1
|
Filamentous myosin in low-ionic strength meat protein processing media: Assembly mechanism, impact on protein functionality, and inhibition strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
2
|
Ennen F, Fenner P, Stoychev G, Boye S, Lederer A, Voit B, Appelhans D. Coil-like Enzymatic Biohybrid Structures Fabricated by Rational Design: Controlling Size and Enzyme Activity over Sequential Nanoparticle Bioconjugation and Filtration Steps. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6261-8. [PMID: 26905671 DOI: 10.1021/acsami.5b07305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Well-defined enzymatic biohybrid structures (BHS) composed of avidin, biotinylated poly(propyleneimine) glycodendrimers, and biotinylated horseradish peroxidase were fabricated by a sequential polyassociation reaction to adopt directed enzyme prodrug therapy to protein-glycopolymer BHS for potential biomedical applications. To tailor and gain fundamental insight into pivotal properties such as size and molar mass of these BHS, the dependence on the fabrication sequence was probed and thoroughly investigated by several complementary methods (e.g., UV/vis, DLS, cryoTEM, AF4-LS). Subsequent purification by hollow fiber filtration allowed us to obtain highly pure and well-defined BHS. Overall, by rational design and control of preparation parameters, e.g., fabrication sequence, ligand-receptor stoichiometry, and degree of biotinylation, well-defined BHS with stable and even strongly enhanced enzymatic activities can be achieved. Open coil-like structures of BHS with few branches are available by the sequential bioconjugation approach between synthetic and biological macromolecules possessing similar size dimensions.
Collapse
Affiliation(s)
- Franka Ennen
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Philipp Fenner
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Georgi Stoychev
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
3
|
Heissler SM, Liu X, Korn ED, Sellers JR. Kinetic characterization of the ATPase and actin-activated ATPase activities of Acanthamoeba castellanii myosin-2. J Biol Chem 2013; 288:26709-20. [PMID: 23897814 DOI: 10.1074/jbc.m113.485946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Ser-639 in loop-2 of the catalytic motor domain of the heavy chain of Acanthamoeba castellanii myosin-2 and the phosphomimetic mutation S639D have been shown previously to down-regulate the actin-activated ATPase activity of both the full-length myosin and single-headed subfragment-1 (Liu, X., Lee, D. Y., Cai, S., Yu, S., Shu, S., Levine, R. L., and Korn, E. D. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, E23-E32). In the present study we determined the kinetic constants for each step in the myosin and actomyosin ATPase cycles of recombinant wild-type S1 and S1-S639D. The kinetic parameter predominantly affected by the S639D mutation is the actin-activated release of inorganic phosphate from the acto myosin·ADP·Pi complex, which is the rate-limiting step in the steady-state actomyosin ATPase cycle. As consequence of this change, the duty ratio of this conventional myosin decreases. We speculate on the effect of Ser-639 phosphorylation on the processive behavior of myosin-2 filaments.
Collapse
Affiliation(s)
- Sarah M Heissler
- From the Laboratory of Molecular Physiology and the Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015
| | | | | | | |
Collapse
|
4
|
Guthrie OW. Genetic/transgenic conditional expression of full-length and headless nonmuscle myosin-II molecules: head domain regulates localization in auditory neurons. Int J Pediatr Otorhinolaryngol 2013; 77:785-91. [PMID: 23499291 DOI: 10.1016/j.ijporl.2013.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Human genetic mutations that affect the N-terminal head-domain of the nonmuscle myosin-II (MyoII) molecule can result in nonsyndromic sensorineural hearing loss but the underlying mechanism is unknown. Ultimately, MyoII must be appropriately localized in order to execute endogenous functions. The aim of the current study is to determine whether the head-domain of MyoII regulates in vivo localization of the molecule in living and fixed preparations of the auditory organ. METHODS A genetic/transgenic GAL4-UAS approach was used to selectively drive the expression of zip/MyoII (Drosophila homologue of human nonmuscle MyoII) in Drosophila melanogaster auditory (Johnston's organ) sensory neurons. To follow the distribution of the full-length transgene encoded by MyoII, the N-terminus was fused to green fluorescent protein. Additionally, headless zip/MyoII molecules with and without isoleucine-glutamine or IQ motifs were also expressed in Johnston's organ neurons. RESULTS Removing the entire head domain of MyoII induced localization in neuronal dendrites while removing only a portion of the head but keeping the IQ motif induced localization in the soma and axons of the neurons. CONCLUSIONS The findings suggest that the head domain regulates in vivo localization of MyoII in auditory neurons.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Loma Linda Veterans Hospital, Research Service-151, Loma Linda, CA 92357, USA. O'
| |
Collapse
|
5
|
Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece. Proc Natl Acad Sci U S A 2012; 110:E33-40. [PMID: 23248285 DOI: 10.1073/pnas.1219727110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acanthamoeba myosin II (AMII) has two heavy chains ending in a 27-residue nonhelical tailpiece and two pairs of light chains. In a companion article, we show that five, and only five, serine residues can be phosphorylated both in vitro and in vivo: Ser639 in surface loop 2 of the motor domain and serines 1489, 1494, 1499, and 1504 in the nonhelical tailpiece of the heavy chains. In that paper, we show that phosphorylation of Ser639 down-regulates the actin-activated MgATPase activity of AMII and that phosphorylation of the serines in the nonhelical tailpiece has no effect on enzymatic activity. Here we show that bipolar tetrameric, hexameric, and octameric minifilaments of AMII with the nonhelical tailpiece serines either phosphorylated or mutated to glutamate have longer bare zones and more tightly clustered heads than minifilaments of unphosphorylated AMII, irrespective of the phosphorylation state of Ser639. Although antiparallel dimers of phosphorylated and unphosphorylated myosins are indistinguishable, phosphorylation inhibits dimerization and filament assembly. Therefore, the different structures of tetramers, hexamers, and octamers of phosphorylated and unphosphorylated AMII must be caused by differences in the longitudinal stagger of phosphorylated and unphosphorylated bipolar dimers and tetramers. Thus, although the actin-activated MgATPase activity of AMII is regulated by phosphorylation of Ser639 in loop 2 of the motor domain, the structure of AMII minifilaments is regulated by phosphorylation of one or more of four serines in the nonhelical tailpiece of the heavy chain.
Collapse
|
6
|
Ronen D, Rosenberg MM, Shalev DE, Rosenberg M, Rotem S, Friedler A, Ravid S. The positively charged region of the myosin IIC non-helical tailpiece promotes filament assembly. J Biol Chem 2009; 285:7079-86. [PMID: 19959848 DOI: 10.1074/jbc.m109.049221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The motor protein, non-muscle myosin II (NMII), must undergo dynamic oligomerization into filaments to participate in cellular processes such as cell migration and cytokinesis. A small non-helical region at the tail of the long coiled-coil region (tailpiece) is a common feature of all dynamically assembling myosin II proteins. In this study, we investigated the role of the tailpiece in NMII-C self-assembly. We show that the tailpiece is natively unfolded, as seen by circular dichroism and NMR experiments, and is divided into two regions of opposite charge. The positively charged region (Tailpiece(1946-1967)) starts at residue 1946 and is extended by seven amino acids at its N terminus from the traditional coiled-coil ending proline (Tailpiece(1953-1967)). Pull-down and sedimentation assays showed that the positive Tailpiece(1946-1967) binds to assembly incompetent NMII-C fragments inducing filament assembly. The negative region, residues 1968-2000, is responsible for NMII paracrystal morphology as determined by chimeras in which the negative region was swapped between the NMII isoforms. Mixing the positive and negative peptides had no effect on the ability of the positive peptide to bind and induce filament assembly. This study provides molecular insight into the role of the structurally disordered tailpiece of NMII-C in shifting the oligomeric equilibrium of NMII-C toward filament assembly and determining its morphology.
Collapse
Affiliation(s)
- Daniel Ronen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu SL, Fewkes N, Ricketson D, Penkert RR, Prehoda KE. Filament-dependent and -independent localization modes of Drosophila non-muscle myosin II. J Biol Chem 2007; 283:380-387. [PMID: 17989074 DOI: 10.1074/jbc.m703924200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myosin II assembles into force-generating filaments that drive cytokinesis and the organization of the cell cortex. Regulation of myosin II activity can occur through modulation of filament assembly and by targeting to appropriate cellular sites. Here we show, using salt-dependent solubility and a novel fluorescence resonance energy transfer assay, that assembly of the Drosophila non-muscle myosin II heavy chain, zipper, is mediated by a 90-residue region (1849-1940) of the coiled-coil tail domain. This filament assembly domain, transiently expressed in Drosophila S2 cells, does not localize to the interphase cortex or the cytokinetic cleavage furrow, whereas a 500-residue region (1350-1865) that overlaps the NH(2) terminus of the assembly domain localizes to the interphase cortex but not the cytokinetic cleavage furrow. Targeting to these two sites appears to utilize distinct localization mechanisms as the assembly domain is required for cleavage furrow recruitment of a truncated coiled-coil tail region but not targeting to the interphase cortex. These results delineate the requirements for zipper filament assembly and indicate that the ability to form filaments is necessary for targeting to the cleavage furrow but not to the interphase cortex.
Collapse
Affiliation(s)
- Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | - Natasha Fewkes
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | - Derek Ricketson
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | - Rhiannon R Penkert
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | - Kenneth E Prehoda
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403.
| |
Collapse
|
8
|
Craig R, Woodhead JL. Structure and function of myosin filaments. Curr Opin Struct Biol 2006; 16:204-12. [PMID: 16563742 DOI: 10.1016/j.sbi.2006.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 02/23/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Myosin filaments interact with actin to generate muscle contraction and many forms of cell motility. X-ray and electron microscopy (EM) studies have revealed the general organization of myosin molecules in relaxed filaments, but technical difficulties have prevented a detailed description. Recent studies using improved ultrastructural and image analysis techniques are overcoming these problems. Three-dimensional reconstructions using single-particle methods have provided many new insights into the organization of the myosin heads and tails. Docking of atomic structures into cryo-EM density maps suggests how regulated myosin filaments are 'switched off', bringing about muscle relaxation. Additionally, sequence analysis suggests probable interactions between myosin tails in the backbone, whereas crystallographic and EM studies are starting to reveal tail interactions directly in three dimensions.
Collapse
Affiliation(s)
- Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | |
Collapse
|
9
|
Abstract
This report presents an initial comparison of motor, neck, and tail domains of myosin genes in Tetrahymena thermophila. An unrooted phylogenetic tree drawn from alignment of predicted amino acid translations determined the relationship among 13 myosins in Tetrahymena and their relationship to the myosin superfamily. The myosins in Tetrahymena did not align with any of the previously named myosin classes. Twelve of the Tetrahymena myosins form a new class designated as XX. The other Tetrahymena myosin is divergent from the twelve. Surprisingly, none of the myosins in Tetrahymena aligned with either class I, class II, or class V myosins. Apparent absence of a class II myosin is an indication that cytokinesis in Tetrahymena either utilizes an unconventional myosin or does not require a myosin motor.
Collapse
Affiliation(s)
- Selwyn A Williams
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | | |
Collapse
|
10
|
Knight PJ, Thirumurugan K, Xu Y, Wang F, Kalverda AP, Stafford WF, Sellers JR, Peckham M. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 2005; 280:34702-8. [PMID: 16030012 DOI: 10.1074/jbc.m504887200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin 10 contains a region of predicted coiled coil 120 residues long. However, the highly charged nature and pattern of charges in the proximal 36 residues appear incompatible with coiled-coil formation. Circular dichroism, NMR, and analytical ultracentrifugation show that a synthesized peptide containing this region forms a stable single alpha-helix (SAH) domain in solution and does not dimerize to form a coiled coil even at millimolar concentrations. Additionally, electron microscopy of a recombinant myosin 10 containing the motor, the three calmodulin binding domains, and the full-length predicted coiled coil showed that it was mostly monomeric at physiological protein concentration. In dimers the molecules were joined only at their extreme distal ends, and no coiled-coil tail was visible. Furthermore, the neck lengths of both monomers and dimers were much longer than expected from the number of calmodulin binding domains. In contrast, micrographs of myosin 5 heavy meromyosin obtained under the same conditions clearly showed a coiled-coil tail, and the necks were the predicted length. Thus the predicted coiled coil of myosin 10 forms a novel elongated structure in which the proximal region is a SAH domain and the distal region is a SAH domain (or has an unknown extended structure) that dimerizes only at its end. Sequence comparisons show that similar structures may exist in the predicted coiled-coil domains of myosins 6 and 7a and MyoM and could function to increase the size of the working stroke.
Collapse
Affiliation(s)
- Peter J Knight
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, and School of Biochemistry and Microbiology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Turbedsky K, Pollard TD, Yeager M. Assembly of Acanthamoeba Myosin-II Minifilaments. Model of Anti-parallel Dimers Based on EM and X-ray Diffraction of 2D and 3D Crystals. J Mol Biol 2005; 345:363-73. [PMID: 15571728 DOI: 10.1016/j.jmb.2004.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 10/18/2004] [Indexed: 11/24/2022]
Abstract
Current models suggest that the first step in the assembly of Acanthamoeba myosin-II is anti-parallel dimerization of the coiled-coil tails with an overlap of 15 nm. Sedimentation equilibrium experiments showed that a construct containing the last 15 heptads and the non-helical tailpiece of the myosin-II tail (15T) forms dimers. To examine the structure of the 15T dimer, we grew 3D and 2D crystals suitable for X-ray diffraction and electron image analysis, respectively. For both conditions, crystals formed in related space and plane groups with similar unit cells (a=87.7 A, b=64.8 A, c=114.9 A, beta=108.0 degrees). Inspection of the X-ray diffraction pattern and molecular replacement analysis revealed the orientation of the coiled-coils in the unit cell. A 3D density map at 15A in-plane resolution derived from a tilt series of electron micrographs established the solvent content of the 3D crystals (75%, v/v), placed the coiled-coil molecules at the approximate translation in the unit cell, and revealed the symmetry relationships between molecules. On the basis of the low-resolution 3D structure, biochemical constraints, and X-ray diffraction data, we propose a model for myosin interactions in the anti-parallel dimer of coiled-coils that guide the first step of myosin-II assembly.
Collapse
Affiliation(s)
- Kirsi Turbedsky
- Structural Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|