1
|
Ko YJ, Lee ME, Cho BH, Kim M, Hyeon JE, Han JH, Han SO. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit Rev Biotechnol 2024; 44:373-387. [PMID: 36775664 DOI: 10.1080/07388551.2023.2168512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 02/14/2023]
Abstract
Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Joo Hee Han
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Godoy MS, de Miguel SR, Prieto MA. A singular PpaA/AerR-like protein in Rhodospirillum rubrum rules beyond the boundaries of photosynthesis in response to the intracellular redox state. mSystems 2023; 8:e0070223. [PMID: 38054698 PMCID: PMC10734443 DOI: 10.1128/msystems.00702-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rhodospirillum rubrum vast metabolic versatility places it as a remarkable model bacterium and an excellent biotechnological chassis. The key component of photosynthesis (PS) studied in this work (HP1) stands out among the other members of PpaA/AerR anti-repressor family since it lacks the motif they all share: the cobalamin B-12 binding motif. Despite being reduced and poorly conserved, HP1 stills controls PS as the other members of the family, allowing a fast response to changes in the redox state of the cell. This work also shows that HP1 absence affects genes from relevant biological processes other than PS, including nitrogen fixation and stress response. From a biotechnological perspective, HP1 could be manipulated in approaches where PS is not necessary, such as hydrogen or polyhydroxyalkanoates production, to save energy.
Collapse
Affiliation(s)
- Manuel S. Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - Santiago R. de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
3
|
Hosakul P, Kantachote D, Saritpongteeraka K, Phuttaro C, Chaiprapat S. Upgrading industrial effluent for agricultural reuse: effects of digestate concentration and wood vinegar dosage on biosynthesis of plant growth promotor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14589-14600. [PMID: 32048192 DOI: 10.1007/s11356-020-08014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Emphasis on water reuse in agricultural sector receives a renewed interest to close the loop in circular economy, especially in dry and water-stressed regions. In this work, wastewater from cooperative smoked sheet rubber factory and the effluent (digestate) from its treatment system (anaerobic digester) were used as medium to grow purple non-sulfur bacteria (PNSB), Rhodopseudomonas palustris strain PP803, with wood vinegar supplement at mid-log growth phase to stimulate the release of 5-aminolevulinic acid (ALA), a plant growth promotor. Wastewater-to-digestate ratios (D:W) represented by soluble chemical oxygen demand (SCOD) were found to influence both the growth of R. palustris and synthesis of ALA. The highest ALA release of 16.02 ± 0.75 μM and the biomass accumulation of 1302 ± 78 mg/L were obtained from the medium SCOD of 4953 mg/L. Although retarding biomass accumulation by 28-36%, wood vinegar (WV) addition was proven to improve ALA release by 40%. Result suggested that SCOD of 3438 mg/L (75:25 D:W) contained sufficient carbon source for PNSB growth and was chosen to subsequently run the photo-bioreactor (PBR) to sustain R. palustris PP803 cells production. In continuous PBR operation, PNSB proliferation suffered from the low organic concentration in PBR at low organic loading. An organic loading increase to 1.21 g COD/L day was found to attain highest biomass concentration and longest PNSB dominant period over microalgea. In this study, a real-time monitoring protocol of PNSB and microalgae was specifically developed based on image color analysis at acceptable accuracy (R2 = 0.94). In the final assay, verification of the PBR-grown inoculant was conducted and ALA release efficiency was discussed under various wood vinegar dosages and dosing frequencies. This work has advanced our understandings closer to practical field application.
Collapse
Affiliation(s)
- Passagorn Hosakul
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Kanyarat Saritpongteeraka
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
- Center of Excellence on Energy Technology and Environment, Postgraduate and Research Development Office (PERDO), Bangkok, 10400, Thailand
| | - Chettaphong Phuttaro
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
- Center of Excellence on Energy Technology and Environment, Postgraduate and Research Development Office (PERDO), Bangkok, 10400, Thailand
| | - Sumate Chaiprapat
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand.
- PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Songkhla, 90112, Thailand.
- Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
4
|
Interactions among Redox Regulators and the CtrA Phosphorelay in Dinoroseobacter shibae and Rhodobacter capsulatus. Microorganisms 2020; 8:microorganisms8040562. [PMID: 32295208 PMCID: PMC7232146 DOI: 10.3390/microorganisms8040562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria employ regulatory networks to detect environmental signals and respond appropriately, often by adjusting gene expression. Some regulatory networks influence many genes, and many genes are affected by multiple regulatory networks. Here, we investigate the extent to which regulatory systems controlling aerobic–anaerobic energetics overlap with the CtrA phosphorelay, an important system that controls a variety of behavioral processes, in two metabolically versatile alphaproteobacteria, Dinoroseobacter shibae and Rhodobacter capsulatus. We analyzed ten available transcriptomic datasets from relevant regulator deletion strains and environmental changes. We found that in D. shibae, the CtrA phosphorelay represses three of the four aerobic–anaerobic Crp/Fnr superfamily regulator-encoding genes (fnrL, dnrD, and especially dnrF). At the same time, all four Crp/Fnr regulators repress all three phosphorelay genes. Loss of dnrD or dnrF resulted in activation of the entire examined CtrA regulon, regardless of oxygen tension. In R. capsulatus FnrL, in silico and ChIP-seq data also suggested regulation of the CtrA regulon, but it was only with loss of the redox regulator RegA where an actual transcriptional effect on the CtrA regulon was observed. For the first time, we show that there are complex interactions between redox regulators and the CtrA phosphorelays in these bacteria and we present several models for how these interactions might occur.
Collapse
|
5
|
Kullapanich C, Dubbs JM, Mongkolsuk S. Inactivation of the Agrobacterium tumefaciens ActSR system affects resistance to multiple stresses with increased H 2O 2 sensitivity due to reduced expression of hemH. MICROBIOLOGY-SGM 2020; 165:1117-1134. [PMID: 31339484 DOI: 10.1099/mic.0.000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Agrobacterium tumefaciens ActSR two-component regulatory system is a member of a homologous group of global redox-responsive regulatory systems that adjust the expression of energy-consuming and energy-supplying metabolic pathways in order to maintain cellular redox balance. In this study, the transcriptional organization of the hrpB-actSR locus was determined and the effect of actSR system inactivation on stress resistance was investigated. It was found that hrpB is transcribed as a monocistronic mRNA and actS is transcribed along with actR as a bicistronic mRNA, while actR is also transcribed as a monocistronic message. Each message is initiated from a separate promoter. Inactivation of actR resulted in decreased resistance to membrane stress (sodium dodecyl sulfate), acid stress (pH 5.5), iron starvation (bipyridyl) and iron excess (FeCl3), and antibiotic stress (tetracycline and ciprofloxacin). Resistance to oxidative stress in the form of organic peroxide (cumene hydroperoxide) increased, while resistance to inorganic peroxide (H2O2) decreased. An actR insertion mutant displayed reduced catalase activity, even though transcription of katA and catE remained unchanged. Complementation of the actR inactivation mutant with plasmid-encoded actR or overexpression of hemH, encoding ferrochelatase, restored wild-type catalase activity and H2O2 resistance levels. Gel mobility shift and hemH promoter-lacZ fusion results indicated that ActR is a positive regulator of hemH that binds directly to the hemH promoter region. Thus, inactivation of the A. tumefaciens ActSR system affects resistance to multiple stresses, including reduced resistance to H2O2 resulting from a reduction in catalase activity due to reduced expression of hemH.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Center of Excellence on Environmental Health and Toxicology, EHT Ministry of Education, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
6
|
Ding H, Saer RG, Beatty JT. Porphyrin Excretion Resulting From Mutation of a Gene Encoding a Class I Fructose 1,6-Bisphosphate Aldolase in Rhodobacter capsulatus. Front Microbiol 2019; 10:301. [PMID: 30853951 PMCID: PMC6395792 DOI: 10.3389/fmicb.2019.00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
This paper describes a mutant (called SB1707) of the Rhodobacter capsulatus wild type strain SB1003 in which a transposon-disrupted rcc01707 gene resulted in a ∼25-fold increase in the accumulation of coproporphyrin III in the medium of phototrophic (anaerobic) cultures grown in a yeast extract/peptone medium. There was little or no stimulation of pigment accumulation in aerobic cultures. Therefore, this effect of rcc01707 mutation appears to be specific for the anaerobic coproporphyrinogen III oxidase HemN as opposed to the aerobic enzyme HemF. The protein encoded by rcc01707 is homologous to Class I fructose 1,6-bisphosphate aldolases, which catalyze a glycolytic reaction that converts fructose 1, 6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, precursors of pyruvate. There were significant differences in coproporphyrin III accumulation using defined media with individual organic acids and sugars as the sole carbon source: pyruvate, succinate and glutamate stimulated accumulation the most, whereas glucose suppressed coproporphyrin III accumulation to 10% of that of succinate. However, although quantitatively lesser, similar effects of carbon source on the amount of accumulated pigment in the culture medium were seen in a wild type control. Therefore, this mutation appears to exaggerate effects also seen in the wild type strain. It is possible that mutation of rcc01707 causes a metabolic bottleneck or imbalance that was not rectified during growth on the several carbon sources tested. However, we speculate that, analogous to other fructose 1,6-bisphosphate aldolases, the rcc01707 gene product has a “moonlighting” activity that in this case is needed for the maximal expression of the hemN gene. Indeed, it was found that the rcc01707 gene is needed for maximal expression of a hemN promoter-lacZ reporter. With the decrease in hemN expression due to the absence of the rcc01707 gene product, coproporphyrinogen III accumulates and is released from the cell, yielding the spontaneous oxidation product coproporphyrin III.
Collapse
Affiliation(s)
- Hao Ding
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Rafael G Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - J Thomas Beatty
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
The Vitamin B 12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters. mBio 2017; 8:mBio.00261-17. [PMID: 28325764 PMCID: PMC5362033 DOI: 10.1128/mbio.00261-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq) and ChIP-seq and exonuclease digestion (ChIP-exo) studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2) and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function. Photoreceptors control a wide range of physiology often by regulating downstream gene expression in response to light absorption via a bound chromophore. Different photoreceptors are known to utilize a number of different compounds for light absorption, including the use of such compounds as flavins, linearized tetrapyrroles (bilins), and carotenoids. Recently, a novel class of photoreceptors that use vitamin B12 (cobalamin) as a blue-light-absorbing chromophore have been described. In this study, we analyzed the mechanism by which the vitamin B12 binding photoreceptor AerR controls the DNA binding activity of the photosystem regulator CrtJ. This study shows that a direct interaction between the vitamin B12 binding photoreceptor AerR with CrtJ modulates CrtJ binding to DNA and importantly, the regulatory outcome of gene expression, as shown here with photosystem promoters.
Collapse
|
8
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
9
|
Kumka JE, Bauer CE. Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli. BMC Genomics 2015; 16:895. [PMID: 26537891 PMCID: PMC4634722 DOI: 10.1186/s12864-015-2162-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022] Open
Abstract
Background FNR homologues constitute an important class of transcription factors that control a wide range of anaerobic physiological functions in a number of bacterial species. Since FNR homologues are some of the most pervasive transcription factors, an understanding of their involvement in regulating anaerobic gene expression in different species sheds light on evolutionary similarity and differences. To address this question, we used a combination of high throughput RNA-Seq and ChIP-Seq analysis to define the extent of the FnrL regulon in Rhodobacter capsulatus and related our results to that of FnrL in Rhodobacter sphaeroides and FNR in Escherichia coli. Results Our RNA-seq results show that FnrL affects the expression of 807 genes, which accounts for over 20 % of the Rba. capsulatus genome. ChIP-seq results indicate that 42 of these genes are directly regulated by FnrL. Importantly, this includes genes involved in the synthesis of the anoxygenic photosystem. Similarly, FnrL in Rba. sphaeroides affects 24 % of its genome, however, only 171 genes are differentially expressed in common between two Rhodobacter species, suggesting significant divergence in regulation. Conclusions We show that FnrL in Rba. capsulatus activates photosynthesis while in Rba. sphaeroides FnrL regulation reported to involve repression of the photosystem. This analysis highlights important differences in transcriptional control of photosynthetic events and other metabolic processes controlled by FnrL orthologues in closely related Rhodobacter species. Furthermore, we also show that the E. coli FNR regulon has limited transcriptional overlap with the FnrL regulons from either Rhodobacter species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2162-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph E Kumka
- Molecular and Cellular Biochemistry Department, Indiana University, Simon Hall MSB, 212 S. Hawthorne Dr, Bloomington, IN, 47405-7003, USA
| | - Carl E Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Simon Hall MSB, 212 S. Hawthorne Dr, Bloomington, IN, 47405-7003, USA.
| |
Collapse
|
10
|
Members of the PpaA/AerR Antirepressor Family Bind Cobalamin. J Bacteriol 2015; 197:2694-703. [PMID: 26055116 DOI: 10.1128/jb.00374-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED PpaA from Rhodobacter sphaeroides is a member of a family of proteins that are thought to function as antirepressors of PpsR, a widely disseminated repressor of photosystem genes in purple photosynthetic bacteria. PpaA family members exhibit sequence similarity to a previously defined SCHIC (sensor containing heme instead of cobalamin) domain; however, the tetrapyrrole-binding specificity of PpaA family members has been unclear, as R. sphaeroides PpaA has been reported to bind heme while the Rhodobacter capsulatus homolog has been reported to bind cobalamin. In this study, we reinvestigated tetrapyrrole binding of PpaA from R. sphaeroides and show that it is not a heme-binding protein but is instead a cobalamin-binding protein. We also use bacterial two-hybrid analysis to show that PpaA is able to interact with PpsR and activate the expression of photosynthesis genes in vivo. Mutations in PpaA that cause loss of cobalamin binding also disrupt PpaA antirepressor activity in vivo. We also tested a number of PpaA homologs from other purple bacterial species and found that cobalamin binding is a conserved feature among members of this family of proteins. IMPORTANCE Cobalamin (vitamin B12) has only recently been recognized as a cofactor that affects gene expression by interacting in a light-dependent manner with transcription factors. A group of related antirepressors known as the AppA/PpaA/AerR family are known to control the expression of photosynthesis genes in part by interacting with either heme or cobalamin. The specificity of which tetrapyrroles that members of this family interact with has, however, remained cloudy. In this study, we address the tetrapyrrole-binding specificity of the PpaA/AerR subgroup and establish that it preferentially binds cobalamin over heme.
Collapse
|
11
|
Kim EJ, Oh EK, Lee JK. Role of HemF and HemN in the heme biosynthesis of Vibrio vulnificus under S-adenosylmethionine-limiting conditions. Mol Microbiol 2015; 96:497-512. [PMID: 25626927 DOI: 10.1111/mmi.12951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/25/2022]
Abstract
Vibrio vulnificus contains two coproporphyrinogen III oxidases (CPOs): O2-dependent HemF and O2-independent HemN. The growth of the hemF mutant HF1 was similar to wild-type cells at pH 7.5 under 2% O2 conditions where HemN was active and had a half-life of 64 min. However, HF1 did not grow when the medium pH decreased to pH 5.0, where oxidative stress affects endogenous S-adenosylmethionine (SAM) levels. The growth of HF1 was restored not only by elevating the expression of MnSOD but also through the exogenous addition of SAM. For HF1 to grow under these SAM-limiting conditions, a mutation arose in hemN, encoding HemNY74F . Refolding of the denatured enzymes in vitro revealed that the apparent binding affinity of HemNY74F for the cofactor SAM1, which coordinates the 4Fe-4S cluster, was approximately sixfold higher than that of HemN. The Km of HemNY74F for the co-substrate SAM2, which provides radicals for CPO reactions, was threefold lower than that of HemN. Thus, affinities for both SAM1 and SAM2 were higher with the Y74F mutation. Taken together, when SAM is limiting, HemN is apparently nonfunctional, and heme synthesis is continued by HemF.
Collapse
Affiliation(s)
- Eui-Jin Kim
- Department of Life Science, Sogang University, Seoul, 121-742, Korea
| | | | | |
Collapse
|
12
|
Zappa S, Bauer CE. The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus. Mol Microbiol 2013; 90:1277-92. [PMID: 24134691 PMCID: PMC3890261 DOI: 10.1111/mmi.12431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/27/2023]
Abstract
The purple bacterium Rhodobacter capsulatus is unique among Rhodobacteriacae as it contains a putative iron response regulator (Irr) but does not possess a copy of the ferric uptake regulator (Fur). Interestingly, an in-frame deletion mutant of Irr shows no major role in iron homeostasis. Instead, we showed that the previously identified activator of haem gene expression HbrL is a crucial regulator of iron homeostasis. We demonstrated that an HbrL deletion strain is unable to grow in iron-limited medium in aerobic, semi-aerobic and photosynthetic conditions and that suppressor strains can be isolated with mutations in iron uptake genes. Gene expression studies revealed that HbrL is a transcriptional activator of multiple ferrous and ferric iron uptake systems in addition to a haem uptake system. Finally, HbrL activates the expression of numerous haem biosynthesis genes. Thus, HbrL has a central role in controlling the amount of iron transport in conjunction with the synthesis of its cognate tetrapyrrole haem.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr., Bloomington, IN 47405, U. S. A
| |
Collapse
|
13
|
Yin L, Bauer CE. Controlling the delicate balance of tetrapyrrole biosynthesis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120262. [PMID: 23754814 DOI: 10.1098/rstb.2012.0262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tetrapyrroles are a family of compounds that contain four pyrrole rings. They are involved in many fundamental biological processes such as photoreception, electron transport, gas transport and also as cofactors for enzymatic reactions. As regulators of protein activity, tetrapyrroles mediate cellular response to light, oxygen and nutrient levels in the surrounding environment. Biosynthesis of haem tetrapyrroles shares, conserved pathways and enzymes among all three domains of life. This is contrasted by chlorophyll biosynthesis that is only present in eubacteria and chloroplasts, or cobalamin biosynthesis that is only present in eubacteria and archaea. This implicates haem as the most ancient, and chlorophyll as the most recent, of the common tetrapyrroles that are currently synthesized by existing organisms. Haem and chlorophyll are both toxic when synthesized in excess over apo-proteins that bind these tetrapyrroles. Accordingly, the synthesis of these tetrapyrroles has to be tightly regulated and coordinated with apo-protein production. The mechanism of regulating haem and chlorophyll synthesis has been studied intensively in Rhodobacter species and will be discussed.
Collapse
Affiliation(s)
- Liang Yin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
14
|
Choorit W, Saikeur A, Chodok P, Prasertsan P, Kantachote D. Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. J Biosci Bioeng 2011; 111:658-64. [DOI: 10.1016/j.jbiosc.2011.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 11/29/2022]
|
15
|
Zappa S, Li K, Bauer CE. The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:229-50. [PMID: 20532744 PMCID: PMC2883787 DOI: 10.1007/978-1-4419-1528-3_13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purple anoxygenic photosynthetic bacterium Rhodobacter capsulatus is capable of growing in aerobic or anaerobic conditions, in the dark or using light, etc. Achieving versatile metabolic adaptations from respiration to photosynthesis requires the use of tetrapyrroles such as heme and bacteriochlorophyll, in order to carry oxygen, to transfer electrons, and to harvest light energy. A third tetrapyrrole, cobalamin (vitamin B(12)), is synthesized and used as a cofactor for many enzymes. Heme, bacteriochlorophyll, and vitamin B(12) constitute three major end products of the tetrapyrrole biosynthetic pathway in purple bacteria. Their respective synthesis involves a plethora of enzymes, several that have been characterized and several that are uncharacterized, as described in this review. To respond to changes in metabolic requirements, the pathway undergoes complex regulation to direct the flow of tetrapyrrole intermediates into a specific branch(s) at the expense of other branches of the pathway. Transcriptional regulation of the tetrapyrrole synthesizing enzymes by redox conditions and pathway intermediates is reviewed. In addition, we discuss the involvement of several transcription factors (RegA, CrtJ, FnrL, AerR, HbrL, Irr) as well as the role of riboswitches. Finally, the interdependence of the tetrapyrrole branches on each other synthesis is discussed.
Collapse
Affiliation(s)
- Sébastien Zappa
- Biology Department, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
16
|
Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009; 75:4835-52. [PMID: 19465526 DOI: 10.1128/aem.02874-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.
Collapse
|
17
|
|
18
|
Bauer CE, Setterdahl A, Wu J, Robinson BR. Regulation of Gene Expression in Response to Oxygen Tension. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
RegB/RegA, A Global Redox-Responding Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:131-48. [DOI: 10.1007/978-0-387-78885-2_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 2008; 190:4831-48. [PMID: 18487335 DOI: 10.1128/jb.00301-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PrrBA two-component regulatory system is a major global regulator in Rhodobacter sphaeroides 2.4.1. Here we have compared the transcriptome and proteome profiles of the wild-type (WT) and mutant PrrA2 cells grown anaerobically in the dark with dimethyl sulfoxide as an electron acceptor. Approximately 25% of the genes present in the PrrA2 genome are regulated by PrrA at the transcriptional level, either directly or indirectly, by twofold or more relative to the WT. The genes affected are widespread throughout all COG (cluster of orthologous group) functional categories, with previously unsuspected "metabolic" genes affected in PrrA2 cells. PrrA was found to act as both an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole-genome transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values for WT and PrrA2 cells showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected genes that were both positively and negatively regulated. lacZ transcriptional and kan translational fusions enabled us to map putative PrrA binding sites and revealed potential gene targets for indirect regulation by PrrA.
Collapse
|
21
|
Barkovits K, Harms A, Benkartek C, Smart JL, Frankenberg-Dinkel N. Expression of the phytochrome operon in Pseudomonas aeruginosa is dependent on the alternative sigma factor RpoS. FEMS Microbiol Lett 2008; 280:160-8. [DOI: 10.1111/j.1574-6968.2007.01058.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Agrobacterium tumefaciens C58 uses ActR and FnrN to control nirK and nor expression. J Bacteriol 2007; 190:78-86. [PMID: 17981975 DOI: 10.1128/jb.00792-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens can grow anaerobically via denitrification. To learn more about how cells regulate production of nitrite and nitric oxide, experiments were carried out to identify proteins involved in regulating expression and activity of nitrite and nitric oxide reductase. Transcription of NnrR, required for expression of these two reductases, was found to be under control of FnrN. Insertional inactivation of the response regulator actR significantly reduced nirK expression and Nir activity but not nnrR expression. Purified ActR bound to the nirK promoter but not the nor or nnrR promoter. A putative ActR binding site was identified in the nirK promoter region using mutational analysis and an in vitro binding assay. A nirK promoter containing mutations preventing the binding of ActR showed delayed expression but eventually reached about 65% of the activity of an equivalent wild-type promoter lacZ fusion. Truncation of the nirK promoter revealed that truncation up to and within the ActR binding site reduced expression, but fragments lacking the ActR binding site and retaining the NnrR binding site showed expression as high as or higher than the full-length fragment. Additional experiments revealed that expression of paz, encoding the copper protein pseudoazurin, was highly reduced in the actR or fnrN mutants and that ActR binds to the paz promoter. Inactivation of paz reduced Nir activity by 55%. These results help explain why Nir activity is very low in the actR mutant even though a nirK promoter with mutations in the ActR binding site showed significant expression.
Collapse
|
23
|
Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 2007; 189:7765-73. [PMID: 17616588 PMCID: PMC2168725 DOI: 10.1128/jb.00853-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/29/2007] [Indexed: 11/20/2022] Open
Abstract
We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.
Collapse
|
24
|
Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol Lett 2007; 29:773-8. [PMID: 17245554 DOI: 10.1007/s10529-006-9303-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 12/14/2006] [Accepted: 12/18/2006] [Indexed: 11/26/2022]
Abstract
Of 23 strains of halotolerant (up to 12% w/v NaCl) photosynthetic bacteria isolated from various sources, one isolate, SH5, accumulated intracellular 5-aminolevulinic acid (ALA) at 0.45 microg/g dry cell wt (DCW) growing aerobically in the dark. The strain was identified as Rhodobacter sphaeroides using 16S rDNA sequencing. Biosynthesis of ALA was enhanced to 14 microg/g DCW using modified glutamate/glucose (50 mM) medium with the addition of 10 mM levulinic acid after 24 h cultivation. Addition of 30 microM Fe(2+) to this medium increased the yield to 226 microg/g DCW.
Collapse
Affiliation(s)
- Amornrat Tangprasittipap
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | | | | | | |
Collapse
|
25
|
Ouchane S, Picaud M, Therizols P, Reiss-Husson F, Astier C. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J Biol Chem 2006; 282:7690-9. [PMID: 17178720 DOI: 10.1074/jbc.m605985200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fnr is a regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. To assess the role of Fnr in photosynthesis in Rubrivivax gelatinosus, a strain carrying a null mutation in fnrL was constructed. It was unable to grow anaerobically in the light, but, intriguingly, it was able to produce photosynthetic complexes under high oxygenation conditions. The mutant lacked all c-type cytochromes normally detectable in microaerobically-grown wild type cells and accumulated coproporphyrin III. These data suggested that the pleiotropic phenotype observed in FNR is primarily due to the control at the level of the HemN oxygen-independent coproporphyrinogen III dehydrogenase. hemN expression in trans partially suppressed the FNR phenotype, as it rescued heme and cytochrome syntheses. Nevertheless, these cells were photosynthetically deficient, and pigment analyses showed that they were blocked at the level of Mg(2+)-protoporphyrin monomethyl ester. Expression of both hemN and bchE in the FNR mutant restored synthesis of Mg(2+)-protochlorophyllide. We, therefore, conclude that FnrL controls respiration by regulating hemN expression and controls photosynthesis by regulating both hemN and bchE expression. A comprehensive picture of the control points of microaerobic respiration and photosynthesis by FnrL is provided, and the prominent role of this factor in activating alternative gene programs after reduction of oxygen tension in facultative aerobes is discussed.
Collapse
Affiliation(s)
- Soufian Ouchane
- Centre de Génétique Moléculaire CNRS (UPR-2167) Associéà l'Université Pierre et Marie Curie et Paris XI, Bâtiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O'huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 2006; 189:683-90. [PMID: 17098896 PMCID: PMC1797316 DOI: 10.1128/jb.01390-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO2. We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing alpha-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO2 fixation pathways in these organisms and suggest that these pathways function to fix CO2 for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent.
Collapse
Affiliation(s)
- Wesley D Swingley
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim SK, Mason JT, Knaff DB, Bauer CE, Setterdahl AT. Redox properties of the Rhodobacter sphaeroides transcriptional regulatory proteins PpsR and AppA. PHOTOSYNTHESIS RESEARCH 2006; 89:89-98. [PMID: 16915353 PMCID: PMC2774731 DOI: 10.1007/s11120-006-9086-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
Redox properties of the photosynthetic gene repressor PpsR and the blue-light photoreceptor/antirepressor AppA from Rhodobacter sphaeroides have been characterized. Redox titrations of PpsR reveal the presence of a two-electron couple, with an E (m) value of -320 mV at pH 7.0, which is likely to arise from the reversible conversion of two cysteine thiols to a disulfide. This E (m) value is very much more negative than the E (m) = -180 mV value measured previously at pH 7.0 for the disulfide/dithiol couple in CrtJ, the homolog for PpsR in the closely related bacterium Rhodobacter capsulatus. AppA, a flavin-containing blue-light receptor that is also involved in the regulation of gene expression in R. sphaeroides, contains multiple cysteines in its C-terminal region, two of which function as a redox-active dithiol/disulfide couple with an E (m) value of -325 mV at pH 7.0 in the dark. Titrations of this dithiol/disulfide couple in illuminated samples of AppA indicate that the E (m) value of this disulfide/dithiol couple is -315 mV at pH 7.0, identical to the value obtained for AppA in the dark within the combined experimental uncertainties of the two measurements. The E (m) values of AppA and PpsR demonstrate that these proteins are thermodynamically capable of electron transfer for their activity as an anti-repressor/repressor in R. sphaeroides.
Collapse
Affiliation(s)
- S. -K. Kim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - J. T. Mason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - D. B. Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
- Institute for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - C. E. Bauer
- Department of Biology, Indiana University, 915 E. 3rd St., Myers Hall, Bloomington, IN 47405, USA
| | - A. T. Setterdahl
- Department of Biology, Indiana University, 915 E. 3rd St., Myers Hall, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Smart JL, Bauer CE. Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol 2006; 188:1567-76. [PMID: 16452440 PMCID: PMC1367214 DOI: 10.1128/jb.188.4.1567-1576.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the expression of hem genes in Rhodobacter capsulatus is transcriptionally repressed in response to the exogenous addition of heme. A high-copy suppressor screen for regulators of hem gene expression resulted in the identification of an LysR-type transcriptional regulator, called HbrL, that regulates hem promoters in response to the availability of heme. HbrL is shown to activate the expression of hemA and hemZ in the absence of exogenous hemin and repress hemB expression in the presence of exogenous hemin. Heterologously expressed HbrL apoprotein binds heme b and is purified with bound heme b when expressed in the presence of 5-aminolevulinic acid. Electrophoretic gel shift analysis demonstrated that HbrL binds the promoter region of hemA, hemB, and hemZ as well as its own promoter and that the presence of heme increases the binding affinity of HbrL to hemB.
Collapse
Affiliation(s)
- James L Smart
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
29
|
Elsen S, Jaubert M, Pignol D, Giraud E. PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 2005; 57:17-26. [PMID: 15948946 DOI: 10.1111/j.1365-2958.2005.04655.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purple bacteria control the level of expression and the composition of their photosystem according to light and redox conditions. This control involves several regulatory systems that have been now well characterized. Among them, the PpsR regulator plays a central role, because it directly or indirectly controls the synthesis of all of the different components of the photosystem. In this review, we report our knowledge of the PpsR protein, highlighting the diversity of its mode of action and focusing on the proteins identified in four model purple bacteria (Rhodobacter capsulatus, Rhodobacter sphaeroides, Rubrivivax gelatinosus, Bradyrhizobium ORS278). This regulator exhibits unique regulatory features in each bacterium: it can activate and/or repress the expression of photosynthesis genes, its activity can be modulated or not by the redox conditions, it can interact with other specific regulators and therefore be involved differently in light and/or redox regulatory circuits.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
30
|
Moskvin OV, Gomelsky L, Gomelsky M. Transcriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol 2005; 187:2148-56. [PMID: 15743963 PMCID: PMC1064034 DOI: 10.1128/jb.187.6.2148-2156.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PpsR from the anoxygenic phototrophic bacterium Rhodobacter sphaeroides has been known as an oxygen- and light-dependent repressor of bacteriochlorophyll and carotenoid biosynthesis genes and puc operons involved in photosystem development. However, the putative PpsR-binding sites, TGTN12ACA, are also located upstream of numerous nonphotosystem genes, thus raising the possibility that the role of PpsR is broader. To characterize the PpsR regulon, transcriptome profiling was performed on the wild-type strain grown at high and low oxygen tensions, on the strain overproducing PpsR, and on the ppsR mutant. Transcriptome analysis showed that PpsR primarily regulates photosystem genes; the consensus PpsR binding sequence is TGTcN10gACA (lowercase letters indicate lesser conservation); the presence of two binding sites is required for repression in vivo. These findings explain why numerous single TGTN12ACA sequences are nonfunctional. In addition to photosystem genes, the hemC and hemE genes involved in the early steps of tetrapyrrole biosynthesis were identified as new direct targets of PpsR repression. Unexpectedly, PpsR was found to indirectly repress the puf and puhA operons encoding photosystem core proteins. The upstream regions of these operons contain no PpsR binding sites. Involvement in regulation of these operons suggests that PpsR functions as a master regulator of photosystem development. Upregulation of the puf and puhA operons that resulted from ppsR inactivation was sufficient to restore the ability to grow phototrophically to the prrA mutant. PrrA, the global redox-dependent activator, was previously considered indispensable for phototrophic growth. It is revealed that the PrrBA and AppA-PpsR systems, believed to work independently, in fact interact and coordinately regulate photosystem development.
Collapse
Affiliation(s)
- Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
31
|
Kovács AT, Rákhely G, Kovács KL. The PpsR regulator family. Res Microbiol 2005; 156:619-25. [PMID: 15950121 DOI: 10.1016/j.resmic.2005.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Under aerobic conditions, phototrophic bacteria repress the formation of pigments to protect cells in the presence of light from the damaging effects of reactive oxygen species and consume oxygen through respiratory complexes. Members of the PpsR family regulate the transcription of bch, crt, puc, and hem genes in respond to redox or light conditions. This mini-review focuses on the function and distribution of PpsR proteins.
Collapse
Affiliation(s)
- Akos T Kovács
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences and Department of Biotechnology, University of Szeged, Szeged, Temesvári krt. 62, Hungary
| | | | | |
Collapse
|