950 to determine its safety. This comprised a study of its potential virulence genes, antibiotic resistance genes, genomic islands, antibiotic resistance, and hemolytic activity and a 14-day test of its acute oral toxicity in mice. The results indicated no toxin-related virulence genes in the DSM 2950 genome. Most of the genomic islands in DSM 2950 were related to metabolism, rather than virulence expression. DSM 2950 was sensitive to most of the tested antibiotics but was tolerant of treatment with kanamycin, neomycin, clindamycin, or ciprofloxacin, probably because it possessed the corresponding antibiotic resistance genes. Oral acute toxicity tests indicated that the consumption of DSM 2950 does not cause toxic side effects in mice. Overall, the safety profile of DSM 2950 confirmed that it could be a candidate probiotic for use in food and pharmaceutical preparations.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (S.C.); (B.M.); Tel.: +86-510-8591-2155 (B.M.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.L.); (W.G.); (X.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
3
|
Moktan H, Guiraldelli MF, Eyster CA, Zhao W, Lee CY, Mather T, Camerini-Otero RD, Sung P, Zhou DH, Pezza RJ. Solution structure and DNA-binding properties of the winged helix domain of the meiotic recombination HOP2 protein. J Biol Chem 2014; 289:14682-91. [PMID: 24711446 DOI: 10.1074/jbc.m114.548180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination.
Collapse
Affiliation(s)
- Hem Moktan
- From the Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Michel F Guiraldelli
- the Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Craig A Eyster
- the Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Weixing Zhao
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Chih-Ying Lee
- the Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Timothy Mather
- the Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - R Daniel Camerini-Otero
- the Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Patrick Sung
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Donghua H Zhou
- From the Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Roberto J Pezza
- the Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, the Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73126
| |
Collapse
|
4
|
Amoroso A, Boudet J, Berzigotti S, Duval V, Teller N, Mengin-Lecreulx D, Luxen A, Simorre JP, Joris B. A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathog 2012; 8:e1002571. [PMID: 22438804 PMCID: PMC3305447 DOI: 10.1371/journal.ppat.1002571] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 01/24/2012] [Indexed: 01/29/2023] Open
Abstract
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.
Collapse
Affiliation(s)
- Ana Amoroso
- Centre d'Ingénierie des Protéines, Institut de Chimie B6A, Sart-Tilman, Université de Liège, Liège, Belgium
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julien Boudet
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France
| | - Stéphanie Berzigotti
- Centre d'Ingénierie des Protéines, Institut de Chimie B6A, Sart-Tilman, Université de Liège, Liège, Belgium
| | - Valérie Duval
- Centre d'Ingénierie des Protéines, Institut de Chimie B6A, Sart-Tilman, Université de Liège, Liège, Belgium
| | - Nathalie Teller
- Chimie Organique de Synthèse, Institut de Chimie B6A, Sart-Tilman. Université de Liège, Liège, Belgium
| | - Dominique Mengin-Lecreulx
- Université de Paris-Sud 11 and CNRS, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Laboratoire des Enveloppes Bactériennes et Antibiotiques, UMR 8619, Orsay, France
| | - André Luxen
- Chimie Organique de Synthèse, Institut de Chimie B6A, Sart-Tilman. Université de Liège, Liège, Belgium
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France
| | - Bernard Joris
- Centre d'Ingénierie des Protéines, Institut de Chimie B6A, Sart-Tilman, Université de Liège, Liège, Belgium
| |
Collapse
|
5
|
Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Böckmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 2010; 285:31446-61. [PMID: 20667830 DOI: 10.1074/jbc.m110.122895] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by (1)H and (13)C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism.
Collapse
Affiliation(s)
- Roland Montserret
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, Université de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Response of gram-positive bacteria to copper stress. J Biol Inorg Chem 2009; 15:3-14. [PMID: 19774401 DOI: 10.1007/s00775-009-0588-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 01/05/2023]
Abstract
The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.
Collapse
|
7
|
Janowski R, Panjikar S, Eddine AN, Kaufmann SHE, Weiss MS. Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from Mycobacterium tuberculosis. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2009; 10:137-50. [PMID: 19184528 PMCID: PMC2758359 DOI: 10.1007/s10969-009-9060-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 01/14/2009] [Indexed: 01/07/2023]
Abstract
Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb). It is further fueled by the HIV pandemic and by increasing incidences of multidrug resistant Mtb-strains. Rv2827c, a hypothetical protein from Mtb, has been implicated in the survival of Mtb in the macrophages of the host. The three-dimensional structure of Rv2827c has been determined by the three-wavelength anomalous diffraction technique using bromide-derivatized crystals and refined to a resolution of 1.93 A. The asymmetric unit of the orthorhombic crystals contains two independent protein molecules related by a non-crystallographic translation. The tertiary structure of Rv2827c comprises two domains: an N-terminal domain displaying a winged helix topology and a C-terminal domain, which appears to constitute a new and unique fold. Based on structural homology considerations and additional biochemical evidence, it could be established that Rv2827c is a DNA-binding protein. Once the understanding of the structure-function relationship of Rv2827c extends to the function of Rv2827c in vivo, new clues for the rational design of novel intervention strategies may be obtained.
Collapse
Affiliation(s)
- Robert Janowski
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
- IBMB (CSIC), Parc Científic de Barcelona, Baldiri Riexac 10–12, 08028 Barcelona, Spain
| | - Santosh Panjikar
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Ali Nasser Eddine
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Manfred S. Weiss
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| |
Collapse
|
8
|
The copper-responsive repressor CopR of Lactococcus lactis is a ‘winged helix’ protein. Biochem J 2008; 417:493-9. [DOI: 10.1042/bj20081713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a ‘cop box’ of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.
Collapse
|
9
|
Pazehoski KO, Collins TC, Boyle RJ, Jensen-Seaman MI, Dameron CT. Stalking metal-linked dimers. J Inorg Biochem 2008; 102:522-31. [DOI: 10.1016/j.jinorgbio.2007.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/02/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
|
10
|
Boudet J, Duval V, Van Melckebeke H, Blackledge M, Amoroso A, Joris B, Simorre JP. Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against beta-lactam antibiotics. Nucleic Acids Res 2007; 35:4384-95. [PMID: 17576674 PMCID: PMC1935004 DOI: 10.1093/nar/gkm448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In absence of β-lactam antibiotics, BlaI and MecI homodimeric repressors negatively control the expression of genes involved in β-lactam resistance in Bacillus licheniformis and in Staphylococcus aureus. Subsequently to β-lactam presence, BlaI/MecI is inactivated by a single-point proteolysis that separates its N-terminal DNA-binding domain to its C-terminal domain responsible for its dimerization. Concomitantly to this proteolysis, the truncated repressor acquires a low affinity for its DNA target that explains the expression of the structural gene for resistance. To understand the loss of the high DNA affinity of the truncated repressor, we have determined the different dissociation constants of the system and solved the solution structure of the B. licheniformis monomeric repressor complexed to the semi-operating sequence OP1 of blaP (1/2OP1blaP) by using a de novo docking approach based on inter-molecular nuclear Overhauser effects and chemical-shift differences measured on each macromolecular partner. Although the N-terminal domain of the repressor is not subject to internal structural rearrangements upon DNA binding, the molecules adopt a tertiary conformation different from the crystallographic operator–repressor dimer complex, leading to a 30° rotation of the monomer with respect to a central axis extended across the DNA. These results open new insights for the repression and induction mechanisms of bacterial resistance to β-lactams.
Collapse
Affiliation(s)
- Julien Boudet
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Valérie Duval
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Hélène Van Melckebeke
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Martin Blackledge
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Ana Amoroso
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Bernard Joris
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
- *To whom correspondence should be addressed. +33-4-38785799+33-4-38785494
| |
Collapse
|
11
|
Portmann R, Poulsen KR, Wimmer R, Solioz M. CopY-like copper inducible repressors are putative 'winged helix' proteins. Biometals 2006; 19:61-70. [PMID: 16502332 DOI: 10.1007/s10534-005-5381-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 04/13/2005] [Indexed: 11/25/2022]
Abstract
CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of 'winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same alpha-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the 'winged helix' type.
Collapse
Affiliation(s)
- Reto Portmann
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH, 3010, Berne, Switzerland
| | | | | | | |
Collapse
|
12
|
Safo MK, Ko TP, Musayev FN, Zhao Q, Wang AHJ, Archer GL. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:320-4. [PMID: 16582476 PMCID: PMC2222568 DOI: 10.1107/s1744309106009742] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/15/2006] [Indexed: 11/10/2022]
Abstract
The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of beta-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 A resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Wilke MS, Lovering AL, Strynadka NCJ. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2006; 8:525-33. [PMID: 16129657 DOI: 10.1016/j.mib.2005.08.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Bacterial resistance to beta-lactam antibiotics can be achieved by any of three strategies: the production of beta-lactam-hydrolyzing beta-lactamase enzymes, the utilization of beta-lactam-insensitive cell wall transpeptidases, and the active expulsion of beta-lactam molecules from Gram-negative cells by way of efflux pumps. In recent years, structural biology has contributed significantly to the understanding of these processes and should prove invaluable in the design of drugs to combat beta-lactam resistance in the future.
Collapse
Affiliation(s)
- Mark S Wilke
- Department of Biochemistry and Molecular Biology, and the Center for Blood Research, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
14
|
McLaughlin WA, Kulp DW, de la Cruz J, Lu XJ, Lawson CL, Berman HM. A structure-based method for identifying DNA-binding proteins and their sites of DNA-interaction. ACTA ACUST UNITED AC 2005; 5:255-65. [PMID: 15704013 DOI: 10.1007/s10969-005-4902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 11/17/2004] [Indexed: 01/11/2023]
Abstract
A classification model of a DNA-binding protein chain was created based on identification of alpha helices within the chain likely to bind to DNA. Using the model, all chains in the Protein Data Bank were classified. For many of the chains classified with high confidence, previous documentation for DNA-binding was found, yet no sequence homology to the structures used to train the model was detected. The result indicates that the chain model can be used to supplement sequence based methods for annotating the function of DNA-binding. Four new candidates for DNA-binding were found, including two structures solved through structural genomics efforts. For each of the candidate structures, possible sites of DNA-binding are indicated by listing the residue ranges of alpha helices likely to interact with DNA.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
| | | | | | | | | | | |
Collapse
|
15
|
Magnani D, Solioz M. Copper Chaperone Cycling and Degradation in the Regulation of theCop Operon of Enterococcus Hirae. Biometals 2005; 18:407-12. [PMID: 16158233 DOI: 10.1007/s10534-005-3715-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Extensive insight into copper homeostasis has recently emerged. The Gram-positive bacterium Enterococcus hirae has been a paradigm for many aspects of the process. The cop operon of E. hirae consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. CopA and CopB accomplish copper uptake and export, respectively, and the expression of the cop operon is regulated by copper via the CopY repressor and the CopZ chaperone. The functions of the four Cop proteins have been extensively studied in vivo as well as in vitro and a detailed understanding of the regulation of the cop operon by copper has emerged.
Collapse
Affiliation(s)
- David Magnani
- Department of Clinical Pharmacology, University of Berne, Switzerland
| | | |
Collapse
|
16
|
Vreuls C, Filée P, Van Melckebeke H, Aerts T, De Deyn P, Llabrès G, Matagne A, Simorre JP, Frère JM, Joris B. Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway. Biochem J 2005; 384:179-90. [PMID: 15285720 PMCID: PMC1134101 DOI: 10.1042/bj20040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Bacillus licheniformis 749/I BlaI repressor is a prokaryotic regulator that, in the absence of a beta-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase. The BlaI repressor is composed of two structural domains. The 82-residue NTD (N-terminal domain) is a DNA-binding domain, and the CTD (C-terminal domain) containing the next 46 residues is a dimerization domain. Recent studies have shown the existence of the monomeric, dimeric and tetrameric forms of BlaI in solution. In the present study, we analyse the equilibrium unfolding of BlaI in the presence of GdmCl (guanidinium chloride) using different techniques: intrinsic and ANS (8-anilinonaphthalene-l-sulphonic acid) fluorescence, far- and near-UV CD spectroscopy, cross-linking, analytical ultracentrifugation, size exclusion chromatography and NMR spectroscopy. In addition, the intact NTD and CTD were purified after proteolysis of BlaI by papain, and their unfolding by GdmCl was also studied. GdmCl-induced equilibrium unfolding was shown to be fully reversible for BlaI and for the two isolated fragments. The results demonstrate that the NTD and CTD of BlaI fold/unfold independently in a four-step process, with no significant co-operative interactions between them. During the first step, the unfolding of the BlaI CTD occurs, followed in the second step by the formation of an 'ANS-bound' intermediate state. Cross-linking and analytical ultracentrifugation experiments suggest that the dissociation of the dimer into two partially unfolded monomers takes place in the third step. Finally, the unfolding of the BlaI NTD occurs at a GdmCl concentration of approx. 4 M. In summary, it is shown that the BlaI CTD is structured, more flexible and less stable than the NTD upon GdmCl denaturation. These results contribute to the characterization of the BlaI dimerization domain (i.e. CTD) involved in the induction process.
Collapse
Affiliation(s)
- Christelle Vreuls
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Patrice Filée
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Hélène Van Melckebeke
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Tony Aerts
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Peter De Deyn
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gabriel Llabrès
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - André Matagne
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Jean-Pierre Simorre
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Jean-Marie Frère
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Bernard Joris
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 692] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
18
|
Safo MK, Zhao Q, Ko TP, Musayev FN, Robinson H, Scarsdale N, Wang AHJ, Archer GL. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J Bacteriol 2005; 187:1833-44. [PMID: 15716455 PMCID: PMC1064009 DOI: 10.1128/jb.187.5.1833-1844.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The 14-kDa BlaI protein represses the transcription of blaZ, the gene encoding beta-lactamase. It is homologous to MecI, which regulates the expression of mecA, the gene encoding the penicillin binding protein PBP2a. These genes mediate resistance to beta-lactam antibiotics in staphylococci. Both repressors can bind either bla or mec DNA promoter-operator sequences. Regulated resistance genes are activated via receptor-mediated cleavage of the repressors. Cleavage is induced when beta-lactam antibiotics bind the extramembrane sensor of the sensor-transducer signaling molecules, BlaR1 or MecR1. The crystal structures of BlaI from Staphylococcus aureus, both in free form and in complex with 32 bp of DNA of the mec operator, have been determined to 2.0- and 2.7-A resolutions, respectively. The structure of MecI, also in free form and in complex with the bla operator, has been previously reported. Both repressors form homodimers, with each monomer composed of an N-terminal DNA binding domain of winged helix-turn-helix topology and a C-terminal dimerization domain. The structure of BlaI in complex with the mec operator shows a protein-DNA interface that is conserved between both mec and bla targets. The recognition helix alpha3 interacts specifically with the conserved TACA/TGTA DNA binding motif. BlaI and, probably, MecI dimers bind to opposite faces of the mec DNA double helix in an up-and-down arrangement, whereas MecI and, probably, BlaI dimers bind to the same DNA face of bla promoter-operator DNA. This is due to the different spacing of mec and bla DNA binding sites. Furthermore, the flexibility of the dimeric proteins may make the C-terminal proteolytic cleavage site more accessible when the repressors are bound to DNA than when they are in solution, suggesting that the induction cascade involves bound rather than free repressor.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0049, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wilke MS, Hills TL, Zhang HZ, Chambers HF, Strynadka NCJ. Crystal Structures of the Apo and Penicillin-acylated Forms of the BlaR1 β-Lactam Sensor of Staphylococcus aureus. J Biol Chem 2004; 279:47278-87. [PMID: 15322076 DOI: 10.1074/jbc.m407054200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is among the most prevalent and antibiotic-resistant of pathogenic bacteria. The resistance of S. aureus to prototypal beta-lactam antibiotics is conferred by two mechanisms: (i) secretion of hydrolytic beta-lactamase enzymes and (ii) production of beta-lactam-insensitive penicillin-binding proteins (PBP2a). Despite their distinct modes of resistance, expression of these proteins is controlled by similar regulation systems, including a repressor (BlaI/MecI) and a multidomain transmembrane receptor (BlaR1/MecR1). Resistance is triggered in response to a covalent binding event between a beta-lactam antibiotic and the extracellular sensor domain of BlaR1/MecR1 by transduction of the binding signal to an intracellular protease domain capable of repressor inactivation. This study describes the first crystal structures of the sensor domain of BlaR1 (BlaRS) from S. aureus in both the apo and penicillin-acylated forms. The structures show that the sensor domain resembles the beta-lactam-hydrolyzing class D beta-lactamases, but is rendered a penicillin-binding protein due to the formation of a very stable acyl-enzyme. Surprisingly, conformational changes upon penicillin binding were not observed in our structures, supporting the hypothesis that transduction of the antibiotic-binding signal into the cytosol is mediated by additional intramolecular interactions of the sensor domain with an adjacent extracellular loop in BlaR1.
Collapse
Affiliation(s)
- Mark S Wilke
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
20
|
MallorquÃ-Fernández G, Marrero A, GarcÃa-Piquè S, GarcÃa-Castellanos R, Gomis-Rüth F. Staphylococcal methicillin resistance: fine focus on folds and functions. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09560.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
García-Castellanos R, Mallorquí-Fernández G, Marrero A, Potempa J, Coll M, Gomis-Rüth FX. On the Transcriptional Regulation of Methicillin Resistance. J Biol Chem 2004; 279:17888-96. [PMID: 14960592 DOI: 10.1074/jbc.m313123200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial resistance to antibiotics poses a serious worldwide public health problem due to the high morbidity and mortality caused by infectious diseases. Most hospital-onset infections are associated with methicillin-resistant Staphylococcus aureus (MRSA) strains that have acquired multiple drug resistance to beta-lactam antibiotics. In a response to antimicrobial stress, nearly all clinical MRSA isolates produce beta-lactamase (BlaZ) and a penicillin-binding protein with low affinity for beta-lactam antibiotics (PBP2a, also known as PBP2' or MecA). Both effectors are regulated by homologous signal transduction systems consisting of a sensor/transducer and a transcriptional repressor. MecI (methicillin repressor) blocks mecA but also blaZ transcription and that of itself and the co-transcribed sensor/transducer. The structure of MecI in complex with a cognate operator double-stranded DNA reveals a homodimeric arrangement with a novel C-terminal spiral staircase dimerization domain responsible for dimer integrity. Each protomer interacts with the DNA major groove through a winged helix DNA-binding domain and specifically recognizes the nucleotide sequence 5'-Gua-Thy-Ade-X-Thy-3'. This results in an unusual convex bending of the DNA helix. The structure of this first molecular determinant of methicillin resistance in complex with its target DNA provides insights into its regulatory mechanism and paves the way for new antimicrobial strategies against MRSA.
Collapse
|
22
|
Hanique S, Colombo ML, Goormaghtigh E, Soumillion P, Frère JM, Joris B. Evidence of an Intramolecular Interaction between the Two Domains of the BlaR1 Penicillin Receptor during the Signal Transduction. J Biol Chem 2004; 279:14264-72. [PMID: 14736870 DOI: 10.1074/jbc.m313488200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BlaR1 protein is a penicillin-sensory transducer involved in the induction of the Bacillus licheniformis beta-lactamase. The amino-terminal domain of the protein exhibits four transmembrane segments (TM1-TM4) that form a four-alpha-helix bundle embedded in the plasma bilayer. The carboxyl-terminal domain of 250 amino acids (BlaR-CTD) fused at the carboxyl end of TM4 possesses the amino acid sequence signature of penicillin-binding proteins. This membrane topology suggests that BlaR-CTD and the BlaR-amino-terminal domain are responsible for signal reception and signal transduction, respectively. With the use of phage display experiments, we highlight herein an interaction between BlaR-CTD and the extracellular, 63-amino acid L2 loop connecting TM2 and TM3. This interaction does not occur in the presence of penicillin. This result suggests that binding of the antibiotic to BlaR1 might entail the release of the interaction between L2 and BlaR-CTD, causing a motion of the alpha-helix bundle and transfer of the information to the cytoplasm of the cell. In addition, fluorescence spectroscopy, CD, and Fourier transform IR spectroscopy experiments indicate that in contrast to the behavior of the corresponding Staphylococcus aureus protein, the beta-lactam antibiotic does not induce a drastic conformational change in B. licheniformis BlaR-CTD.
Collapse
Affiliation(s)
- Sophie Hanique
- Centre d'Ingénierie des Protéines, Institut de Chimie, Université de Liège, B-4000 Sart-Tilman, Belgium
| | | | | | | | | | | |
Collapse
|