1
|
Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL. Engineering altered protein-DNA recognition specificity. Nucleic Acids Res 2018; 46:4845-4871. [PMID: 29718463 PMCID: PMC6007267 DOI: 10.1093/nar/gky289] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein engineering is used to generate novel protein folds and assemblages, to impart new properties and functions onto existing proteins, and to enhance our understanding of principles that govern protein structure. While such approaches can be employed to reprogram protein-protein interactions, modifying protein-DNA interactions is more difficult. This may be related to the structural features of protein-DNA interfaces, which display more charged groups, directional hydrogen bonds, ordered solvent molecules and counterions than comparable protein interfaces. Nevertheless, progress has been made in the redesign of protein-DNA specificity, much of it driven by the development of engineered enzymes for genome modification. Here, we summarize the creation of novel DNA specificities for zinc finger proteins, meganucleases, TAL effectors, recombinases and restriction endonucleases. The ease of re-engineering each system is related both to the modularity of the protein and the extent to which the proteins have evolved to be capable of readily modifying their recognition specificities in response to natural selection. The development of engineered DNA binding proteins that display an ideal combination of activity, specificity, deliverability, and outcomes is not a fully solved problem, however each of the current platforms offers unique advantages, offset by behaviors and properties requiring further study and development.
Collapse
Affiliation(s)
- Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Bohm
- Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics Inc. 501 Canal Blvd., Richmond, CA 94804, USA
| | - Richard D Morgan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98019, USA
| |
Collapse
|
2
|
Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol 2017; 101:3953-3976. [PMID: 28389711 DOI: 10.1007/s00253-017-8263-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Abstract
Filamentous fungi are prolific repertoire of structurally diverse secondary metabolites of remarkable biological activities such as lovastatin and paclitaxel that have been approved by FDA as drugs for hypercholesterolemia and cancer treatment. The clusters of genes encoding lovastatin and paclitaxel are cryptic at standard laboratory cultural conditions (Kennedy et al. Science 284:1368-1372, 1999; Bergmann et al. Nature Chem Biol 3:213-217, 2007). The expression of these genes might be triggered in response to nutritional and physical conditions; nevertheless, the overall yield of these metabolites does not match the global need. Consequently, overexpression of the downstream limiting enzymes and/or blocking the competing metabolic pathways of these metabolites could be the most successful technologies to enhance their yield. This is the first review summarizing the different strategies implemented for fungal genome editing, molecular regulatory mechanisms, and prospective of clustered regulatory interspaced short palindromic repeat/Cas9 system in metabolic engineering of fungi to improve their yield of lovastatin and taxol to industrial scale. Thus, elucidating the putative metabolic pathways in fungi for overproduction of lovastatin and taxol was the ultimate objective of this review.
Collapse
|
3
|
Molina R, Besker N, Marcaida MJ, Montoya G, Prieto J, D’Abramo M. Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics. ACS Chem Biol 2016; 11:1401-7. [PMID: 26909878 DOI: 10.1021/acschembio.5b00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome these limitations is to unambiguously identify the key structural players involved in catalysis. Here, we report the E117A I-DmoI mutant crystal structure at 2.2 Å resolution that, together with the wt and Q42A/K120M constructs, is combined with computational approaches to shed light on protein cleavage activity. The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved and noncleaved DNA strands when the ions and water molecules are correctly positioned for the nucleophilic attack that initiates the cleavage reaction, in line with experimental enzymatic activity. The proposed approach paves the way for an effective, general, and reliable procedure to analyze the enzymatic activity of endonucleases from a very limited data set, i.e., structure and dynamics.
Collapse
Affiliation(s)
- Rafael Molina
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Neva Besker
- CINECA, SuperComputing Applications and Innovations, via dei Tizii 6, 00185 Rome, Italy
| | - Maria Jose Marcaida
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
- Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jesús Prieto
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Marco D’Abramo
- Department
of Chemistry, University of Rome “La Sapienza”, p.le
A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Schiml S, Puchta H. Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. PLANT METHODS 2016; 12:8. [PMID: 26823677 PMCID: PMC4730597 DOI: 10.1186/s13007-016-0103-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 05/20/2023]
Abstract
The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by site-specific nucleases to initiate DNA repair reactions that are either based on non-homologous end joining (NHEJ) or homologous recombination (HR). Recently, the CRISPR/Cas system emerged as the most important tool for genome engineering due to its simple structure and its applicability to a wide range of organisms. Here, we review the current status of its various applications in plants, where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. Furthermore, tremendous progress in plant genome engineering by HR was obtained by the setup of replicon mediated and in planta gene targeting techniques. Finally, other complex approaches that rely on the induction of more than one DNA lesion at a time such as paired nickases to avoid off-site effects or controlled genomic deletions are beginning to be applied routinely.
Collapse
Affiliation(s)
- Simon Schiml
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049 Karlsruhe, Germany
| |
Collapse
|
5
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Epinat JC. A yeast-based recombination assay for homing endonuclease activity. Methods Mol Biol 2014; 1123:105-26. [PMID: 24510264 DOI: 10.1007/978-1-62703-968-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Homing endonucleases (HEs) are natural enzymes that cleave long DNA target with a high specificity and trigger homologous recombination at the exact site of the break. Such mechanisms can thus be used for all the applications covered today by the generic name of "genome engineering": targeted sequence insertion, removal, or editing. However, before being able to address those applications, the engineering of HEs must be mastered so that any potential target would be efficiently and specifically recognized and cleaved. Working on the I-CreI model, we have developed a very powerful platform to generate HEs with new tailored specificity. We have put in place the first in vivo, functional, high throughput assay to generate I-CreI variants and measure their activity. We use semi-rational design combined with proprietary in silico predictions to design and synthesize I-CreI mutants that are tested for their capacity to induce homologous recombination in a yeast cell. The process has been standardized and robotized so that we can generate thousands of I-CreI derivatives, characterize their cleavage profile, and deliver them for further applications in the research, therapeutic, or agrobusiness fields.
Collapse
|
7
|
Abstract
The rapid development of programmable site-specific endonucleases has led to a dramatic increase in genome engineering activities for research and therapeutic purposes. Specific loci of interest in the genomes of a wide range of organisms including mammals can now be modified using zinc-finger nucleases, transcription activator-like effectornucleases, and CRISPR-associated Cas9 endonucleases in a site-specific manner, in some cases requiring relatively modest effort for endonuclease design, construction, and application. While these technologies have made genome engineering widely accessible, the ability of programmable nucleases to cleave off-target sequences can limit their applicability and raise concerns about therapeutic safety. In this chapter, we review methods to evaluate and improve the DNA cleavage activity of programmable site-specific endonucleases and describe a procedure for a comprehensive off-target profiling method based on the in vitro selection of very large (~10(12)-membered) libraries of potential nuclease substrates.
Collapse
|
8
|
Abstract
Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.
Collapse
|
9
|
Joshi R, Gimble FS. A bacterial one-hybrid system to isolate homing endonuclease variants with altered DNA target specificities. Methods Mol Biol 2014; 1114:221-36. [PMID: 24557906 DOI: 10.1007/978-1-62703-761-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chromosomal cleavage near the site of mutations that cause disease can facilitate the targeted repair of the locus. Gene therapy protocols therefore require the engineering of DNA endonucleases that target specific genomic loci. Here, we describe a bacterial one-hybrid selection system that has been used to isolate derivatives of the I-SceI homing endonuclease from combinatorial libraries that display altered DNA recognition specificities. The construction of plasmid expression libraries, the development of reporter strains, and the utilization of these components in the bacterial one-hybrid system are detailed.
Collapse
Affiliation(s)
- Rakesh Joshi
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
10
|
|
11
|
Pfeifer A, Martin B, Kämper J, Basse CW. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility. PLoS One 2012; 7:e49551. [PMID: 23166709 PMCID: PMC3498182 DOI: 10.1371/journal.pone.0049551] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Background The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. Methodology/Principal Findings We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg2+-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3′ overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5′-GACGGGAAGACCCT-3′) and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. Conclusions/Significance The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.
Collapse
Affiliation(s)
- Anja Pfeifer
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bettina Martin
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jörg Kämper
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christoph W. Basse
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
12
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
13
|
Li H, Ulge UY, Hovde BT, Doyle LA, Monnat RJ. Comprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications. Nucleic Acids Res 2011; 40:2587-98. [PMID: 22121229 PMCID: PMC3315327 DOI: 10.1093/nar/gkr1072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homing endonucleases (HEs) promote the evolutionary persistence of selfish DNA elements by catalyzing element lateral transfer into new host organisms. The high site specificity of this lateral transfer reaction, termed homing, reflects both the length (14-40 bp) and the limited tolerance of target or homing sites for base pair changes. In order to better understand molecular determinants of homing, we systematically determined the binding and cleavage properties of all single base pair variant target sites of the canonical LAGLIDADG homing endonucleases I-CreI and I-MsoI. These Chlorophyta algal HEs have very similar three-dimensional folds and recognize nearly identical 22 bp target sites, but use substantially different sets of DNA-protein contacts to mediate site-specific recognition and cleavage. The site specificity differences between I-CreI and I-MsoI suggest different evolutionary strategies for HE persistence. These differences also provide practical guidance in target site finding, and in the generation of HE variants with high site specificity and cleavage activity, to enable genome engineering applications.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
14
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
15
|
Pingoud A, Wende W. Generation of Novel Nucleases with Extended Specificity by Rational and Combinatorial Strategies. Chembiochem 2011; 12:1495-500. [DOI: 10.1002/cbic.201100055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Indexed: 12/12/2022]
|
16
|
Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011; 19:7-15. [PMID: 21220111 DOI: 10.1016/j.str.2010.12.003] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/23/2022]
Abstract
Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
18
|
Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity. J Mol Biol 2010; 405:185-200. [PMID: 21029741 DOI: 10.1016/j.jmb.2010.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/22/2022]
Abstract
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G(+4) base pair for the wild-type A:T(+4) base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T(+4) were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T(+4) or the C:G(+4) base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G(+4) recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T(+4) target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G(+4) target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed ∼36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G(+4) substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.
Collapse
|
19
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
20
|
Galetto R, Duchateau P, Pâques F. Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin Biol Ther 2009; 9:1289-303. [PMID: 19689185 DOI: 10.1517/14712590903213669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In spite of significant advances in gene transfer strategies in the field of gene therapy, there is a strong emphasis on the development of alternative methods, providing better control of transgene expression and insertion patterns. OBJECTIVE Several new approaches consist of targeting a desired transgene or gene modification in a well defined locus, and we collectively refer to them as 'targeted approaches'. The use of redesigned meganucleases is one of these emerging technologies. Here we try to define the potential of this method, in the larger scope of targeted strategies. METHODS We survey the different types of targeted strategies, presenting the achievements and the potential applications, with a special emphasis on the use of redesigned endonucleases. CONCLUSION redesigned endonucleases represent one of the most promising tools for targeted approaches, and the opening of a clinical trial for AIDS patients has recently shown the maturity of these strategies. However, there is still a 'quest' for the best reagents, that is the endonucleases providing the best efficacy:toxicity ratio. New advances in protein design have allowed the engineering of new scaffolds, such as meganucleases, and the landscape of existing methods is likely to change over the next few years.
Collapse
Affiliation(s)
- Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 340 Romainville Cedex, France
| | | | | |
Collapse
|
21
|
Jarjour J, West-Foyle H, Certo MT, Hubert CG, Doyle L, Getz MM, Stoddard BL, Scharenberg AM. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 2009; 37:6871-80. [PMID: 19740766 PMCID: PMC2777416 DOI: 10.1093/nar/gkp726] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Experimental analysis and manipulation of protein–DNA interactions pose unique biophysical challenges arising from the structural and chemical homogeneity of DNA polymers. We report the use of yeast surface display for analytical and selection-based applications for the interaction between a LAGLIDADG homing endonuclease and its DNA target. Quantitative flow cytometry using oligonucleotide substrates facilitated a complete profiling of specificity, both for DNA-binding and catalysis, with single base pair resolution. These analyses revealed a comprehensive segregation of binding specificity and affinity to one half of the pseudo-dimeric interaction, while the entire interface contributed specificity at the level of catalysis. A single round of targeted mutagenesis with tandem affinity and catalytic selection steps provided mechanistic insights to the origins of binding and catalytic specificity. These methods represent a dynamic new approach for interrogating specificity in protein–DNA interactions.
Collapse
Affiliation(s)
- Jordan Jarjour
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lippow SM, Aha PM, Parker MH, Blake WJ, Baynes BM, Lipovsek D. Creation of a type IIS restriction endonuclease with a long recognition sequence. Nucleic Acids Res 2009; 37:3061-73. [PMID: 19304757 PMCID: PMC2685105 DOI: 10.1093/nar/gkp182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 12/19/2022] Open
Abstract
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.
Collapse
|
23
|
McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ, Stoddard BL. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci U S A 2009; 106:5099-104. [PMID: 19276110 PMCID: PMC2664052 DOI: 10.1073/pnas.0810588106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site. This variant contains a mutation of a basic residue essential for proton transfer and solvent activation in one active site. The cleavage mechanism, DNA-binding affinity, and substrate specificity profile of the nickase are similar to the wild-type enzyme. I-AniI nickase stimulates targeted gene correction in human cells, in cis and in trans, at approximately 1/4 the efficiency of the wild-type enzyme. The development of sequence-specific nicking enzymes like the I-AniI nickase will facilitate comparative analyses of DNA repair and mutagenesis induced by single- or double-strand breaks.
Collapse
Affiliation(s)
- Audrey McConnell Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Ryo Takeuchi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Stefan Pellenz
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Luther Davis
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Nancy Maizels
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Raymond J. Monnat
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| |
Collapse
|
24
|
Li H, Pellenz S, Ulge U, Stoddard BL, Monnat RJ. Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins. Nucleic Acids Res 2009; 37:1650-62. [PMID: 19153140 PMCID: PMC2655683 DOI: 10.1093/nar/gkp004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Homing endonucleases (HEs) cut long DNA target sites with high specificity to initiate and target the lateral transfer of mobile introns or inteins. This high site specificity of HEs makes them attractive reagents for gene targeting to promote DNA modification or repair. We have generated several hundred catalytically active, monomerized versions of the well-characterized homodimeric I-CreI and I-MsoI LAGLIDADG family homing endonuclease (LHE) proteins. Representative monomerized I-CreI and I-MsoI proteins (collectively termed mCreIs or mMsoIs) were characterized in detail by using a combination of biochemical, biophysical and structural approaches. We also demonstrated that both mCreI and mMsoI proteins can promote cleavage-dependent recombination in human cells. The use of single chain LHEs should simplify gene modification and targeting by requiring the expression of a single small protein in cells, rather than the coordinate expression of two separate protein coding genes as is required when using engineered heterodimeric zinc finger or homing endonuclease proteins.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
25
|
Nomura N, Nomura Y, Sussman D, Klein D, Stoddard BL. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases. Nucleic Acids Res 2008; 36:6988-98. [PMID: 18984620 PMCID: PMC2602781 DOI: 10.1093/nar/gkn846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His–Cys box homing endonucleases, respectively. The bases encoded by this target include a universally conserved ribosomal structure, termed helix 69 (H69) in the large ribosomal subunit. This region forms the ‘B2a’ intersubunit bridge to the small ribosomal subunit, contacts bound tRNA in the A- and P-sites, and acts as a trigger for ribosome disassembly through its interactions with ribosome recycling factor. We have determined the DNA-bound structure and specificity profile of an archaeal LAGLIDADG homing endonuclease (I-Vdi141I) that recognizes this target site, and compared its specificity with the analogous eukaryal His–Cys box endonuclease I-PpoI. These homodimeric endonuclease scaffolds have arrived at similar specificity profiles across their common biological target and analogous solutions to the problem of accommodating conserved asymmetries within the DNA sequence, but with differences at individual base pairs that are fine-tuned to the sequence conservation of archaeal versus eukaryal ribosomes.
Collapse
Affiliation(s)
- Norimichi Nomura
- Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Kyoto, Japan
| | | | | | | | | |
Collapse
|
26
|
Fajardo-Sanchez E, Stricher F, Pâques F, Isalan M, Serrano L. Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 2008; 36:2163-73. [PMID: 18276641 PMCID: PMC2367722 DOI: 10.1093/nar/gkn059] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meganucleases cut long (>12 bp) unique sequences in genomes and can be used to induce targeted genome engineering by homologous recombination in the vicinity of their cleavage site. However, the use of natural meganucleases is limited by the repertoire of their target sequences, and considerable efforts have been made to engineer redesigned meganucleases cleaving chosen targets. Homodimeric meganucleases such as I-CreI have provided a scaffold, but can only be modified to recognize new quasi-palindromic DNA sequences, limiting their general applicability. Other groups have used dimer-interface redesign and peptide linkage to control heterodimerization between related meganucleases such as I-DmoI and I-CreI, but until now there has been no application of this aimed specifically at the scaffolds from existing combinatorial libraries of I-CreI. Here, we show that engineering meganucleases to form obligate heterodimers results in functional endonucleases that cut non-palindromic sequences. The protein design algorithm (FoldX v2.7) was used to design specific heterodimer interfaces between two meganuclease monomers, which were themselves engineered to recognize different DNA sequences. The new monomers favour functional heterodimer formation and prevent homodimer site recognition. This design massively increases the potential repertoire of DNA sequences that can be specifically targeted by designed I-CreI meganucleases and opens the way to safer targeted genome engineering.
Collapse
Affiliation(s)
- Emmanuel Fajardo-Sanchez
- Structural Biology and Biocomputing Program, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Prieto J, Epinat JC, Redondo P, Ramos E, Padró D, Cédrone F, Montoya G, Pâques F, Blanco FJ. Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease. J Biol Chem 2007; 283:4364-74. [PMID: 17999959 DOI: 10.1074/jbc.m706323200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic archaeon Desulfurococcus mobilis I-DmoI protein belongs to the family of proteins known as homing endonucleases (HEs). HEs are highly specific DNA-cleaving enzymes that recognize long stretches of DNA and are powerful tools for genome engineering. Because of its monomeric nature, I-DmoI is an ideal scaffold for generating mutant enzymes with novel DNA specificities, similarly reported for homodimeric HEs, but providing single chain endonucleases instead of dimers. However, this would require the use of a mesophilic variant cleaving its substrate at temperatures of 37 degrees C and below. We have generated mesophilic mutants of I-DmoI, using a single round of directed evolution that relies on a functional assay in yeast. The effect of mutations identified in the novel proteins has been investigated. These mutations are located distant to the DNA-binding site and cause changes in the size and polarity of buried residues, suggesting that they act by destabilizing the protein. Two of the novel proteins have been produced and analyzed in vitro. Their overall structures are similar to that of the parent protein, but they are destabilized against thermal and chemical denaturation. The temperature-dependent activity profiles for the mutants shifted toward lower temperatures with respect to the wild-type activity profile. However, the most destabilized mutant was not the most active at low temperatures, suggesting that other effects, like local structural distortions and/or changes in the protein dynamics, also influence their activity. These mesophilic I-DmoI mutants form the basis for generating new variants with tailored DNA specificities.
Collapse
Affiliation(s)
- Jesús Prieto
- Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, Spanish National Cancer Center, c/Melchor Fernández Almagro 3, 28029-Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eklund JL, Ulge UY, Eastberg J, Monnat RJ. Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease. Nucleic Acids Res 2007; 35:5839-50. [PMID: 17720708 PMCID: PMC2034468 DOI: 10.1093/nar/gkm624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a yeast one-hybrid assay to isolate and characterize variants of the eukaryotic homing endonuclease I-PpoI that were able to bind a mutant, cleavage-resistant I-PpoI target or ‘homing’ site DNA in vivo. Native I-PpoI recognizes and cleaves a semi-palindromic 15-bp target site with high specificity in vivo and in vitro. This target site is present in the 28S or equivalent large subunit rDNA genes of all eukaryotes. I-PpoI variants able to bind mutant target site DNA had from 1 to 8 amino acid substitutions in the DNA–protein interface. Biochemical characterization of these proteins revealed a wide range of site–binding affinities and site discrimination. One-third of variants were able to cleave target site DNA, but there was no systematic relationship between site-binding affinity and site cleavage. Computational modeling of several variants provided mechanistic insight into how amino acid substitutions that contact, or are adjacent to, specific target site DNA base pairs determine I-PpoI site-binding affinity and site discrimination, and may affect cleavage efficiency.
Collapse
Affiliation(s)
- Jennifer L. Eklund
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Umut Y. Ulge
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer Eastberg
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Raymond J. Monnat
- Department of Genome Sciences, Department of Pathology, the Molecular and Cellular Biology Program, University of Washington, Seattle, WA and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- *To whom correspondence should be addressed. 206 616 7392206 543 3967
| |
Collapse
|
29
|
Scalley-Kim M, McConnell-Smith A, Stoddard BL. Coevolution of a homing endonuclease and its host target sequence. J Mol Biol 2007; 372:1305-19. [PMID: 17720189 PMCID: PMC2040299 DOI: 10.1016/j.jmb.2007.07.052] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 12/22/2022]
Abstract
We have determined the specificity profile of the homing endonuclease I-AniI and compared it to the conservation of its host gene. Homing endonucleases are encoded within intervening sequences such as group I introns. They initiate the transfer of such elements by cleaving cognate alleles lacking the intron, leading to their transfer via homologous recombination. Each structural homing endonuclease family has arrived at an appropriate balance of specificity and fidelity that avoids toxicity while maximizing target recognition and invasiveness. I-AniI recognizes a strongly conserved target sequence in a host gene encoding apocytochrome B and has fine-tuned its specificity to correlate with wobble versus nonwobble positions across that sequence and to the amount of degeneracy inherent in individual codons. The physiological target site in the host gene is not the optimal substrate for recognition and cleavage: at least one target variant identified during a screen is bound more tightly and cleaved more rapidly. This is a result of the periodic cycle of intron homing, which at any time can present nonoptimal combinations of endonuclease specificity and insertion site sequences in a biological host.
Collapse
Affiliation(s)
- Michelle Scalley-Kim
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-023, Seattle WA 98109
| | - Audrey McConnell-Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-023, Seattle WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington Seattle, WA 98105
| | - Barry L. Stoddard
- * To whom correspondence should be addressed 1-206-667-4031 (ph) -6877 (fax),
| |
Collapse
|
30
|
Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Pâques F. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 2007; 371:49-65. [PMID: 17561112 DOI: 10.1016/j.jmb.2007.04.079] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/24/2007] [Indexed: 01/10/2023]
Abstract
Meganucleases are sequence-specific endonucleases which recognize large (>12 bp) target sites in living cells and can stimulate homologous gene targeting by a 1000-fold factor at the cleaved locus. We have recently described a combinatorial approach to redesign the I-CreI meganuclease DNA-binding interface, in order to target chosen sequences. However, engineering was limited to the protein regions shown to directly interact with DNA in a base-specific manner. Here, we take advantage of I-CreI natural degeneracy, and of additional refinement steps to extend the number of sequences that can be efficiently cleaved. We searched the sequence of the human XPC gene, involved in the disease Xeroderma Pigmentosum (XP), for potential targets, and chose three sequences that differed from the I-CreI cleavage site over their entire length, including the central four base-pairs, whose role in the DNA/protein recognition and cleavage steps remains very elusive. Two out of these targets could be cleaved by engineered I-CreI derivatives, and we could improve the activity of weak novel meganucleases, to eventually match the activity of the parental I-CreI scaffold. The novel proteins maintain a narrow cleavage pattern for cognate targets, showing that the extensive redesign of the I-CreI protein was not made at the expense of its specificity. Finally, we used a chromosomal reporter system in CHO-K1 cells to compare the gene targeting frequencies induced by natural and engineered meganucleases. Tailored I-CreI derivatives cleaving sequences from the XPC gene were found to induce high levels of gene targeting, similar to the I-CreI scaffold or the I-SceI "gold standard". This is the first time an engineered homing endonuclease has been used to modify a chromosomal locus.
Collapse
Affiliation(s)
- Sylvain Arnould
- CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Prieto J, Redondo P, Padró D, Arnould S, Epinat JC, Pâques F, Blanco FJ, Montoya G. The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res 2007; 35:3262-71. [PMID: 17452357 PMCID: PMC1904291 DOI: 10.1093/nar/gkm183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Meganucleases are sequence-specific endonucleases with large cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These enzymes open novel perspectives for genome engineering in a wide range of fields, including gene therapy. A new crystal structure of the I-CreI dimer without DNA has allowed the comparison with the DNA-bound protein. The C-terminal loop displays a different conformation, which suggests its implication in DNA binding. A site-directed mutagenesis study in this region demonstrates that whereas the C-terminal helix is negligible for DNA binding, the final C-terminal loop is essential in DNA binding and cleavage. We have identified two regions that comprise the Ser138-Lys139 and Lys142-Thr143 pairs whose double mutation affect DNA binding in vitro and abolish cleavage in vivo. However, the mutation of only one residue in these sites allows DNA binding in vitro and cleavage in vivo. These findings demonstrate that the C-terminal loop of I-CreI endonuclease plays a fundamental role in its catalytic mechanism and suggest this novel site as a region to take into account for engineering new endonucleases with tailored specificity.
Collapse
Affiliation(s)
- Jesús Prieto
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Pilar Redondo
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Daniel Padró
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Sylvain Arnould
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Jean-Charles Epinat
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Frédéric Pâques
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Francisco J. Blanco
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | - Guillermo Montoya
- Spanish National Cancer Center (CNIO), Structural Biology and Biocomputing Programme, NMR Group and Macromolecular Crystallography Group, c/Melchor Fdez. Almagro 3, 28029-Madrid, Spain and CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
- *To whom correspondence should be addressed. Tel:00 34 912246900; Fax: 00 34 912246976;
| |
Collapse
|
32
|
|
33
|
Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Pâques F, Duchateau P. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 2006; 34:e149. [PMID: 17130168 PMCID: PMC1702487 DOI: 10.1093/nar/gkl720] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jesús Prieto
- Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)C/ Melchor Fdez Almagro, 28029 Madrid, Spain
| | - Pilar Redondo
- Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)C/ Melchor Fdez Almagro, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)C/ Melchor Fdez Almagro, 28029 Madrid, Spain
| | - Jerónimo Bravo
- Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)C/ Melchor Fdez Almagro, 28029 Madrid, Spain
| | - Guillermo Montoya
- Structural Biology and Biocomputing Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)C/ Melchor Fdez Almagro, 28029 Madrid, Spain
| | - Frédéric Pâques
- To whom correspondence should be addressed. Tel: +33 1 41 83 99 00; Fax: +33 1 41 83 99 03;
| | | |
Collapse
|
34
|
Spiegel PC, Chevalier B, Sussman D, Turmel M, Lemieux C, Stoddard BL. The structure of I-CeuI homing endonuclease: Evolving asymmetric DNA recognition from a symmetric protein scaffold. Structure 2006; 14:869-80. [PMID: 16698548 DOI: 10.1016/j.str.2006.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 01/19/2023]
Abstract
Homing endonucleases are highly specific catalysts of DNA strand breaks, leading to the transfer of mobile intervening sequences containing the endonuclease ORF. We have determined the structure and DNA recognition behavior of I-CeuI, a homodimeric LAGLIDADG endonuclease from Chlamydomonas eugametos. This symmetric endonuclease displays unique structural elaborations on its core enzyme fold, and it preferentially cleaves a highly asymmetric target site. This latter property represents an early step, prior to gene fusion, in the generation of asymmetric DNA binding platforms from homodimeric ancestors. The divergence of the sequence, structure, and target recognition behavior of homing endonucleases, as illustrated by this study, leads to the invasion of novel genomic sites by mobile introns during evolution.
Collapse
Affiliation(s)
- P Clint Spiegel
- Graduate Programs in Biomolecular Structure and Design and Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The elegant mechanisms by which naturally occurring selfish genetic elements, such as transposable elements, meiotic drive genes, homing endonuclease genes and Wolbachia, spread at the expense of their hosts provide some of the most fascinating and remarkable subjects in evolutionary genetics. These elements also have enormous untapped potential to be used in the control of some of the world's most devastating diseases. Effective gene drive systems for spreading genes that can block the transmission of insect-borne pathogens are much needed. Here we explore the potential of natural gene drive systems and discuss the artificial constructs that could be envisaged for this purpose.
Collapse
Affiliation(s)
- Steven P Sinkins
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | |
Collapse
|
36
|
Doyon JB, Pattanayak V, Meyer CB, Liu DR. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 2006; 128:2477-84. [PMID: 16478204 DOI: 10.1021/ja057519l] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cleavage of a desired target sequence or to disfavor the cleavage of nontarget sequences. We also applied a previously described in vitro selection method to reveal the comprehensive substrate specificity profile of the wild-type I-SceI homing endonuclease. Together these tools were used to successfully evolve mutant I-SceI homing endonucleases with altered DNA cleavage specificities. The most highly evolved enzyme cleaves the target mutant DNA sequence with a selectivity that is comparable to wild-type I-SceI's preference for its cognate substrate.
Collapse
Affiliation(s)
- Jeffrey B Doyon
- Howard Hughes Medical Institute and the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
37
|
Samuelson JC, Morgan RD, Benner JS, Claus TE, Packard SL, Xu SY. Engineering a rare-cutting restriction enzyme: genetic screening and selection of NotI variants. Nucleic Acids Res 2006; 34:796-805. [PMID: 16456032 PMCID: PMC1360745 DOI: 10.1093/nar/gkj483] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Restriction endonucleases (REases) with 8-base specificity are rare specimens in nature. NotI from Nocardia otitidis-caviarum (recognition sequence 5′-GCGGCCGC-3′) has been cloned, thus allowing for mutagenesis and screening for enzymes with altered 8-base recognition and cleavage activity. Variants possessing altered specificity have been isolated by the application of two genetic methods. In step 1, variant E156K was isolated by its ability to induce DNA-damage in an indicator strain expressing M.EagI (to protect 5′-NCGGCCGN-3′ sites). In step 2, the E156K allele was mutagenized with the objective of increasing enzyme activity towards the alternative substrate site: 5′-GCTGCCGC-3′. In this procedure, clones of interest were selected by their ability to eliminate a conditionally toxic substrate vector and induce the SOS response. Thus, specific DNA cleavage was linked to cell survival. The secondary substitutions M91V, F157C and V348M were each found to have a positive effect on specific activity when paired with E156K. For example, variant M91V/E156K cleaves 5′-GCTGCCGC-3′ with a specific activity of 8.2 × 104 U/mg, a 32-fold increase over variant E156K. A comprehensive analysis indicates that the cleavage specificity of M91V/E156K is relaxed to a small set of 8 bp substrates while retaining activity towards the NotI sequence.
Collapse
|
38
|
Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Pâques F. In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 2005; 33:e178. [PMID: 16306233 PMCID: PMC1289081 DOI: 10.1093/nar/gni175] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Homing endonucleases, endonucleases capable of recognizing long DNA sequences, have been shown to be a tool of choice for precise and efficient genome engineering. Consequently, the possibility to engineer novel endonucleases with tailored specificities is under strong investigation. In this report, we present a simple and efficient method to select meganucleases from libraries of variants, based on their cleavage properties. The method has the advantage of directly selecting for the ability to induce double-strand break induced homologous recombination in a eukaryotic environment. Model selections demonstrated high levels of enrichments. Moreover, this method compared favorably with phage display for enrichment of active mutants from a mutant library. This approach makes possible the exploration of large sequence spaces and thereby represents a valuable tool for genome engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Pâques
- To whom correspondence should be addressed. Tel: +33 1 41 83 99 00; Fax: +33 1 41 83 99 03;
| |
Collapse
|
39
|
Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Rolland S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Pâques F. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 2005; 355:443-58. [PMID: 16310802 DOI: 10.1016/j.jmb.2005.10.065] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/19/2005] [Accepted: 10/24/2005] [Indexed: 12/21/2022]
Abstract
The last decade has seen the emergence of a universal method for precise and efficient genome engineering. This method relies on the use of sequence-specific endonucleases such as homing endonucleases. The structures of several of these proteins are known, allowing for site-directed mutagenesis of residues essential for DNA binding. Here, we show that a semi-rational approach can be used to derive hundreds of novel proteins from I-CreI, a homing endonuclease from the LAGLIDADG family. These novel endonucleases display a wide range of cleavage patterns in yeast and mammalian cells that in most cases are highly specific and distinct from I-CreI. Second, rules for protein/DNA interaction can be inferred from statistical analysis. Third, novel endonucleases can be combined to create heterodimeric protein species, thereby greatly enhancing the number of potential targets. These results describe a straightforward approach for engineering novel endonucleases with tailored specificities, while preserving the activity and specificity of natural homing endonucleases, and thereby deliver new tools for genome engineering.
Collapse
Affiliation(s)
- Sylvain Arnould
- CELLECTIS S.A., 102 route de Noisy 93235 Romainville, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Z, Zhao H. A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res 2005; 33:e154. [PMID: 16214805 PMCID: PMC1253837 DOI: 10.1093/nar/gni148] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Homing endonucleases are enzymes that catalyze DNA sequence specific double-strand breaks and can significantly stimulate homologous recombination at these breaks. These enzymes have great potential for applications such as gene correction in gene therapy or gene alteration in systems biology and metabolic engineering. However, homing endonucleases have a limited natural repertoire of target sequences, which severely hamper their applications. Here we report the development of a highly sensitive selection method for the directed evolution of homing endonucleases that couples enzymatic DNA cleavage with the survival of host cells. Using I-SceI as a model homing endonuclease, we have demonstrated that cells with wild-type I-SceI showed a high cell survival rate of 80–100% in the presence of the original I-SceI recognition site, whereas cells without I-SceI showed a survival rate <0.003%. This system should also be readily applicable for directed evolution of other DNA cleavage enzymes.
Collapse
Affiliation(s)
- Zhilei Chen
- Center for Biophysics and Computational Biology, University of IllinoisUrbana, IL 61801, USA
| | - Huimin Zhao
- Center for Biophysics and Computational Biology, University of IllinoisUrbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of IllinoisUrbana, IL 61801, USA
- Department of Chemistry, University of IllinoisUrbana, IL 61801, USA
- Department of Bioengineering, University of IllinoisUrbana, IL 61801, USA
- Institute for Genomic Biology, University of IllinoisUrbana, IL 61801, USA
- To whom correspondence should be addressed. Tel: +1 217 333 2631; Fax: +1 217 333 5052;
| |
Collapse
|
41
|
Otten LG, Quax WJ. Directed evolution: selecting today's biocatalysts. ACTA ACUST UNITED AC 2005; 22:1-9. [PMID: 15857778 DOI: 10.1016/j.bioeng.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/21/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Directed evolution has become a full-grown tool in molecular biology nowadays. The methods that are involved in creating a mutant library are extensive and can be divided into several categories according to their basic ideas. Furthermore, both screening and selection can be used to target the enzyme towards the desired direction. Nowadays, this technique is broadly used in two major applications: (industrial) biocatalysis and research. In the first field enzymes are engineered in order to produce suitable biocatalysts with high catalytic activity and stability in an industrial environment. In the latter area methods are established to quickly engineer new enzymes for every possible catalytic step, thereby creating a universal biotechnological toolbox. Furthermore, directed evolution can be used to try to understand the natural evolutionary processes. This review deals with new mutagenesis and recombination strategies published recently. A full overview of new methods for creating more specialised mutant libraries is given. The importance of selection in directed evolution strategies is being exemplified by some current successes including the beta-lactam acylases.
Collapse
Affiliation(s)
- Linda G Otten
- University of Groningen, University Centre for Pharmacy, Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
42
|
Abstract
The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.
Collapse
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, University of Texas Southwestern Medical Center, USA.
| | | |
Collapse
|
43
|
|
44
|
Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 2004; 14:609-15. [PMID: 15531154 DOI: 10.1016/j.gde.2004.09.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homing endonuclease genes (HEGs) are selfish genetic elements that spread by first cleaving chromosomes that do not contain them and then getting copied across to the broken chromosome as a byproduct of the repair process. The success of this strategy will depend on the opportunities for homing--in other words, the frequency with which HEG(+) and HEG(-) chromosomes come into contact--which varies widely among host taxa. HEGs are also unusual in that the selection pressure for endonuclease function disappears if they become fixed in a population, which makes them susceptible to degeneration and imposes a need for regular horizontal transmission between species. HEGs will be selected to reduce the harm done to the host organism, and this is expected to influence the evolution of their sequence specificity and maturase functions. HEGs may also be domesticated by their hosts, and are currently being put to human uses.
Collapse
Affiliation(s)
- Austin Burt
- Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK.
| | | |
Collapse
|
45
|
Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R, Stoddard BL, Seligman LM. Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 2004; 342:31-41. [PMID: 15313605 DOI: 10.1016/j.jmb.2004.07.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/13/2004] [Accepted: 07/14/2004] [Indexed: 11/26/2022]
Abstract
Homing endonucleases are highly specific DNA endonucleases, encoded within mobile introns or inteins, that induce targeted recombination, double-strand repair and gene conversion of their cognate target sites. Due to their biological function and high level of target specificity, these enzymes are under intense investigation as tools for gene targeting. These studies require that naturally occurring enzymes be redesigned to recognize novel target sites. Here, we report studies in which the homodimeric LAGLIDADG homing endonuclease I-CreI is altered at individual side-chains corresponding to contact points to distinct base-pairs in its target site. The resulting enzyme constructs drive specific elimination of selected DNA targets in vivo and display shifted specificities of DNA binding and cleavage in vitro. Crystal structures of two of these constructs demonstrate that substitution of individual side-chain/DNA contact patterns can occur with almost no structural deformation or rearrangement of the surrounding complex, facilitating an isolated, modular redesign strategy for homing endonuclease activity and specificity.
Collapse
Affiliation(s)
- Django Sussman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025 Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shen BW, Landthaler M, Shub DA, Stoddard BL. DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 2004; 342:43-56. [PMID: 15313606 DOI: 10.1016/j.jmb.2004.07.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 07/12/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
47
|
Posey KL, Koufopanou V, Burt A, Gimble FS. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species. Nucleic Acids Res 2004; 32:3947-56. [PMID: 15280510 PMCID: PMC506816 DOI: 10.1093/nar/gkh734] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.
Collapse
Affiliation(s)
- Karen L Posey
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|