1
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
2
|
Benjamin R, Giacoletto CJ, FitzHugh ZT, Eames D, Buczek L, Wu X, Newsome J, Han MV, Pearson T, Wei Z, Banerjee A, Brown L, Valente LJ, Shen S, Deng HW, Schiller MR. GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform. Genomics 2022; 114:110439. [PMID: 35905834 PMCID: PMC9420302 DOI: 10.1016/j.ygeno.2022.110439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the "GigaAssay", a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Christopher J Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zachary T FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Jacklyn Newsome
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Mira V Han
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Tony Pearson
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, GITC 4214C, University Heights, Newark, NJ 07102, USA
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lancer Brown
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Liz J Valente
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Shirley Shen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics & Genomics Tulane University, 1440 Canal Street, Suite 1621, New Orleans, LA 70112, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA.
| |
Collapse
|
3
|
Guo J, Wang Y, Zhang X, Gao W, Cai Z, Hong T, Man Z, Qing Q. Improvement of the Catalytic Activity of Chitosanase BsCsn46A from Bacillus subtilis by Site-Saturation Mutagenesis of Proline121. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11835-11846. [PMID: 34590486 DOI: 10.1021/acs.jafc.1c04206] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BsCsn46A, a GH46 family chitosanase from Bacillus subtilis, has great potential for industrial chitooligosaccharide production due to its high activity and stability. In this study, a special amino acid Pro121 was identified not fit in the helix structure, which was located in the opposite side of the active center in BsCsn46A, by the PoPMuSiC algorithm. Then, saturation mutagenesis was performed to explore the role of the site amino acid 121. Compared with the wild type, the specific activity of P121N, P121C, and P121V was increased by 1.69-, 1.97-, and 2.15-fold, respectively. In particular, the specific activity of P121N was increased without loss of thermostability, indicating that replacing the structural stiffness of proline in the helical structure could significantly improve the chitosanase activity. The Km values of P121N, P121C, and P121V decreased significantly, indicating that the affinity between the enzyme-substrate complex was enhanced. Through molecular docking, it was found that the increase of hydrogen bonds and van der Waals force between the enzyme-substrate complex and the removal of unfavorable bonds might be the main reason for the change of enzyme properties. In addition, the optimal temperature of the three mutants changed from 60 to 55 °C. These results indicate that the site 121 plays a critical role in the catalytic activity and enzymatic properties of chitosanase. To our knowledge, the results provide novel data on chitosanase activity and identify an excellent candidate of industrial chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yi Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Tingting Hong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- School of Petrochemical Engineering, School of food Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
- Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang 277100, China
| | - Qing Qing
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
4
|
Methodological approaches for the analysis of transmembrane domain interactions: A systematic review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183712. [PMID: 34331948 DOI: 10.1016/j.bbamem.2021.183712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.
Collapse
|
5
|
Duart G, García-Murria MJ, Grau B, Acosta-Cáceres JM, Martínez-Gil L, Mingarro I. SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol 2020; 10:200209. [PMID: 32898469 PMCID: PMC7536074 DOI: 10.1098/rsob.200209] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus E protein is a small membrane protein found in the virus envelope. Different coronavirus E proteins share striking biochemical and functional similarities, but sequence conservation is limited. In this report, we studied the E protein topology from the new SARS-CoV-2 virus both in microsomal membranes and in mammalian cells. Experimental data reveal that E protein is a single-spanning membrane protein with the N-terminus being translocated across the membrane, while the C-terminus is exposed to the cytoplasmic side (Ntlum/Ctcyt). The defined membrane protein topology of SARS-CoV-2 E protein may provide a useful framework to understand its interaction with other viral and host components and contribute to establish the basis to tackle the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de ValènciaE-46100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de ValènciaE-46100 Burjassot, Spain
| |
Collapse
|
6
|
Haghir S, Alemzadeh A. Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 7:153-163. [PMID: 30788378 PMCID: PMC6363940 DOI: 10.22099/mbrc.2018.30339.1336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Triticum turgidum L.) and called TaERF6. Its cDNA was synthesized, sequenced and compared with genomic sequence to figure out intron and exon regions and determine coding sequence region. The length of TdERF1 gene was 1939 bp and cDNA was 1065 bp including two exons, the first one 259 bp and the second one 806 bp separated by a 874 bp intron with a 111 bp 5'-UTR (untranslated region) and 401 bp 3'-UTR. TaERF6 encodes a 353 amino acids protein with nearly 99% identity to TdERF1. Hydrophobic cluster analysis revealed an N-terminal hydrophobic domain contains a highly conserved motif with the consensus sequence of M [C/L/Y] [G/R] [G/R/P] [A/G/V/L/R] [I/L/R/S/P/Q] [L/I/R/H] and hydrophobic clusters in AP2/ERF domain of which tends to form -sheet. Three monopartite nuclear localization signals also identified in TaERF6 that play important role in getting back into the nucleus. The results showed several putative phosphorylation sites in TaERF6 that a motif from residues 246 to 266, the CMVII-4 motif, was predicted to phosphorylate by different kinase proteins and play important roles in TaERF6 function. Phylogenetic analysis showed 7 clusters (I to VII) and 10 subclusters according to their relatedness in Poaceae family.
Collapse
Affiliation(s)
- Shahrzad Haghir
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Kurolap A, Eshach-Adiv O, Gonzaga-Jauregui C, Dolnikov K, Mory A, Paperna T, Hershkovitz T, Overton JD, Kaplan M, Glaser F, Zohar Y, Shuldiner AR, Berger G, Baris HN. Establishing the role of PLVAP in protein-losing enteropathy: a homozygous missense variant leads to an attenuated phenotype. J Med Genet 2018; 55:779-784. [PMID: 29875123 DOI: 10.1136/jmedgenet-2018-105299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Intestinal integrity is essential for proper nutrient absorption and tissue homeostasis, with damage leading to enteric protein loss, that is, protein-losing enteropathy (PLE). Recently, homozygous nonsense variants in the plasmalemma vesicle-associated protein gene (PLVAP) were reported in two patients with severe congenital PLE. PLVAP is the building block of endothelial cell (EC) fenestral diaphragms; its importance in barrier function is supported by mouse models of Plvap deficiency. OBJECTIVE To genetically diagnose two first-degree cousins once removed, who presented with PLE at ages 22 and 2.5 years. METHODS Family-based whole exome sequencing was performed based on an autosomal recessive inheritance model. In silico analyses were used to predict variant impact on protein structure and function. RESULTS We identified a rare homozygous variant (NM_031310.2:c.101T>C;p.Leu34Pro) in PLVAP, which co-segregated with the disease. Leu34 is predicted to be located in a highly conserved, hydrophobic, α-helical region within the protein's transmembrane domain, suggesting Leu34Pro is likely to disrupt protein function and/or structure. Electron microscopy and PLVAP immunohistochemistry demonstrated apparently normal diaphragm morphology, predicted to be functionally affected. CONCLUSIONS Biallelic missense variants in PLVAP can cause an attenuated form of the PLE and hypertriglyceridaemia syndrome. Our findings support the role of PLVAP in the pathophysiology of PLE, expand the phenotypic and mutation spectrums and underscore PLVAP's importance in EC barrier function in the gut.
Collapse
Affiliation(s)
- Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Orly Eshach-Adiv
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Gastroenterology and Pediatrics B, Rambam Health Care Campus, Haifa, Israel
| | | | - Katya Dolnikov
- Department of Internal Medicine B, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Marielle Kaplan
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Laboratory of Clinical Biochemistry, Rambam Health Care Campus, Haifa, Israel
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel
| | | | - Gidon Berger
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Internal Medicine B, Rambam Health Care Campus, Haifa, Israel
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Casillas R, Tabernero D, Gregori J, Belmonte I, Cortese MF, González C, Riveiro-Barciela M, López RM, Quer J, Esteban R, Buti M, Rodríguez-Frías F. Analysis of hepatitis B virus preS1 variability and prevalence of the rs2296651 polymorphism in a Spanish population. World J Gastroenterol 2018; 24:680-692. [PMID: 29456407 PMCID: PMC5807671 DOI: 10.3748/wjg.v24.i6.680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/25/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the variability/conservation of the domain of hepatitis B virus (HBV) preS1 region that interacts with sodium-taurocholate cotransporting polypeptide (hereafter, NTCP-interacting domain) and the prevalence of the rs2296651 polymorphism (S267F, NTCP variant) in a Spanish population.
METHODS Serum samples from 246 individuals were included and divided into 3 groups: patients with chronic HBV infection (CHB) (n = 41, 73% Caucasians), patients with resolved HBV infection (n = 100, 100% Caucasians) and an HBV-uninfected control group (n = 105, 100% Caucasians). Variability/conservation of the amino acid (aa) sequences of the NTCP-interacting domain, (aa 2-48 in viral genotype D) and a highly conserved preS1 domain associated with virion morphogenesis (aa 92-103 in viral genotype D) were analyzed by next-generation sequencing and compared in 18 CHB patients with viremia > 4 log IU/mL. The rs2296651 polymorphism was determined in all individuals in all 3 groups using an in-house real-time PCR melting curve analysis.
RESULTS The HBV preS1 NTCP-interacting domain showed a high degree of conservation among the examined viral genomes especially between aa 9 and 21 (in the genotype D consensus sequence). As compared with the virion morphogenesis domain, the NTCP-interacting domain had a smaller proportion of HBV genotype-unrelated changes comprising > 1% of the quasispecies (25.5% vs 31.8%), but a larger proportion of genotype-associated viral polymorphisms (34% vs 27.3%), according to consensus sequences from GenBank patterns of HBV genotypes A to H. Variation/conservation in both domains depended on viral genotype, with genotype C being the most highly conserved and genotype E the most variable (limited finding, only 2 genotype E included). Of note, proline residues were highly conserved in both domains, and serine residues showed changes only to threonine or tyrosine in the virion morphogenesis domain. The rs2296651 polymorphism was not detected in any participant.
CONCLUSION In our CHB population, the NTCP-interacting domain was highly conserved, particularly the proline residues and essential amino acids related with the NTCP interaction, and the prevalence of rs2296651 was low/null.
Collapse
Affiliation(s)
- Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Roche Diagnostics SL, Sant Cugat del Vallès 08174, Spain
| | - Irene Belmonte
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Carolina González
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosa Maria López
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rafael Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions. Sci Rep 2017; 7:17632. [PMID: 29247216 PMCID: PMC5732223 DOI: 10.1038/s41598-017-18008-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Vitamin K epoxide reductase (VKOR) is an essential enzyme for vitamin K-dependent carboxylation, while the physiological function of its paralogous enzyme VKOR-like (VKORL) is yet unknown. Although these two enzymes share approximately 50% protein sequence homology, the membrane topology of VKOR is still in debate. Here, we explored the differences in the membrane topology and disulfide-linked oligomerization of these two enzymes. Results from mutating the critical amino acid residues in the disputed transmembrane (TM) regions revealed that the second TM domain in the proposed 4-TM model of VKOR does not function as an authentic TM helix; supporting VKOR is a 3-TM protein, which is different from VKORL. Additionally, altering the loop sequence between the two conserved cysteine residues of VKORL affects its activity, supporting the notion that the conserved loop cysteines of VKORL are involved in its active site regeneration. However, a similar mutation in VKOR does not affect its enzymatic activity. Finally, our results show that although both VKOR and VKORL form disulfide-linked oligomers, the cysteine residues involved in the oligomerization appear to be different. Overall, the structural and functional differences between VKOR and VKORL shown here indicate that VKORL might have a different physiological function other than recycling vitamin K.
Collapse
|
10
|
Chai M, Liu B, Sun F, Wei P, Chen P, Xu L, Luo SZ. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT. Proteins 2017; 85:1362-1370. [DOI: 10.1002/prot.25297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/18/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mengya Chai
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Bo Liu
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
- School of Basic Medical Science; Beijing University of Chinese Medicine; Beijing 100029 China
| | - Peng Chen
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess College of Life Science and Technology; Beijing, University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
11
|
Steindorf D, Schneider D. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:245-256. [DOI: 10.1016/j.bbamem.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
12
|
Bañó-Polo M, Martínez-Garay CA, Grau B, Martínez-Gil L, Mingarro I. Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:903-909. [PMID: 28132902 DOI: 10.1016/j.bbamem.2017.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Translocon-associated protein (TRAP) complex is intimately associated with the ER translocon for the insertion or translocation of newly synthesised proteins in eukaryotic cells. The TRAP complex is comprised of three single-spanning and one multiple-spanning subunits. We have investigated the membrane insertion and topology of the multiple-spanning TRAP-γ subunit by glycosylation mapping and green fluorescent protein fusions both in vitro and in cell cultures. Results demonstrate that TRAP-γ has four transmembrane (TM) segments, an Nt/Ct cytosolic orientation and that the less hydrophobic TM segment inserts efficiently into the membrane only in the cellular context of full-length protein.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Carlos A Martínez-Garay
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Brayan Grau
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Luis Martínez-Gil
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46 100 Burjassot, Spain.
| |
Collapse
|
13
|
Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc Natl Acad Sci U S A 2016; 114:310-315. [PMID: 28028215 DOI: 10.1073/pnas.1612322114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Their interactions participate in the regulation of Bcl-2 proteins, thus modulating apoptotic activity. Our results suggest that interactions between the transmembrane domains of Bax and antiapoptotic Bcl-2 proteins represent a previously unappreciated level of apoptosis regulation.
Collapse
|
14
|
Andreu-Fernández V, García-Murria MJ, Bañó-Polo M, Martin J, Monticelli L, Orzáez M, Mingarro I. The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes. J Biol Chem 2016; 291:25207-25216. [PMID: 27758854 DOI: 10.1074/jbc.m116.733634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/31/2016] [Indexed: 11/06/2022] Open
Abstract
Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the insertion capacity of hydrophobic C-terminal regions of the BH3-only proteins Bik, Bim, Noxa, Bmf, and Puma into microsomal membranes. An Escherichia coli complementation assay was used to validate the results in a cellular context, and peptide insertions were modeled using molecular dynamics simulations. We also found that some of the C-terminal domains were sufficient to direct green fluorescent protein fusion proteins to specific membranes in human cells, but the domains did not activate apoptosis. Thus, the hydrophobic regions in the C termini of BH3-only members associated in distinct ways with various biological membranes, suggesting that a detailed investigation of the entire process of apoptosis should include studying the membranes as a setting for protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain.,the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - María J García-Murria
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Manuel Bañó-Polo
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Juliette Martin
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Luca Monticelli
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Mar Orzáez
- the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - Ismael Mingarro
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain,
| |
Collapse
|
15
|
Schmidt T, Situ AJ, Ulmer TS. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization. Sci Rep 2016; 6:29809. [PMID: 27436065 PMCID: PMC4951694 DOI: 10.1038/srep29809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of -0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P).
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Alan J Situ
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Tobias S Ulmer
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Biological insertion of computationally designed short transmembrane segments. Sci Rep 2016; 6:23397. [PMID: 26987712 PMCID: PMC4796907 DOI: 10.1038/srep23397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
The great majority of helical membrane proteins are inserted co-translationally into the ER membrane through a continuous ribosome-translocon channel. The efficiency of membrane insertion depends on transmembrane (TM) helix amino acid composition, the helix length and the position of the amino acids within the helix. In this work, we conducted a computational analysis of the composition and location of amino acids in transmembrane helices found in membrane proteins of known structure to obtain an extensive set of designed polypeptide segments with naturally occurring amino acid distributions. Then, using an in vitro translation system in the presence of biological membranes, we experimentally validated our predictions by analyzing its membrane integration capacity. Coupled with known strategies to control membrane protein topology, these findings may pave the way to de novo membrane protein design.
Collapse
|
17
|
Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun 2015; 462:221-6. [PMID: 25956061 DOI: 10.1016/j.bbrc.2015.04.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022]
Abstract
Transient Receptor Potential (TRP) channels are related to adaptation to the environment and somatosensation. The transient receptor potential vanilloid (TRPV) subfamily includes six closely evolutionary related ion channels sharing the same domain organization and tetrameric arrangement in the membrane. In this study we have characterized biochemically TRPV2 channel membrane protein folding and transmembrane (TM) architecture. Deleting the first N-terminal 74 residues preceding the ankyrin repeat domain (ARD) show a key role for this region in targeting the protein to the membrane. We have demonstrated the co-translational insertion of the membrane-embedded region of the TRPV2 and its disposition in biological membranes, identifying that TM1-TM4 and TM5-TM6 regions can assemble as independent folding domains. The ARD is not required for TM domain insertion in the membrane. The folding features observed for TRPV2 may be conserved and shared among other TRP channels outside the TRPV subfamily.
Collapse
|
18
|
Pieren M, Desfougères Y, Michaillat L, Schmidt A, Mayer A. Vacuolar SNARE protein transmembrane domains serve as nonspecific membrane anchors with unequal roles in lipid mixing. J Biol Chem 2015; 290:12821-32. [PMID: 25817997 DOI: 10.1074/jbc.m115.647776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.
Collapse
Affiliation(s)
- Michel Pieren
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Yann Desfougères
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Lydie Michaillat
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Andrea Schmidt
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Andreas Mayer
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
19
|
Andreu-Fernández V, Genoves A, Lee TH, Stellato M, Lucantoni F, Orzáez M, Mingarro I, Aguilar MI, Pérez-Payá E. Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools. ACS Chem Biol 2014; 9:1799-811. [PMID: 24905660 DOI: 10.1021/cb5002679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Bcl-2 family of proteins is crucial for apoptosis regulation. Members of this family insert through a specific C-terminal anchoring transmembrane domain (TMD) in the mitochondrial outer membrane where they hierarchically interact to determine cell fate. While the mitochondrial membrane has been proposed to actively participate in these protein-protein interactions, the influence of the TMD in the membrane-mediated interaction is poorly understood. Synthetic peptides (TMD-pepts) corresponding to the putative TMD of antiapoptotic (Bcl-2, Bcl-xL, Bcl-w, and Mcl-1) and pro-apoptotic (Bax, Bak) members were synthesized and characterized. TMD-pepts bound more efficiently to mitochondria-like bilayers than to plasma membrane-like bilayers, and higher binding correlated with greater membrane perturbation. The Bcl-2 TMD peptides promoted mitochondrial outer membrane permeabilization (MOMP) and cytochrome c release from isolated mitochondria and different cell lines. TMD-pepts exhibited nonapoptotic pro-death activity when apoptosis stimuli were absent. In addition, the peptides enhanced the apoptotic pathway induced by chemotherapeutic agents in cotreatment. Overall, the membrane perturbation effects of the TMD-pepts observed in the present study open the way for their use as new chemical tools to sensitize tumor cells to chemotherapeutic agents, in accordance with the concept of mitochondria priming.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- Laboratory
of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Ainhoa Genoves
- Laboratory
of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Instituto de Biomedicina de Valencia, IBV-CSIC, E-46010 Valencia, Spain
| | - Tzong-Hsien Lee
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800 Australia
| | - Matthew Stellato
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800 Australia
| | - Federico Lucantoni
- Laboratory
of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Mar Orzáez
- Laboratory
of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Ismael Mingarro
- Departament
de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Marie-Isabel Aguilar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800 Australia
| | - Enrique Pérez-Payá
- Laboratory
of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Instituto de Biomedicina de Valencia, IBV-CSIC, E-46010 Valencia, Spain
| |
Collapse
|
20
|
Elbaum MB, Zondlo NJ. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Biochemistry 2014; 53:2242-60. [PMID: 24641765 PMCID: PMC4004263 DOI: 10.1021/bi500117c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
OGlcNAcylation
and phosphorylation are the major competing intracellular
post-translational modifications of serine and threonine residues.
The structural effects of both post-translational modifications on
serine and threonine were examined within Baldwin model α-helical
peptides (Ac-AKAAAAKAAAAKAAGY-NH2 or Ac-YGAKAAAAKAAAAKAA-NH2). At the N-terminus of an α-helix, both phosphorylation
and OGlcNAcylation stabilized the α-helix relative to the free
hydroxyls, with a larger induced structure for phosphorylation than
for OGlcNAcylation, for the dianionic phosphate than for the monoanionic
phosphate, and for modifications on threonine than for modifications
on serine. Both phosphoserine and phosphothreonine resulted in peptides
more α-helical than alanine at the N-terminus, with dianionic
phosphothreonine the most α-helix-stabilizing residue here.
In contrast, in the interior of the α-helix, both post-translational
modifications were destabilizing with respect to the α-helix,
with the greatest destabilization seen for threonine OGlcNAcylation
at residue 5 and threonine phosphorylation at residue 10, with peptides
containing either post-translational modification existing as random
coils. At the C-terminus, both OGlcNAcylation and phosphorylation
were destabilizing with respect to the α-helix, though the induced
structural changes were less than in the interior of the α-helix.
In general, the structural effects of modifications on threonine were
greater than the effects on serine, because of both the lower α-helical
propensity of Thr and the more defined induced structures upon modification
of threonine than serine, suggesting threonine residues are particularly
important loci for structural effects of post-translational modifications.
The effects of serine and threonine post-translational modifications
are analogous to the effects of proline on α-helices, with the
effects of phosphothreonine being greater than those of proline throughout
the α-helix. These results provide a basis for understanding
the context-dependent structural effects of these competing protein
post-translational modifications.
Collapse
Affiliation(s)
- Michael B Elbaum
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
21
|
Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. J Mol Biol 2013; 425:830-40. [DOI: 10.1016/j.jmb.2012.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 12/02/2012] [Indexed: 11/21/2022]
|
22
|
Huang YH, Chen CM. Statistical analyses and computational prediction of helical kinks in membrane proteins. J Comput Aided Mol Des 2012; 26:1171-85. [PMID: 22996198 DOI: 10.1007/s10822-012-9607-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/12/2012] [Indexed: 12/28/2022]
Abstract
We have carried out statistical analyses and computer simulations of helical kinks for TM helices in the PDBTM database. About 59 % of 1562 TM helices showed a significant kink, and 38 % of these kinks are associated with prolines in a range of ±4 residues. Our analyses show that helical kinks are more populated in the central region of helices, particularly in the range of 1-3 residues away from the helix center. Among 1,053 helical kinks analyzed, 88 % of kinks are bends (change in helix axis without loss of helical character) and 12 % are disruptions (change in helix axis and loss of helical character). It is found that proline residues tend to cause larger kink angles in helical bends, while this effect is not observed in helical disruptions. A further analysis of these kinked helices suggests that a kinked helix usually has 1-2 broken backbone hydrogen bonds with the corresponding N-O distance in the range of 4.2-8.7 Å, whose distribution is sharply peaked at 4.9 Å followed by an exponential decay with increasing distance. Our main aims of this study are to understand the formation of helical kinks and to predict their structural features. Therefore we further performed molecular dynamics (MD) simulations under four simulation scenarios to investigate kink formation in 37 kinked TM helices and 5 unkinked TM helices. The representative models of these kinked helices are predicted by a clustering algorithm, SPICKER, from numerous decoy structures possessing the above generic features of kinked helices. Our results show an accuracy of 95 % in predicting the kink position of kinked TM helices and an error less than 10° in the angle prediction of 71.4 % kinked helices. For unkinked helices, based on various structure similarity tests, our predicted models are highly consistent with their crystal structure. These results provide strong supports for the validity of our method in predicting the structure of TM helices.
Collapse
Affiliation(s)
- Y-H Huang
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | | |
Collapse
|
23
|
Bañó-Polo M, Baeza-Delgado C, Orzáez M, Marti-Renom MA, Abad C, Mingarro I. Polar/Ionizable residues in transmembrane segments: effects on helix-helix packing. PLoS One 2012; 7:e44263. [PMID: 22984481 PMCID: PMC3440369 DOI: 10.1371/journal.pone.0044263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/31/2012] [Indexed: 01/14/2023] Open
Abstract
The vast majority of membrane proteins are anchored to biological membranes through hydrophobic α-helices. Sequence analysis of high-resolution membrane protein structures show that ionizable amino acid residues are present in transmembrane (TM) helices, often with a functional and/or structural role. Here, using as scaffold the hydrophobic TM domain of the model membrane protein glycophorin A (GpA), we address the consequences of replacing specific residues by ionizable amino acids on TM helix insertion and packing, both in detergent micelles and in biological membranes. Our findings demonstrate that ionizable residues are stably inserted in hydrophobic environments, and tolerated in the dimerization process when oriented toward the lipid face, emphasizing the complexity of protein-lipid interactions in biological membranes.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Carlos Baeza-Delgado
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Marc A. Marti-Renom
- Genome Biology Group, Structural Genomics Team, Centre Nacional d'Anàlisi Genòmic, Barcelona, Spain
- Structural Genomics Group, Center for Genomic Regulation, Barcelona, Spain
| | - Concepción Abad
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| |
Collapse
|
24
|
Structure-based statistical analysis of transmembrane helices. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:199-207. [DOI: 10.1007/s00249-012-0813-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/21/2012] [Accepted: 04/14/2012] [Indexed: 11/25/2022]
|
25
|
Weber M, Tome L, Otzen D, Schneider D. A Ser residue influences the structure and stability of a Pro-kinked transmembrane helix dimer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2103-7. [PMID: 22525600 DOI: 10.1016/j.bbamem.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
When localized adjacent to a Pro-kink, Thr and Ser residues can form hydrogen bonds between their polar hydroxyl group and a backbone carbonyl oxygen and thereby modulate the actual bending angle of a distorted transmembrane α-helix. We have used the homo-dimeric transmembrane cytochrome b(559)' to analyze the potential role of a highly conserved Ser residue for assembly and stabilization of transmembrane proteins. Mutation of the conserved Ser residue to Ala resulted in altered heme binding properties and in increased stability of the holo-protein, most likely by tolerating subtle structural rearrangements upon heme binding. The results suggest a crucial impact of an intrahelical Ser hydrogen bond in defining the structure of a Pro-kinked transmembrane helix dimer.
Collapse
Affiliation(s)
- Mathias Weber
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becher-Weg 30, Mainz, Germany
| | | | | | | |
Collapse
|
26
|
Abstract
Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes.
Collapse
|
27
|
Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I. N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein Sci 2011; 20:179-86. [PMID: 21082725 DOI: 10.1002/pro.551] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N-glycosylation is the most common and versatile protein modification. In eukaryotic cells, this modification is catalyzed cotranslationally by the enzyme oligosaccharyltransferase, which targets the β-amide of the asparagine in an Asn-Xaa-Ser/Thr consensus sequon (where Xaa is any amino acid but proline) in nascent proteins as they enter the endoplasmic reticulum. Because modification of the glycosylation acceptor site on membrane proteins occurs in a compartment-specific manner, the presence of glycosylation is used to indicate membrane protein topology. Moreover, glycosylation sites can be added to gain topological information. In this study, we explored the determinants of N-glycosylation with the in vitro transcription/translation of a truncated model protein in the presence of microsomes and surveyed 25,488 glycoproteins, of which 2,533 glycosylation sites had been experimentally validated. We found that glycosylation efficiency was dependent on both the distance to the C-terminus and the nature of the amino acid that preceded the consensus sequon. These findings establish a broadly applicable method for membrane protein tagging in topological studies.
Collapse
Affiliation(s)
- Manuel Bañó-Polo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot E-46100, València, Spain
| | | | | | | | | |
Collapse
|
28
|
Membrane Insertion and Topology of the Translocating Chain-Associating Membrane Protein (TRAM). J Mol Biol 2011; 406:571-82. [DOI: 10.1016/j.jmb.2011.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/24/2022]
|
29
|
Jaskierny AJ, Panahi A, Feig M. Effect of flanking residues on the conformational sampling of the internal fusion peptide from Ebola virus. Proteins 2011; 79:1109-17. [PMID: 21246633 DOI: 10.1002/prot.22947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/03/2010] [Accepted: 11/14/2010] [Indexed: 11/08/2022]
Abstract
Fusion peptides mediate viral and host-cell membrane fusion during viral entry. The monomeric form of the internal fusion peptide from Ebola virus was studied in membrane bilayer and water environments with computer simulations using replica exchange sampling and an implicit solvent description of the environment. Wild-type Ebola fusion peptide (EFP), the W8A mutant form, and an extended construct with flanking residues were examined. It was found that the monomeric form of wild-type EFP adopts coil-helix-coil structure with a short helix from residues 8 to 11 mostly sampling orientations parallel to the membrane surface. W8A mutation disrupts the helicity in the N-terminal region of the peptide and leads to a preference for slightly oblique orientation relative to the membrane surface. The addition of flanking residues also alters the fusion peptide conformation with either a helix-break-helix structure or extended N and C-termini and reduced membrane insertion. In water, the fusion peptide is found to adopt structures with low helicity.
Collapse
Affiliation(s)
- Adam J Jaskierny
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
30
|
Thomas R, Vostrikov VV, Greathouse DV, Koeppe RE. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry 2010; 48:11883-91. [PMID: 19891499 DOI: 10.1021/bi9016395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orientations, geometries, and lipid interactions of designed transmembrane (TM) peptides have attracted significant experimental and theoretical interest. Because the amino acid proline will introduce a known discontinuity into an alpha helix, we have sought to measure the extent of helix kinking caused by a single proline within the isolated TM helical domain of WALP19. For this purpose, we synthesized acetyl-GWWLALALAP(10)ALALALWWA-ethanolamide and included pairs of deuterated alanines by using 60-100% Fmoc-l-Ala-d(4) at selected sequence positions. Solid-state deuterium ((2)H) magnetic resonance spectra from oriented, hydrated samples (1/40, peptide/lipid; using several lipids) reveal signals from many of the alanine backbone C(alpha) deuterons as well as the alanine side-chain C(beta) methyl groups, whereas signals from C(alpha) deuterons generally have not been observed for similar peptides without proline. It is conceivable that altered peptide dynamics may be responsible for the apparent "unmasking" of the backbone resonances in the presence of the proline. Data analysis using the geometric analysis of labeled alanines (GALA) method reveals that the peptide helix is distorted due to the presence of the proline. To provide additional data points for evaluating the segmental tilt angles of the two halves of the peptide, we substituted selected leucines with l-Ala-d(4). Using this approach, we were able to deduce that the apparent average tilt of the C-terminal increases from approximately 4 degrees to approximately 12 degrees when Pro(10) is introduced. The segment N-terminal to proline is more complex and possibly is more dynamically flexible; Leu to Ala mutations within the N-terminal segment alter the average orientations of alanines in both segments. Nevertheless, in DOPC, we could estimate an apparent kink angle of approximately 19 degrees . Together, the results suggest that the central proline influences not only the geometry but also the dynamics of the membrane-spanning peptide. The results make up an important basis for understanding the functional role of proline in several families of membrane proteins.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
31
|
McCarl CA, Picard C, Khalil S, Kawasaki T, Röther J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 2010; 124:1311-1318.e7. [PMID: 20004786 DOI: 10.1016/j.jaci.2009.10.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND Defects in the development or activation of T cells result in immunodeficiency associated with severe infections early in life. T-cell activation requires Ca2+ influx through Ca2+-release activated Ca2+ (CRAC) channels encoded by the gene ORAI1. OBJECTIVE Investigation of the genetic causes and the clinical phenotype of immunodeficiency in patients with impaired Ca2+ influx and CRAC channel function. METHODS DNA sequence analysis for mutations in the genes ORAI1, ORAI2, ORAI3, and stromal interaction molecule (STIM) 1 and 2, as well as mRNA and protein expression analysis of ORAI1 in immunodeficient patients. Immunohistochemical analysis of ORAI1 tissue distribution in healthy human donors. RESULTS We identified mutations in ORAI1 in patients from 2 unrelated families. One patient is homozygous for a frameshift nonsense mutation in ORAI1 (ORAI1-A88SfsX25), and a second patient is compound heterozygous for 2 missense mutations in ORAI1 (ORAI1-A103E/L194P). All 3 mutations abolish ORAI1 expression and impair Ca2+ influx and CRAC channel function. The clinical syndrome associated with ORAI1 deficiency is characterized by immunodeficiency with a defect in the function but not in the development of lymphocytes, congenital myopathy, and anhydrotic ectodermal dysplasia with a defect in dental enamel calcification. In contrast with the limited clinical phenotype, we found ORAI1 protein expression in a wide variety of cell types and organs. CONCLUSION Ca2+ influx through ORAI1 is crucial for lymphocyte function in vivo. Despite almost ubiquitous ORAI1 expression, the channel has a nonredundant role in only a few cell types judging from the limited clinical phenotype in ORAI1-deficient patients.
Collapse
Affiliation(s)
- Christie-Ann McCarl
- Department of Pathology, New York University, Langone Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
33
|
Lawrie CM, Sulistijo ES, MacKenzie KR. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes. J Mol Biol 2009; 396:924-36. [PMID: 20026130 DOI: 10.1016/j.jmb.2009.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/09/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
We determined the sequence dependence of human BNIP3 transmembrane domain dimerization using the biological assay TOXCAT. Mutants in which intermonomer hydrogen bonds between Ser172 and His173 are abolished show moderate interaction, indicating that side-chain hydrogen bonds contribute to dimer stability but are not essential to dimerization. Mutants in which a GxxxG motif composed of Gly180 and Gly184 has been abolished show little or no interaction, demonstrating the critical nature of the GxxxG motif to BNIP3 dimerization. These findings show that side-chain hydrogen bonds can enhance the intrinsic dimerization of a GxxxG motif and that sequence context can control how hydrogen bonds influence helix-helix interactions in membranes. The dimer interface mapped by TOXCAT mutagenesis agrees closely with the interfaces observed in the NMR structure and inferred from mutational analysis of dimerization on SDS-PAGE, showing that the native dimer structure is retained in detergents. We show that TOXCAT and SDS-PAGE give complementary and consistent information about BNIP3 transmembrane domain dimerization: TOXCAT is insensitive to mutations that have modest effects on self-association in detergents but readily discriminates among mutations that completely disrupt detergent-resistant dimerization. The close agreement between conclusions reached from TOXCAT and SDS-PAGE data for BNIP3 suggests that accurate estimates of the relative effects of mutations on native-state protein-protein interactions can be obtained even when the detergent environment is strongly disruptive.
Collapse
Affiliation(s)
- Charles M Lawrie
- Department of Biochemistry and Cell Biology, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
34
|
Lee BL, Li X, Liu Y, Sykes BD, Fliegel L. Structural and functional analysis of extracellular loop 2 of the Na+/H+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2481-8. [DOI: 10.1016/j.bbamem.2009.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|
35
|
Hussainzada N, Claro Da Silva T, Swaan PW. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT. Biochemistry 2009; 48:8528-39. [PMID: 19653651 DOI: 10.1021/bi900616w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed alkylation of consecutively introduced cysteines was employed to probe the solvent-accessible profile of highly conserved transmembrane helix 3 (TM3), spanning residues V127-T149 of the apical sodium-dependent bile acid transporter (ASBT), a key membrane protein involved in cholesterol homeostasis. Sequence alignment of SLC10 family members has previously identified a signature motif (ALGMMPL) localized to TM3 of ASBT with as yet undetermined function. Cysteine mutagenesis of this motif resulted in severe decreases in uptake activity only for mutants M141C and P142C. Additional conservative and nonconservative replacement of P142 suggests its structural and functional importance during the ASBT transport cycle. Significant decreases in transport activity were also observed for three cysteine mutants clustered along the exofacial half of the helix (M129C, T130C, S133C) and five mutants consecutively lining the cytosolic half of TM3 (L145C-T149C). Measurable surface expression was detected for all TM3 mutants. Using physicochemically different alkylating reagents, sites predominantly lining the cytosolic half of the TM3 helix were found to be solvent accessible (i.e., S128C, L143C-T149C). Analysis of substrate kinetics for select TM3 mutants demonstrates significant loss of taurocholic acid affinity for mutants S128C and L145C-T149C. Overall, we conclude (i) the functional and structural importance of P142 during the transport cycle and (ii) the presence of a large hydrophilic cleft region lining the cytosolic half of TM3 that may form portions of the substrate exit route during permeation. Our studies provide unique insight into molecular mechanisms guiding the ASBT transport cycle with respect to substrate binding and translocation events.
Collapse
Affiliation(s)
- Naissan Hussainzada
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
36
|
Abad C, Martínez-Gil L, Tamborero S, Mingarro I. Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2132-41. [PMID: 19619504 PMCID: PMC7094694 DOI: 10.1016/j.bbamem.2009.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 01/08/2023]
Abstract
The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed.
Collapse
Affiliation(s)
- Concepción Abad
- Departament de Bioquímica i Biologia Molecular, Universitat de València. Dr. Moliner, 50, E-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
37
|
Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein. J Virol 2009; 83:5535-43. [PMID: 19321624 DOI: 10.1128/jvi.00393-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.
Collapse
|
38
|
Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys J 2008; 95:4384-95. [PMID: 18658225 DOI: 10.1529/biophysj.108.136747] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proline residues play a fundamental and subtle role in the dynamics, structure, and function in many membrane proteins. Temperature derivative spectroscopy and differential scanning calorimetry have been used to determine the effect of proline substitution in the structural stability of the active site and transmembrane arrangement of bacteriorhodopsin. We have analyzed the Pro-to-Ala mutation for the helix-embedded prolines Pro50, Pro91, and Pro186 in the native membrane environment. This information has been complemented with the analysis of the respective crystallographic structures by the FoldX force field. Differential scanning calorimetry allowed us to determine distorted membrane arrangement for P50A and P186A. The protein stability was severely affected for P186A and P91A. In the case of Pro91, a single point mutation is capable of strongly slowing down the conformational diffusion along the denaturation coordinate, becoming a barrier-free downhill process above 371 K. Temperature derivative spectroscopy, applied for first time to study thermal stability of proteins, has been used to monitor the stability of the active site of bacteriorhodopsin. The mutation of Pro91 and Pro186 showed the most striking effects on the retinal binding pocket. These residues are the Pro in closer contact to the active site (activation energies for retinal release of 60.1 and 76.8 kcal/mol, respectively, compared to 115.8 kcal/mol for WT). FoldX analysis of the protein crystal structures indicates that the Pro-to-Ala mutations have both local and long-range effects on the structural stability of residues involved in the architecture of the protein and the active site and in the proton pumping function. Thus, this study provides a complete overview of the substitution effect of helix-embedded prolines in the thermodynamic and dynamic stability of a membrane protein, also related to its structure and function.
Collapse
|
39
|
Tie JK, Zheng MY, Hsiao KLN, Perera L, Stafford DW, Straight DL. Transmembrane domain interactions and residue proline 378 are essential for proper structure, especially disulfide bond formation, in the human vitamin K-dependent gamma-glutamyl carboxylase. Biochemistry 2008; 47:6301-10. [PMID: 18498174 DOI: 10.1021/bi800235r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used recombinant techniques to create a two-chain form (residues 1-345 and residues 346-758) of the vitamin K-dependent gamma-glutamyl carboxylase, a glycoprotein located in the endoplasmic reticulum containing five transmembrane domains. The two-chain carboxylase had carboxylase and epoxidase activities similar to those of one-chain carboxylase. In addition, it had normal affinity for the propeptide of factor IX. We employed this molecule to investigate formation of the one disulfide bond in carboxylase, the transmembrane structure of carboxylase, and the potential interactions among the carboxylase's transmembrane domains. Our results indicate that the two peptides of the two-chain carboxylase are joined by a disulfide bond. Proline 378 is important for the structure necessary for disulfide formation. Results with the P378L carboxylase indicate that noncovalent bonds maintain the two-chain structure even when the disulfide bond is disrupted. As we had previously proposed, the fifth transmembrane domain of carboxylase is the last and only transmembrane domain in the C-terminal peptide of the two-chain carboxylase. We show that the noncovalent association between the two chains of carboxylase involves an interaction between the fifth transmembrane domain and the second transmembrane domain. Results of a homology model of transmembrane domains 2 and 5 suggest that not only do these two domains associate but that transmembrane domain 2 may interact with another transmembrane domain. This latter interaction may be mediated at least in part by a motif of glycine residues in the second transmembrane domain.
Collapse
Affiliation(s)
- Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Smirnova AV, Braun Y, Ullrich MS. Site-directed mutagenesis of the temperature-sensing histidine protein kinase CorS from Pseudomonas syringae. FEMS Microbiol Lett 2008; 283:231-8. [DOI: 10.1111/j.1574-6968.2008.01179.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
42
|
Sen A, Sen N, Mackow ER. The formation of viroplasm-like structures by the rotavirus NSP5 protein is calcium regulated and directed by a C-terminal helical domain. J Virol 2007; 81:11758-67. [PMID: 17699573 PMCID: PMC2168809 DOI: 10.1128/jvi.01124-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The rotavirus NSP5 protein directs the formation of viroplasm-like structures (VLS) and is required for viroplasm formation within infected cells. In this report, we have defined signals within the C-terminal 21 amino acids of NSP5 that are required for VLS formation and that direct the insolubility and hyperphosphorylation of NSP5. Deleting C-terminal residues of NSP5 dramatically increased the solubility of N-terminally tagged NSP5 and prevented NSP5 hyperphosphorylation. Computer modeling and analysis of the NSP5 C terminus revealed the presence of an amphipathic alpha-helix spanning 21 C-terminal residues that is conserved among rotaviruses. Proline-scanning mutagenesis of the predicted helix revealed that single-amino-acid substitutions abolish NSP5 insolubility and hyperphosphorylation. Helix-disrupting NSP5 mutations also abolished localization of green fluorescent protein (GFP)-NSP5 fusions into VLS and directly correlate VLS formation with NSP5 insolubility. All mutations introduced into the hydrophobic face of the predicted NSP5 alpha-helix disrupted VLS formation, NSP5 insolubility, and the accumulation of hyperphosphorylated NSP5 isoforms. Some NSP5 mutants were highly soluble but still were hyperphosphorylated, indicating that NSP5 insolubility was not required for hyperphosphorylation. Expression of GFP containing the last 68 residues of NSP5 at its C terminus resulted in the formation of punctate VLS within cells. Interestingly, GFP-NSP5-C68 was diffusely dispersed in the cytoplasm when calcium was depleted from the medium, and after calcium resupplementation GFP-NSP5-C68 rapidly accumulated into punctate VLS. A potential calcium switch, formed by two tandem pseudo-EF-hand motifs (DxDxD), is present just upstream of the predicted alpha-helix. Mutagenesis of either DxDxD motif abolished the regulatory effect of calcium on VLS formation and resulted in the constitutive assembly of GFP-NSP5-C68 into punctate VLS. These results reveal specific residues within the NSP5 C-terminal domain that direct NSP5 hyperphosphorylation, insolubility, and VLS formation in addition to defining residues that constitute a calcium-dependent trigger of VLS formation. These studies identify functional determinants within the C terminus of NSP5 that regulate VLS formation and provide a target for inhibiting NSP5-directed VLS functions during rotavirus replication.
Collapse
Affiliation(s)
- Adrish Sen
- Department of Medicine, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
43
|
Sulistijo ES, MacKenzie KR. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions. J Mol Biol 2006; 364:974-90. [PMID: 17049556 DOI: 10.1016/j.jmb.2006.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/21/2006] [Accepted: 09/24/2006] [Indexed: 11/29/2022]
Abstract
The transmembrane domain of the pro-apoptotic protein BNIP3 self-associates strongly in membranes and in detergents. We have used site-directed mutagenesis to analyze the sequence dependence of BNIP3 transmembrane domain dimerization, from which we infer the physical basis for strong and specific helix-helix interactions in this system. Hydrophobic substitutions identify six residues as critical to dimerization, and the pattern of sensitive residues suggests that the BNIP3 helices interact at a right-handed crossing angle. Based on the dimerization propensities of single point mutants, we propose that: polar residues His173 and Ser172 make inter-monomer hydrogen bonds to one another through their side-chains; Ala176, Gly180, and Gly184 form a tandem GxxxG motif that allows close approach of the helices; and Ile183 makes inter-monomer van der Waals contacts. Since neither the tandem GxxxG motif nor the hydrogen bonding pair is sufficient to drive dimerization, our results demonstrate the importance of sequence context for either hydrogen bonding or GxxxG motif involvement in BNIP3 transmembrane helix-helix interactions. In this study, hydrophobic substitutions away from the six interfacial positions have almost no effect on dimerization, confirming the expectation that hydrophobic replacements affect helix-helix interactions only if they interfere with packing or hydrogen bonding by interfacial residues. However, changes to slightly polar residues are somewhat disruptive even when located away from the interface, and the degree of disruption correlates with the decrease in hydrophobicity. Changing the hydrophobicity of the BNIP3 transmembrane domain alters its helicity and protection of its backbone amides. We suggest that polar substitutions decrease the fraction of dimer by stabilizing an unfolded monomeric state of the transmembrane span, rather than by affecting helix-helix interactions. This result has broad implications for interpreting the sequence dependence of membrane protein stability in detergents.
Collapse
Affiliation(s)
- Endah S Sulistijo
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
44
|
Perálvarez-Marín A, Bourdelande JL, Querol E, Padrós E. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin. Mol Membr Biol 2006; 23:127-35. [PMID: 16754356 DOI: 10.1080/09687860500435019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane alpha-helices, as compared to alpha-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cgamma and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Elliott C, Müller J, Miklis M, Bhat R, Schulze-Lefert P, Panstruga R. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 2005; 385:243-54. [PMID: 15352871 PMCID: PMC1134693 DOI: 10.1042/bj20040993] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We performed a structure-function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop-loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family.
Collapse
Affiliation(s)
- Candace Elliott
- *The Sainsbury Laboratory, John Innes Centre, Colney, Norwich, NR4 7UH, U.K
| | - Judith Müller
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Marco Miklis
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Riyaz A. Bhat
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Paul Schulze-Lefert
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Ralph Panstruga
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Larios C, Christiaens B, Gómara MJ, Alsina MA, Haro I. Interaction of synthetic peptides corresponding to hepatitis G virus (HGV/GBV-C) E2 structural protein with phospholipid vesicles. FEBS J 2005; 272:2456-66. [PMID: 15885095 DOI: 10.1111/j.1742-4658.2005.04666.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction with phospholipid bilayers of two synthetic peptides with sequences corresponding to a segment next to the native N-terminus and an internal region of the E2 structural hepatitis G virus (HGV/GBV-C) protein [E2(7-26) and E2(279-298), respectively] has been characterized. Both peptides are water soluble but associate spontaneously with bilayers, showing higher affinity for anionic than zwitterionic membranes. However, whereas the E2(7-26) peptide is hardly transferred at all from water to the membrane interface, the E2(279-298) peptide is able to penetrate into negatively charged bilayers remaining close to the lipid/water interface. The nonpolar environment clearly induces a structural transition in the E2(279-298) peptide from random coil to alpha-helix, which causes bilayer perturbations leading to vesicle permeabilization. The results indicate that this internal segment peptide sequence is involved in the fusion of HGV/GBV-C to membrane.
Collapse
Affiliation(s)
- Cristina Larios
- Department of Peptide and Protein Chemistry, IIQAB-CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
García-Sáez AJ, Coraiola M, Dalla Serra M, Mingarro I, Menestrina G, Salgado J. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys J 2005; 88:3976-90. [PMID: 15778450 PMCID: PMC1305629 DOI: 10.1529/biophysj.104.058008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bax and Bid are proapoptotic proteins of the Bcl-2 family that regulate the release of apoptogenic factors from mitochondria. Although they localize constitutively in the cytoplasm, their apoptotic function is exerted at the mitochondrial outer membrane, and is related to their ability to form transbilayer pores. Here we report the poration activity of fragments from these two proteins, containing the first alpha-helix of a colicinlike hydrophobic hairpin (alpha-helix 5 of Bax and alpha-helix 6 of Bid). Both peptides readily bind to synthetic lipid vesicles, where they adopt predominantly alpha-helical structures and induce the release of entrapped calcein. In planar lipid membranes they form ion conducting channels, which in the case of the Bax-derived peptide are characterized by a two-stage pattern, a large conductivity and lipid-charge-dependent ionic selectivity. These features, together with the influence of intrinsic lipid curvature on the poration activity and the existence of two helical stretches of different orientations for the membrane-bound peptide, suggest that it forms mixed lipidic/peptidic pores of toroidal structure. In contrast, the assayed Bid fragment shows a markedly different behavior, characterized by the formation of discrete, steplike channels in planar lipid bilayers, as expected for a peptidic pore lined by a bundle of helices.
Collapse
Affiliation(s)
- Ana J García-Sáez
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Orzáez M, Lukovic D, Abad C, Pérez-Payá E, Mingarro I. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif. FEBS Lett 2005; 579:1633-8. [PMID: 15757653 DOI: 10.1016/j.febslet.2005.01.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 01/31/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
The principles that govern the folding and packing of membrane proteins are still not completely understood. In the present work, we have revisited the glycophorin A (GpA) dimerisation motif that mediates transmembrane (TM) helix association, one of the best-suited models of membrane protein oligomerisation. By using artificial polyleucine TM segments we have demonstrated in this study that a pattern of only five amino acids (GVxxGVxxT) promotes specific dimerisation. Further, we have used this minimised GpA motif to assess the influence of hydrophobic matching on the TM helix packing process in detergent micelles and found that this factor modulates helix-helix association and/or dissociation between TM fragments.
Collapse
Affiliation(s)
- Mar Orzáez
- Departament de Bioquímica i Biologia Molecular, Universitat de València, E-46100 Burjassot, Spain
| | | | | | | | | |
Collapse
|
49
|
Gómara MJ, Mora P, Mingarro I, Nieva JL. Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein. FEBS Lett 2004; 569:261-6. [PMID: 15225645 DOI: 10.1016/j.febslet.2004.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/21/2004] [Accepted: 06/03/2004] [Indexed: 11/25/2022]
Abstract
The structural determinants underlying the functionality of viral internal fusion peptides (IFPs) are not well understood. We have compared EBOwt (GAAIGLAWIPYFGPAAE), representing the IFP of the Ebola fusion protein GP, and EBOwt (GAAIGLAWIPYFGRAAE) derived from a non-functional mutant with conserved Pro537 substituted by Arg. P537R substitution did not abrogate peptide-membrane association, but interfered with the ability to induce bilayer destabilization. Structural determinations suggest that Pro537 is required to preserve a membrane-perturbing local conformation in apolar environments.
Collapse
Affiliation(s)
- María J Gómara
- Unidad de Biofísica (CSIC-UPV/EHU) y Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
50
|
Senes A, Engel DE, DeGrado WF. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 2004; 14:465-79. [PMID: 15313242 DOI: 10.1016/j.sbi.2004.07.007] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Helical integral membrane proteins share several structural determinants that are widely conserved across their universe. The discovery of common motifs has furthered our understanding of the features that are important to stability in the membrane environment, while simultaneously providing clues about proteins that lack high-resolution structures. Motif analysis also helps to target mutagenesis studies, and other experimental and computational work. Three types of transmembrane motifs have recently seen interesting developments: the GxxxG motif and its like; polar and hydrogen bonding motifs; and proline motifs.
Collapse
Affiliation(s)
- Alessandro Senes
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | |
Collapse
|