1
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural Dynamics of the Dengue Virus Non-structural 5 (NS5) Interactions with Promoter Stem Loop A (SLA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626708. [PMID: 39677779 PMCID: PMC11642867 DOI: 10.1101/2024.12.03.626708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated. Our study explores the structural dynamics of NS5 from DENV serotype 2 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen - deuterium exchange coupled to mass spectrometry (HDX-MS), computational modeling, and cryoEM single particle analysis to delineate the molecular details of their interaction. Our findings indicate that DENV2 NS5 binds SLA in a closed conformation with significant interdomain cooperation between the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, a feature integral to the interaction. Our HDX-MS studies reveal SLA-induced conformational changes in both domains of DENV2 NS5, reflecting a potential mechanism for dengue NS5's multifunctional role in viral replication. Lastly, our cryoEM structure provides the first visualization of the DENV2 NS5-SLA complex, confirming a conserved SLA binding mode across DENV serotypes. These insights obtained from our study enhance our understanding of dengue NS5's complex conformational landscape, supporting the potential development of antiviral strategies targeting dengue NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O. Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - James K. Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Greg A. Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| |
Collapse
|
2
|
Losa J, Heinemann M. Contribution of different macromolecules to the diffusion of a 40 nm particle in Escherichia coli. Biophys J 2024; 123:1211-1221. [PMID: 38555507 PMCID: PMC11140462 DOI: 10.1016/j.bpj.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Due to the high concentration of proteins, nucleic acids, and other macromolecules, the bacterial cytoplasm is typically described as a crowded environment. However, the extent to which each of these macromolecules individually affects the mobility of macromolecular complexes, and how this depends on growth conditions, is presently unclear. In this study, we sought to quantify the crowding experienced by an exogenous 40 nm fluorescent particle in the cytoplasm of E. coli under different growth conditions. By performing single-particle tracking measurements in cells selectively depleted of DNA and/or mRNA, we determined the contribution to crowding of mRNA, DNA, and remaining cellular components, i.e., mostly proteins and ribosomes. To estimate this contribution to crowding, we quantified the difference of the particle's diffusion coefficient in conditions with and without those macromolecules. We found that the contributions of the three classes of components were of comparable magnitude, being largest in the case of proteins and ribosomes. We further found that the contributions of mRNA and DNA to crowding were significantly larger than expected based on their volumetric fractions alone. Finally, we found that the crowding contributions change only slightly with the growth conditions. These results reveal how various cellular components partake in crowding of the cytoplasm and the consequences this has for the mobility of large macromolecular complexes.
Collapse
Affiliation(s)
- José Losa
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Unruh T, Götz K, Vogel C, Fröhlich E, Scheurer A, Porcar L, Steiniger F. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS NANO 2024; 18:9746-9764. [PMID: 38514237 DOI: 10.1021/acsnano.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.
Collapse
Affiliation(s)
- Tobias Unruh
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Carola Vogel
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Erik Fröhlich
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-Peptide Conjugates as Small-Molecule Based Inhibitors Disrupting the Protein-RNA Interaction of LIN28-let-7. Chembiochem 2023; 24:e202300376. [PMID: 37224100 DOI: 10.1002/cbic.202300376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Targeting the protein-RNA interaction of LIN28 and let-7 is a promising strategy for the development of novel anticancer therapeutics. However, a limited number of small-molecule inhibitors disrupting the LIN28-let-7 interaction with potent efficacy are available. Herein, we developed a novel LIN28-inhibiting strategy by targeting selective hotspot amino acids at the LIN28-let-7 binding interface with small-molecule-based bifunctional conjugates. Starting from reported small-molecule LIN28 inhibitors, we identified a feasible linker-attachment position after performing a structure-activity relationship exploration based on the LIN28-targeting chromenopyrazoles. In parallel, a virtual alanine scan identified hotspot residues at the protein-RNA binding interface, based on which we designed a set of peptides to enhance the interaction with the identified hotspot residues. Conjugation of the tailor-designed peptides with linker-attached chromenopyrazoles yielded a series of bifunctional small-molecule-peptide conjugates, represented by compound 83 (PH-223), as a new LIN28-targeting chemical modality. Our result demonstrated an unexplored rational design approach using bifunctional conjugates to target protein-RNA interactions.
Collapse
Affiliation(s)
- Pascal Hommen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Fubao Huang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund, 44227, Germany
| | - Lisa Hohnen
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund, 44227, Germany
| |
Collapse
|
5
|
Bepperling A, Richter G. Determination of mRNA copy number in degradable lipid nanoparticles via density contrast analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:393-400. [PMID: 37289289 PMCID: PMC10248324 DOI: 10.1007/s00249-023-01663-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Lipid nanoparticles as delivery system for mRNA have recently attracted attention to a broader audience as COVID-19 mRNA vaccines. Their low immunogenicity and capability to deliver a variety of nucleic acids renders them an interesting and complementary alternative to gene therapy vectors like AAVs. An important quality attribute of LNPs is the copy number of the encapsulated cargo molecule. This work describes how density and molecular weight distributions obtained by density contrast sedimentation velocity can be used to calculate the mRNA copy number of a degradable lipid nanoparticle formulation. The determined average copy number of 5 mRNA molecules per LNP is consistent with the previous studies using other biophysical techniques, such as single particle imaging microscopy and multi-laser cylindrical illumination confocal spectroscopy (CICS).
Collapse
Affiliation(s)
| | - Gesa Richter
- Novartis TRD, Keltenring 1+3, 82041, Oberhaching, Germany
| |
Collapse
|
6
|
Ma X, Bakhtina M, Shulgina I, Cantara WA, Kuzmishin Nagy A, Goto Y, Suga H, Foster MP, Musier-Forsyth K. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res 2023; 51:3988-3999. [PMID: 36951109 PMCID: PMC10164551 DOI: 10.1093/nar/gkad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Nickels JD, Bonifer KS, Tindall RR, Yahya A, Tan L, Do C, Davison BH, Elkins JG. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase ( fabF). Front Mol Biosci 2022; 9:1011981. [PMID: 36339713 PMCID: PMC9634059 DOI: 10.3389/fmolb.2022.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2024] Open
Abstract
Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Kyle S. Bonifer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rachel R. Tindall
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Luoxi Tan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Changwoo Do
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brian H. Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
8
|
Gabel F, Engilberge S, Schmitt E, Thureau A, Mechulam Y, Pérez J, Girard E. Medical contrast agents as promising tools for biomacromolecular SAXS experiments. Acta Crystallogr D Struct Biol 2022; 78:1120-1130. [PMID: 36048152 PMCID: PMC9435597 DOI: 10.1107/s2059798322007392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Lanthanide-based complexes are presented as a promising class of molecules for efficient SAXS contrast-variation experiments. Their interactions and contrast properties are analyzed for an oligomeric protein and a protein–RNA complex. Small-angle X-ray scattering (SAXS) has become an indispensable tool in structural biology, complementing atomic-resolution techniques. It is sensitive to the electron-density difference between solubilized biomacromolecules and the buffer, and provides information on molecular masses, particle dimensions and interactions, low-resolution conformations and pair distance-distribution functions. When SAXS data are recorded at multiple contrasts, i.e. at different solvent electron densities, it is possible to probe, in addition to their overall shape, the internal electron-density profile of biomacromolecular assemblies. Unfortunately, contrast-variation SAXS has been limited by the range of solvent electron densities attainable using conventional co-solutes (for example sugars, glycerol and salt) and by the fact that some biological systems are destabilized in their presence. Here, SAXS contrast data from an oligomeric protein and a protein–RNA complex are presented in the presence of iohexol and Gd-HPDO3A, two electron-rich molecules that are used in biomedical imaging and that belong to the families of iodinated and lanthanide-based complexes, respectively. Moderate concentrations of both molecules allowed solvent electron densities matching those of proteins to be attained. While iohexol yielded higher solvent electron densities (per mole), it interacted specifically with the oligomeric protein and precipitated the protein–RNA complex. Gd-HPDO3A, while less efficient (per mole), did not disrupt the structural integrity of either system, and atomic models could be compared with the SAXS data. Due to their elevated solubility and electron density, their chemical inertness, as well as the possibility of altering their physico-chemical properties, lanthanide-based complexes represent a class of molecules with promising potential for contrast-variation SAXS experiments on diverse biomacromolecular systems.
Collapse
|
9
|
The Bootstrap Model of Prebiotic Networks of Proteins and Nucleic Acids. Life (Basel) 2022; 12:life12050724. [PMID: 35629391 PMCID: PMC9144896 DOI: 10.3390/life12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
It is not known how life arose from prebiotic physical chemistry. How did fruitful cell-like associations emerge from the two polymer types—informational (nucleic acids, xNAs = DNA or RNA) and functional (proteins)? Our model shows how functional networks could bootstrap from random sequence-independent initial states. For proteins, we adopt the foldamer hypothesis: through persistent nonequilibrium prebiotic syntheses, short random peptides fold and catalyze the elongation of others. The xNAs enter through random binding to the peptides, and all chains can mutate. Chains grow inside colloids that split when they’re large, coupling faster growth speeds to bigger populations. Random and useless at first, these folding and binding events grow protein—xNA networks that resemble today’s protein–protein networks.
Collapse
|
10
|
Villagomez-Bernabe B, Chan SW, Coulter JA, Roseman AM, Currell FJ. Fast Ion-Beam Inactivation of Viruses, Where Radiation Track Structure Meets RNA Structural Biology. Radiat Res 2022; 198:68-80. [PMID: 35436347 DOI: 10.1667/rade-21-00133.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Here we show an interplay between the structures present in ionization tracks and nucleocapsid RNA structural biology, using fast ion-beam inactivation of the severe acute respiratory syndrome coronavirus (SARS-CoV) virion as an example. This interplay could be a key factor in predicting dose-inactivation curves for high-energy ion-beam inactivation of virions. We also investigate the adaptation of well-established cross-section data derived from radiation interactions with water to the interactions involving the components of a virion, going beyond the density-scaling approximation developed previously. We conclude that solving one of the grand challenges of structural biology - the determination of RNA tertiary/quaternary structure - is linked to predicting ion-beam inactivation of viruses and that the two problems can be mutually informative. Indeed, our simulations show that fast ion beams have a key role to play in elucidating RNA tertiary/quaternary structure.
Collapse
Affiliation(s)
- B Villagomez-Bernabe
- The Dalton Cumbrian Facility and the Department of Chemistry, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, United Kingdom
| | - S W Chan
- School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - J A Coulter
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL
| | - A M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - F J Currell
- The Dalton Cumbrian Facility and the Department of Chemistry, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, United Kingdom
| |
Collapse
|
11
|
Matsuo T, Arluison V, Wien F, Peters J. Structural Information on Bacterial Amyloid and Amyloid-DNA Complex Obtained by Small-Angle Neutron or X-Ray Scattering. Methods Mol Biol 2022; 2538:75-93. [PMID: 35951294 DOI: 10.1007/978-1-0716-2529-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Small-angle scattering is a powerful technique to obtain structural information on biomacromolecules in aqueous solution at the sub-nanometer and nanometer length scales. It provides the sizes and overall shapes of the scattering particles. While small-angle X-ray scattering (SAXS) has often been used for structural analysis of a single-component system, small-angle neutron scattering (SANS) has been used to reveal the internal organization of a multicomponent system such as protein-protein and protein-DNA complexes. This is due to the fact that the neutron scattering length is largely different between hydrogen and deuterium, and thus it allows to make a specific component in complexes "invisible" to neutrons by changing the H2O/D2O ratio in the solvent with or without molecular deuteration. In this chapter, we describe a method to characterize the biomolecular structures using SANS and SAXS, in particular, focusing on fibrillar proteins such as bacterial amyloids and their complexes with nucleic acids.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue-Langevin, Grenoble Cedex 9, France.
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai, Ibaraki, Japan.
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
- Université de Paris Cité, Paris, France
| | - Frank Wien
- DISCO Beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue-Langevin, Grenoble Cedex 9, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
12
|
Pietras Z, Wood K, Whitten AE, Jeffries CM. Technical considerations for small-angle neutron scattering from biological macromolecules in solution: Cross sections, contrasts, instrument setup and measurement. Methods Enzymol 2022; 677:157-189. [DOI: 10.1016/bs.mie.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
14
|
Staritzbichler R, Ristic N, Goede A, Preissner R, Hildebrand PW. Voronoia 4-ever. Nucleic Acids Res 2021; 49:W685-W690. [PMID: 34107038 PMCID: PMC8265189 DOI: 10.1093/nar/gkab466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
We present an updated version of the Voronoia service that enables fully automated analysis of the atomic packing density of macromolecules. Voronoia combines previous efforts to analyse 3D protein and RNA structures into a single service, combined with state-of-the-art online visualization. Voronoia uses the Voronoi cell method to calculate the free space between neighbouring atoms to estimate van der Waals interactions. Compared to other methods that derive van der Waals interactions by calculating solvent-free surfaces, it explicitly considers volume or packing defects. Large internal voids refer either to water molecules or ions unresolved by X-ray crystallography or cryo-EM, cryptic ligand binding pockets, or parts of a structural model that require further refinement. Voronoia is, therefore mainly used for functional analyses of 3D structures and quality assessments of structural models. Voronoia 4-ever updates the database of precomputed packing densities of PDB entries, allows uploading multiple structures, adds new filter options and facilitates direct access to the results through intuitive display with the NGL viewer. Voronoia is available at: htttp://proteinformatics.org/voronoia.
Collapse
Affiliation(s)
- Rene Staritzbichler
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany
| | - Nikola Ristic
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Structural Bioinformatics Group, Berlin 10117, Germany
| | - Robert Preissner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Structural Bioinformatics Group, Berlin 10117, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Information Technology, Science IT, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
15
|
The Nanopore-Tweezing-Based, Targeted Detection of Nucleobases on Short Functionalized Peptide Nucleic Acid Sequences. Polymers (Basel) 2021; 13:polym13081210. [PMID: 33918592 PMCID: PMC8069169 DOI: 10.3390/polym13081210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The implication of nanopores as versatile components in dedicated biosensors, nanoreactors, or miniaturized sequencers has considerably advanced single-molecule investigative science in a wide range of disciplines, ranging from molecular medicine and nanoscale chemistry to biophysics and ecology. Here, we employed the nanopore tweezing technique to capture amino acid-functionalized peptide nucleic acids (PNAs) with α-hemolysin-based nanopores and correlated the ensuing stochastic fluctuations of the ionic current through the nanopore with the composition and order of bases in the PNAs primary structure. We demonstrated that while the system enables the detection of distinct bases on homopolymeric PNA or triplet bases on heteropolymeric strands, it also reveals rich insights into the conformational dynamics of the entrapped PNA within the nanopore, relevant for perfecting the recognition capability of single-molecule sequencing.
Collapse
|
16
|
Abstract
The thermal conductivity of B-form double-stranded DNA (dsDNA) of the Drew-Dickerson sequence d(CGCGAATTCGCG) is computed using classical molecular dynamics (MD) simulations. In contrast to previous studies, which focus on a simplified 1D model or a coarse-grained model of DNA to reduce simulation times, full atomistic simulations are employed to understand the thermal conduction in B-DNA. Thermal conductivities at different temperatures from 100 to 400 K are investigated using the Einstein-Green-Kubo equilibrium and Müller-Plathe non-equilibrium formalisms. The thermal conductivity of B-DNA at room temperature is found to be 1.5 W/m·K in equilibrium and 1.225 W/m·K in the non-equilibrium approach. In addition, the denaturation regime of B-DNA is obtained from the variation of thermal conductivity with temperature. It is in agreement with previous studies using the Peyrard-Bishop-Dauxois model at a temperature of around 350 K. The quantum heat capacity (Cvq) has given additional clues regarding the Debye and denaturation temperature of 12-bp B-DNA.
Collapse
Affiliation(s)
- Vignesh Mahalingam
- Department of Aerospace Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | |
Collapse
|
17
|
Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat Commun 2021; 12:793. [PMID: 33542240 PMCID: PMC7862695 DOI: 10.1038/s41467-021-21039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted — and in some cases even shown — to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1. ADAR1 is an interferon-induced enzyme that catalyzes editing of adenine to inosine across the transcriptome as part of the immune response. Here the authors establish how ADAR1 recognizes non-CpG RNA sequences to facilitate the formation of A-Z junctions.
Collapse
|
18
|
The Cell Wall PAC (Proline-Rich, Arabinogalactan Proteins, Conserved Cysteines) Domain-Proteins Are Conserved in the Green Lineage. Int J Mol Sci 2020; 21:ijms21072488. [PMID: 32260156 PMCID: PMC7177597 DOI: 10.3390/ijms21072488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Plant cell wall proteins play major roles during plant development and in response to environmental cues. A bioinformatic search for functional domains has allowed identifying the PAC domain (Proline-rich, Arabinogalactan proteins, conserved Cysteines) in several proteins (PDPs) identified in cell wall proteomes. This domain is assumed to interact with pectic polysaccharides and O-glycans and to contribute to non-covalent molecular scaffolds facilitating the remodeling of polysaccharidic networks during rapid cell expansion. In this work, the characteristics of the PAC domain are described in detail, including six conserved Cys residues, their spacing, and the predicted secondary structures. Modeling has been performed based on the crystal structure of a Plantago lanceolata PAC domain. The presence of β-sheets is assumed to ensure the correct folding of the PAC domain as a β-barrel with loop regions. We show that PDPs are present in early divergent organisms from the green lineage and in all land plants. PAC domains are associated with other types of domains: Histidine-rich, extensin, Proline-rich, or yet uncharacterized. The earliest divergent organisms having PDPs are Bryophytes. Like the complexity of the cell walls, the number and complexity of PDPs steadily increase during the evolution of the green lineage. The association of PAC domains with other domains suggests a neo-functionalization and different types of interactions with cell wall polymers
Collapse
|
19
|
Lapinaite A, Carlomagno T, Gabel F. Small-Angle Neutron Scattering of RNA-Protein Complexes. Methods Mol Biol 2020; 2113:165-188. [PMID: 32006315 DOI: 10.1007/978-1-0716-0278-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Small-angle neutron scattering (SANS) provides structural information on biomacromolecules and their complexes in dilute solutions at the nanometer length scale. The overall dimensions, shapes, and interactions can be probed and compared to information obtained by complementary structural biology techniques such as crystallography, NMR, and EM. SANS, in combination with solvent H2O/D2O exchange and/or deuteration, is particularly well suited to probe the internal structure of RNA-protein (RNP) complexes since neutrons are more sensitive than X-rays to the difference in scattering length densities of proteins and RNA, with respect to an aqueous solvent. In this book chapter we provide a practical guide on how to carry out SANS experiments on RNP complexes, as well as possibilities of data analysis and interpretation.
Collapse
Affiliation(s)
- Audrone Lapinaite
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research, Leibniz University Hannover, Hannover, Germany.,Helmholtz Centre for Infection Research, Group of Structural Chemistry, Braunschweig, Germany
| | - Frank Gabel
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
| |
Collapse
|
20
|
Kudva R, Tian P, Pardo-Avila F, Carroni M, Best RB, Bernstein HD, von Heijne G. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. eLife 2018; 7:36326. [PMID: 30475203 PMCID: PMC6298777 DOI: 10.7554/elife.36326] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The E. coli ribosome exit tunnel can accommodate small folded proteins, while larger ones fold outside. It remains unclear, however, to what extent the geometry of the tunnel influences protein folding. Here, using E. coli ribosomes with deletions in loops in proteins uL23 and uL24 that protrude into the tunnel, we investigate how tunnel geometry determines where proteins of different sizes fold. We find that a 29-residue zinc-finger domain normally folding close to the uL23 loop folds deeper in the tunnel in uL23 Δloop ribosomes, while two ~ 100 residue proteins normally folding close to the uL24 loop near the tunnel exit port fold at deeper locations in uL24 Δloop ribosomes, in good agreement with results obtained by coarse-grained molecular dynamics simulations. This supports the idea that cotranslational folding commences once a protein domain reaches a location in the exit tunnel where there is sufficient space to house the folded structure.
Collapse
Affiliation(s)
- Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Stanford, United States
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
21
|
Mahieu E, Gabel F. Biological small-angle neutron scattering: recent results and development. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:715-726. [DOI: 10.1107/s2059798318005016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Small-angle neutron scattering (SANS) has increasingly been used by the structural biology community in recent years to obtain low-resolution information on solubilized biomacromolecular complexes in solution. In combination with deuterium labelling and solvent-contrast variation (H2O/D2O exchange), SANS provides unique information on individual components in large heterogeneous complexes that is perfectly complementary to the structural restraints provided by crystallography, nuclear magnetic resonance and electron microscopy. Typical systems studied include multi-protein or protein–DNA/RNA complexes and solubilized membrane proteins. The internal features of these systems are less accessible to the more broadly used small-angle X-ray scattering (SAXS) technique owing to a limited range of intra-complex and solvent electron-density variation. Here, the progress and developments of biological applications of SANS in the past decade are reviewed. The review covers scientific results from selected biological systems, including protein–protein complexes, protein–RNA/DNA complexes and membrane proteins. Moreover, an overview of recent developments in instruments, sample environment, deuterium labelling and software is presented. Finally, the perspectives for biological SANS in the context of integrated structural biology approaches are discussed.
Collapse
|
22
|
Fleming PJ, Fleming KG. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys J 2018; 114:856-869. [PMID: 29490246 PMCID: PMC5984988 DOI: 10.1016/j.bpj.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Hydrodynamic properties are useful parameters for estimating the size and shape of proteins and nucleic acids in solution. The calculation of such properties from structural models informs on the solution properties of these molecules and complements corresponding structural studies. Here we report, to our knowledge, a new method to accurately predict the hydrodynamic properties of molecular structures. This method uses a convex hull model to estimate the hydrodynamic volume of the molecule and is orders of magnitude faster than common methods. It works well for both folded proteins and ensembles of conformationally heterogeneous proteins and for nucleic acids. Because of its simplicity and speed, the method should be useful for the modification of computer-generated, intrinsically disordered protein ensembles and ensembles of flexible, but folded, molecules in which rapid calculation of experimental parameters is needed. The convex hull method is implemented in a Python script called HullRad. The use of the method is facilitated by a web server and the code is freely available for batch applications.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
23
|
Ogorzalek TL, Hura GL, Belsom A, Burnett KH, Kryshtafovych A, Tainer JA, Rappsilber J, Tsutakawa SE, Fidelis K. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy. Proteins 2018; 86 Suppl 1:202-214. [PMID: 29314274 DOI: 10.1002/prot.25452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022]
Abstract
Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution.
Collapse
Affiliation(s)
- Tadeusz L Ogorzalek
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Greg L Hura
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adam Belsom
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K
| | - Kathryn H Burnett
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Andriy Kryshtafovych
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, CA, 95616, USA
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Susan E Tsutakawa
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Krzysztof Fidelis
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Nanoscale Assembly of High-Mobility Group AT-Hook 2 Protein with DNA Replication Fork. Biophys J 2018; 113:2609-2620. [PMID: 29262356 DOI: 10.1016/j.bpj.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 01/31/2023] Open
Abstract
High mobility group AT-hook 2 (HMGA2) protein is composed of three AT-hook domains. HMGA2 expresses at high levels in both embryonic stem cells and cancer cells, where it interacts with and stabilizes replication forks (RFs), resulting in elevated cell proliferation rates. In this study, we demonstrated that HMGA2 knockdown reduces cell proliferation. To understand the features required for interaction between HMGA2 and RFs, we studied the solution structure of HMGA2, free and in complex with RFs, using an integrated host of biophysical techniques. Circular dichroism and NMR experiments confirmed the disordered state of unbound HMGA2. Dynamic light scattering and sedimentation velocity experiments demonstrated that HMGA2 and RF are monodisperse in solution, and form an equimolar complex. Small-angle x-ray scattering studies revealed that HMGA2 binds in a side-by-side orientation to RF where 3 AT-hooks act as a clamp to wrap around a distorted RF. Thus, our data provide insights into how HMGA2 interacts with stalled RFs and the function of the process.
Collapse
|
25
|
Wołek K, Cieplak M. Self-assembly of model proteins into virus capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:474003. [PMID: 29027904 PMCID: PMC7104874 DOI: 10.1088/1361-648x/aa9351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
We consider self-assembly of proteins into a virus capsid by the methods of molecular dynamics. The capsid corresponds either to SPMV or CCMV and is studied with and without the RNA molecule inside. The proteins are flexible and described by the structure-based coarse-grained model augmented by electrostatic interactions. Previous studies of the capsid self-assembly involved solid objects of a supramolecular scale, e.g. corresponding to capsomeres, with engineered couplings and stochastic movements. In our approach, a single capsid is dissociated by an application of a high temperature for a variable period and then the system is cooled down to allow for self-assembly. The restoration of the capsid proceeds to various extent, depending on the nature of the dissociated state, but is rarely complete because some proteins depart too far unless the process takes place in a confined space.
Collapse
Affiliation(s)
- Karol Wołek
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
26
|
Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, Rubin S, Elbaum M, Fass D. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. eLife 2017; 6:29929. [PMID: 29106371 PMCID: PMC5703638 DOI: 10.7554/elife.29929] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
The entry of calcium into mitochondria is central to metabolism, inter-organelle communication, and cell life/death decisions. Long-sought transporters involved in mitochondrial calcium influx and efflux have recently been identified. To obtain a unified picture of mitochondrial calcium utilization, a parallel advance in understanding the forms and quantities of mitochondrial calcium stores is needed. We present here the direct 3D visualization of mitochondrial calcium in intact mammalian cells using cryo-scanning transmission electron tomography (CSTET). Amorphous solid granules containing calcium and phosphorus were pervasive in the mitochondrial matrices of a variety of mammalian cell types. Analysis based on quantitative electron scattering revealed that these repositories are equivalent to molar concentrations of dissolved ions. These results demonstrate conclusively that calcium buffering in the mitochondrial matrix in live cells occurs by phase separation, and that solid-phase stores provide a major ion reservoir that can be mobilized for bioenergetics and signaling.
Collapse
Affiliation(s)
- Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Horowitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Impact of the structural integrity of the three-way junction of adenovirus VAI RNA on PKR inhibition. PLoS One 2017; 12:e0186849. [PMID: 29053745 PMCID: PMC5650172 DOI: 10.1371/journal.pone.0186849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Highly structured RNA derived from viral genomes is a key cellular indicator of viral infection. In response, cells produce the interferon inducible RNA-dependent protein kinase (PKR) that, when bound to viral dsRNA, phosphorylates eukaryotic initiation factor 2α and attenuates viral protein translation. Adenovirus can evade this line of defence through transcription of a non-coding RNA, VAI, an inhibitor of PKR. VAI consists of three base-paired regions that meet at a three-way junction; an apical stem responsible for the interaction with PKR, a central stem required for inhibition, and a terminal stem. Recent studies have highlighted the potential importance of the tertiary structure of the three-way junction to PKR inhibition by enabling interaction between regions of the central and terminal stems. To further investigate the role of the three-way junction, we characterized the binding affinity and inhibitory potential of central stem mutants designed to introduce subtle alterations. These results were then correlated with small-angle X-ray scattering solution studies and computational tertiary structural models. Our results demonstrate that while mutations to the central stem have no observable effect on binding affinity to PKR, mutations that appear to disrupt the structure of the three-way junction prevent inhibition of PKR. Therefore, we propose that instead of simply sequestering PKR, a specific structural conformation of the PKR-VAI complex may be required for inhibition.
Collapse
|
28
|
Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 2017; 50:1212-1225. [PMID: 28808438 PMCID: PMC5541357 DOI: 10.1107/s1600576717007786] [Citation(s) in RCA: 1021] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Developments and improvements of the ATSAS software suite (versions 2.5–2.8) for analysis of small-angle scattering data of biological macromolecules or nanoparticles are described. ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5–2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
Affiliation(s)
- D Franke
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - M V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany.,Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninsky prospect 59, 119333 Moscow, Russian Federation.,A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky prospect 31, 119071 Moscow, and N.N. Semenov Institute of Chemical Physics of Russian Academy of Sciences, Kosygina street 4, 119991 Moscow, Russian Federation
| | - P V Konarev
- Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Leninsky prospect 59, 119333 Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', ploshchad Kurchatova 1, 123182 Moscow, Russian Federation
| | - A Panjkovich
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - A Tuukkanen
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - H D T Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - A G Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - N R Hajizadeh
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - J M Franklin
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - C M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
29
|
Sachleben JR, Adhikari AN, Gawlak G, Hoey RJ, Liu G, Joachimiak A, Montelione GT, Sosnick TR, Koide S. Aromatic claw: A new fold with high aromatic content that evades structural prediction. Protein Sci 2017; 26:208-217. [PMID: 27750371 PMCID: PMC5275723 DOI: 10.1002/pro.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/12/2022]
Abstract
We determined the NMR structure of a highly aromatic (13%) protein of unknown function, Aq1974 from Aquifex aeolicus (PDB ID: 5SYQ). The unusual sequence of this protein has a tryptophan content five times the normal (six tryptophan residues of 114 or 5.2% while the average tryptophan content is 1.0%) with the tryptophans occurring in a WXW motif. It has no detectable sequence homology with known protein structures. Although its NMR spectrum suggested that the protein was rich in β-sheet, upon resonance assignment and solution structure determination, the protein was found to be primarily α-helical with a small two-stranded β-sheet with a novel fold that we have termed an Aromatic Claw. As this fold was previously unknown and the sequence unique, we submitted the sequence to CASP10 as a target for blind structural prediction. At the end of the competition, the sequence was classified a hard template based model; the structural relationship between the template and the experimental structure was small and the predictions all failed to predict the structure. CSRosetta was found to predict the secondary structure and its packing; however, it was found that there was little correlation between CSRosetta score and the RMSD between the CSRosetta structure and the NMR determined one. This work demonstrates that even in relatively small proteins, we do not yet have the capacity to accurately predict the fold for all primary sequences. The experimental discovery of new folds helps guide the improvement of structural prediction methods.
Collapse
Affiliation(s)
| | | | - Grzegorz Gawlak
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| | - Robert J. Hoey
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| | - Gaohua Liu
- Northeast Structural Genomics Consortium (NESG), Department of Molecular Biology and Biochemistry, School of Arts and Sciences, and Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey
| | - Andrzej Joachimiak
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
- Biological Sciences Division, Argonne National LaboratoryArgonneIllinois
| | - Gaetano T. Montelione
- Northeast Structural Genomics Consortium (NESG), Department of Molecular Biology and Biochemistry, School of Arts and Sciences, and Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New JerseyPiscatawayNew Jersey
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| | - Shohei Koide
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
- Department of Biochemistry and Molecular Pharmacology and the Perlmutter Cancer CenterNew York University School of MedicineNew YorkNew York
| |
Collapse
|
30
|
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2016; 541:242-246. [PMID: 27841871 DOI: 10.1038/nature20599] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022]
Abstract
Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.
Collapse
|
31
|
Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 2016; 11:2122-2153. [PMID: 27711050 PMCID: PMC5402874 DOI: 10.1038/nprot.2016.113] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.
Collapse
Affiliation(s)
- Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| | - David B. Langley
- Victor Chang Cardiac Research and Garvan Institutes, Darlinghurst,
NSW, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas
Heights, NSW, Australia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o
DESY. Hamburg, 22603, Germany
| |
Collapse
|
32
|
Araki K, Suenaga A, Kusano H, Tanaka R, Hatta T, Natsume T, Fukui K. Functional profiling of asymmetrically-organized human CCT/TRiC chaperonin. Biochem Biophys Res Commun 2016; 481:232-238. [PMID: 27806916 DOI: 10.1016/j.bbrc.2016.10.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Molecular organization of the eukaryote chaperonin known as CCT/TRiC complex was recently clarified. Eight distinct subunits are uniquely organized, providing a favorable folding cavity for specific client proteins such as tubulin and actin. Because of its heterogeneous subunit composition, CCT complex has polarized inner faces, which may underlie an essential part of its chaperonin function. In this study, we structurally characterized the closed and open states of CCT complex, using molecular dynamics analyses. Our results showed that the inter-subunit interaction energies were asymmetrically distributed and were remodeled during conformational changes of CCT complex. In addition, exploration of redox related characteristics indicated changes in inner surface properties, including electrostatic potential, pKa and exposure of inner cysteine thiol groups, between the closed and open states. Cysteine activation events were experimentally verified by interaction analyses, using tubulin as a model substrate. Our data highlighted the importance of dynamics-based structural profiling of asymmetrically oriented chaperonin function.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Atsushi Suenaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui Setagaya-Ku, Tokyo 156-8550, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| |
Collapse
|
33
|
Abstract
Coronavirus particles serve three fundamentally important functions in infection. The virion provides the means to deliver the viral genome across the plasma membrane of a host cell. The virion is also a means of escape for newly synthesized genomes. Lastly, the virion is a durable vessel that protects the genome on its journey between cells. This review summarizes the available X-ray crystallography, NMR, and cryoelectron microscopy structural data for coronavirus structural proteins, and looks at the role of each of the major structural proteins in virus entry and assembly. The potential wider conservation of the nucleoprotein fold identified in the Arteriviridae and Coronaviridae families and a speculative model for the evolution of corona-like virus architecture are discussed.
Collapse
Affiliation(s)
- B W Neuman
- School of Biological Sciences, University of Reading, Reading, United Kingdom; College of STEM, Texas A&M University, Texarkana, Texarkana, TX, United States.
| | - M J Buchmeier
- University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
34
|
Luna-Martínez OD, Vidal-Limón A, Villalba-Velázquez MI, Sánchez-Alcalá R, Garduño-Juárez R, Uversky VN, Becerril B. Simple approach for ranking structure determining residues. PeerJ 2016; 4:e2136. [PMID: 27366642 PMCID: PMC4924125 DOI: 10.7717/peerj.2136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Mutating residues has been a common task in order to study structural properties of the protein of interest. Here, we propose and validate a simple method that allows the identification of structural determinants; i.e., residues essential for preservation of the stability of global structure, regardless of the protein topology. This method evaluates all of the residues in a 3D structure of a given globular protein by ranking them according to their connectivity and movement restrictions without topology constraints. Our results matched up with sequence-based predictors that look up for intrinsically disordered segments, suggesting that protein disorder can also be described with the proposed methodology.
Collapse
Affiliation(s)
- Oscar D Luna-Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Abraham Vidal-Limón
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica , San Luis Potosí , Mexico
| | | | - Rosalba Sánchez-Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Puschino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Russian Academy of Sciences, St. Petersburg, Russia
| | - Baltazar Becerril
- Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Morelos , Mexico
| |
Collapse
|
35
|
Elvira L, Vera P, Cañadas FJ, Shukla SK, Montero F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. ULTRASONICS 2016; 64:151-161. [PMID: 26361271 DOI: 10.1016/j.ultras.2015.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.
Collapse
Affiliation(s)
- Luis Elvira
- Instituto de Tecnologías Físicas y de la Información, CSIC, Serrano 144, Madrid 28006, Spain.
| | - Pedro Vera
- Universidad de Jaén, Escuela Politécnica Superior, C/ Alfonso X El Sabio 28, 23700 Linares, Jaén, Spain.
| | - Francisco Jesús Cañadas
- Universidad de Jaén, Escuela Politécnica Superior, C/ Alfonso X El Sabio 28, 23700 Linares, Jaén, Spain.
| | - Shiva Kant Shukla
- Instituto de Tecnologías Físicas y de la Información, CSIC, Serrano 144, Madrid 28006, Spain.
| | - Francisco Montero
- Instituto de Tecnologías Físicas y de la Información, CSIC, Serrano 144, Madrid 28006, Spain.
| |
Collapse
|
36
|
Ceres N, Lavery R. Improving the treatment of coarse-grain electrostatics: CVCEL. J Chem Phys 2015; 143:243118. [DOI: 10.1063/1.4933434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- N. Ceres
- Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367, France
| | - R. Lavery
- Bioinformatics: Structures and Interactions, Institut de Biologie et Chimie des Protéines, BMSSI UMR CNRS 5086/Université Lyon I, 7 Passage du Vercors, Lyon 69367, France
| |
Collapse
|
37
|
Borodavka A, Ault J, Stockley PG, Tuma R. Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment. Nucleic Acids Res 2015; 43:7044-57. [PMID: 26109354 PMCID: PMC4538827 DOI: 10.1093/nar/gkv639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
Reoviruses are important human, animal and plant pathogens having 10-12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA-protein and RNA-RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA-RNA interactions between genomic precursors during segment assortment and packaging.
Collapse
Affiliation(s)
- Alexander Borodavka
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - James Ault
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
38
|
Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P. MAESTRO--multi agent stability prediction upon point mutations. BMC Bioinformatics 2015; 16:116. [PMID: 25885774 PMCID: PMC4403899 DOI: 10.1186/s12859-015-0548-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Point mutations can have a strong impact on protein stability. A change in stability may subsequently lead to dysfunction and finally cause diseases. Moreover, protein engineering approaches aim to deliberately modify protein properties, where stability is a major constraint. In order to support basic research and protein design tasks, several computational tools for predicting the change in stability upon mutations have been developed. Comparative studies have shown the usefulness but also limitations of such programs. RESULTS We aim to contribute a novel method for predicting changes in stability upon point mutation in proteins called MAESTRO. MAESTRO is structure based and distinguishes itself from similar approaches in the following points: (i) MAESTRO implements a multi-agent machine learning system. (ii) It also provides predicted free energy change (Δ ΔG) values and a corresponding prediction confidence estimation. (iii) It provides high throughput scanning for multi-point mutations where sites and types of mutation can be comprehensively controlled. (iv) Finally, the software provides a specific mode for the prediction of stabilizing disulfide bonds. The predictive power of MAESTRO for single point mutations and stabilizing disulfide bonds is comparable to similar methods. CONCLUSIONS MAESTRO is a versatile tool in the field of stability change prediction upon point mutations. Executables for the Linux and Windows operating systems are freely available to non-commercial users from http://biwww.che.sbg.ac.at/MAESTRO.
Collapse
Affiliation(s)
- Josef Laimer
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstr, Salzburg, 34, 5020, Austria. .,University of Applied Sciences Upper Austria, School of Informatics, Communications and Media, Softwarepark 11, Hagenberg, 4232, Austria.
| | - Heidi Hofer
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstr, Salzburg, 34, 5020, Austria.
| | - Marko Fritz
- University of Applied Sciences Upper Austria, School of Informatics, Communications and Media, Softwarepark 11, Hagenberg, 4232, Austria.
| | - Stefan Wegenkittl
- Salzburg University of Applied Sciences, Urstein Süd 1, Puch, 5412, Austria.
| | - Peter Lackner
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstr, Salzburg, 34, 5020, Austria.
| |
Collapse
|
39
|
Jaeger V, Burney P, Pfaendtner J. Comparison of three ionic liquid-tolerant cellulases by molecular dynamics. Biophys J 2015; 108:880-892. [PMID: 25692593 PMCID: PMC4336362 DOI: 10.1016/j.bpj.2014.12.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022] Open
Abstract
We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study.
Collapse
Affiliation(s)
- Vance Jaeger
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Patrick Burney
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington.
| |
Collapse
|
40
|
Burney PR, Nordwald EM, Hickman K, Kaar JL, Pfaendtner J. Molecular dynamics investigation of the ionic liquid/enzyme interface: Application to engineering enzyme surface charge. Proteins 2015; 83:670-80. [DOI: 10.1002/prot.24757] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Patrick R. Burney
- Department of Chemical Engineering; University of Washington; Seattle Washington 98105
| | - Erik M. Nordwald
- Department of Chemical and Biological Engineering; University of Colorado; Boulder Colorado 80309
| | - Katie Hickman
- Department of Chemical Engineering; University of Washington; Seattle Washington 98105
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering; University of Colorado; Boulder Colorado 80309
| | - Jim Pfaendtner
- Department of Chemical Engineering; University of Washington; Seattle Washington 98105
| |
Collapse
|
41
|
Gabel F. Small-Angle Neutron Scattering for Structural Biology of Protein–RNA Complexes. Methods Enzymol 2015; 558:391-415. [DOI: 10.1016/bs.mie.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Structural studies of a double-stranded RNA from trypanosome RNA editing by small-angle X-ray scattering. Methods Mol Biol 2014; 1240:165-89. [PMID: 25352145 DOI: 10.1007/978-1-4939-1896-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We used small-angle X-ray scattering (SAXS) to evaluate the solution structure of a double-stranded RNA with 32 base pairs. We wanted to compare the solution structure to the crystal structure to assess the impact of the crystal lattice on the overall conformation of the RNA. The RNA was designed to self-anneal and form a head-to-head fusion of two identical mRNA/oligo(U) tail domains (the U-helix) from a trypanosome RNA editing substrate formed by the annealing of a guide RNA to a pre-edited mRNA. This substrate is from the U insertion/deletion RNA editing system of trypanosomes. Each strand in the fusion RNA had 16 purines from the pre-mRNA followed by 16 uracils (Us) from the U-tail at the 3' end of the guide RNA. The strands were designed to form a double helix with blunt ends, but each strand had the potential to form hairpins and single-stranded RNA helices. Hairpins could form by the 3' oligouridylate tract folding back to hybridize with the 5' oligopurine tract and forming an intervening loop. Single-stranded helices could form by the stacking of bases in the polypurine tract. Some of the 16 Us 3' to the polypurine tract may have been unstacked and in random coils. Our SAXS studies showed that the RNA formed a mix of single-stranded structures in the absence of MgCl2. In the presence of MgCl2 at concentrations similar to those in the crystal, the solution structure was consistent with the double-stranded, blunt-ended structure, in agreement with the crystal structure. Here we describe the preparation of RNA samples, data collection with an in-house SAXS instrument designed for biological samples, and the processing and modeling of the scattering data.
Collapse
|
43
|
Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, Sattler M. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 2014; 515:287-90. [DOI: 10.1038/nature13693] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/16/2014] [Indexed: 01/16/2023]
|
44
|
Ferella L, Luchinat C, Ravera E, Rosato A. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:319-26. [PMID: 24243317 DOI: 10.1007/s10858-013-9795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity--obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device--into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.
Collapse
Affiliation(s)
- Lucio Ferella
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|
45
|
Dzananovic E, Patel TR, Chojnowski G, Boniecki MJ, Deo S, McEleney K, Harding SE, Bujnicki JM, McKenna SA. Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR. J Struct Biol 2013; 185:48-57. [PMID: 24291322 DOI: 10.1016/j.jsb.2013.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/12/2013] [Accepted: 11/23/2013] [Indexed: 11/29/2022]
Abstract
Adenovirus virus-associated RNA (VAI) provides protection against the host antiviral response in part by inhibiting the interferon-induced double stranded RNA-activated protein kinase (PKR). VAI consists of three base-paired regions; the apical stem responsible for the interaction with double-stranded RNA binding motifs (dsRBMs) of PKR, the central stem required for inhibition, and the terminal stem. The solution conformation of VAI and VAI lacking the terminal stem were determined using SAXS that suggested extended conformations that are in agreement with their secondary structures. Solution conformations of VAI lacking the terminal stem in complex with the dsRBMs of PKR indicated that the apical stem interacts with both dsRNA-binding motifs whereas the central stem does not. Hydrodynamic properties calculated from ab initio models were compared to experimentally determined parameters for model validation. Furthermore, SAXS envelopes were used as a constraint for the in silico modeling of tertiary structure for RNA and RNA-protein complex. Finally, full-length PKR was also studied, but concentration-dependent changes in hydrodynamic parameters prevented ab initio shape determination. Taken together, results provide an improved structural framework that further our understanding of the role VAI plays in evading host innate immune responses.
Collapse
Affiliation(s)
- Edis Dzananovic
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Trushar R Patel
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada; School of Biosciences, University of Birmingham, Birmingham B152TT, UK
| | - Grzegorz Chojnowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Michal J Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Soumya Deo
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kevin McEleney
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada; Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Stephen E Harding
- NCMH Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, Warsaw 02-109, Poland; Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan 61-614, Poland
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
46
|
Sana B, Johnson E, Le Magueres P, Criswell A, Cascio D, Lim S. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties. J Biol Chem 2013; 288:32663-32672. [PMID: 24030827 PMCID: PMC3820901 DOI: 10.1074/jbc.m113.491191] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/31/2013] [Indexed: 11/06/2022] Open
Abstract
Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.
Collapse
Affiliation(s)
- Barindra Sana
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457
| | - Eric Johnson
- the Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | | | | - Duilio Cascio
- UCLA-Department of Energy, Institute for Genomics and Proteomics, Los Angeles, California 90095-1570.
| | - Sierin Lim
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457,.
| |
Collapse
|
47
|
Sarachan KL, Curtis JE, Krueger S. Small-angle scattering contrast calculator for protein and nucleic acid complexes in solution. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813025727] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Small-angle neutron scattering (SANS) with contrast variation can provide useful information about the structure and disposition of two or more chemically distinct components within a complex. TheSASSIE Contrast Calculator(SCC) is a new software tool designed to assist in planning SANS experiments with contrast variation on protein and nucleic acid complexes. On the basis of the primary sequence and deuteration level of each protein or nucleic acid component, theSCCcalculates and plotsI(0), contrast and scattering length densities; since SANS experiments often complement small-angle X-ray scattering studies, the program provides both neutron and X-ray parameters. TheSCCis run as an integrated component ofSASSIE[Curtis, Raghunandan, Nanda & Krueger (2012).Comput. Phys. Commun.183, 382–389], a software suite for atomistic modeling of ensembles of structures consistent with scattering data.
Collapse
|
48
|
Dias J, Renault L, Pérez J, Mirande M. Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle. J Biol Chem 2013; 288:23979-89. [PMID: 23836901 PMCID: PMC3745343 DOI: 10.1074/jbc.m113.489922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/01/2013] [Indexed: 02/01/2023] Open
Abstract
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.
Collapse
Affiliation(s)
- José Dias
- From the Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
| | - Louis Renault
- From the Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
| | - Javier Pérez
- SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, France
| | - Marc Mirande
- From the Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
| |
Collapse
|
49
|
Polizzi SJ, Walsh RM, Le Magueres P, Criswell AR, Wood ZA. Human UDP-α-d-xylose Synthase Forms a Catalytically Important Tetramer That Has Not Been Observed in Crystal Structures. Biochemistry 2013; 52:3888-98. [DOI: 10.1021/bi400294e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Samuel J. Polizzi
- Department
of Biochemistry and
Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Richard M. Walsh
- Department
of Biochemistry and
Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | | | | | - Zachary A. Wood
- Department
of Biochemistry and
Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
50
|
Archer EJ, Simpson MA, Watts NJ, O'Kane R, Wang B, Erie DA, McPherson A, Weeks KM. Long-range architecture in a viral RNA genome. Biochemistry 2013; 52:3182-90. [PMID: 23614526 DOI: 10.1021/bi4001535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a model for the secondary structure of the 1058-nucleotide plus-strand RNA genome of the icosahedral satellite tobacco mosaic virus (STMV) using nucleotide-resolution SHAPE chemical probing of the viral RNA isolated from virions and within the virion, perturbation of interactions distant in the primary sequence, and atomic force microscopy. These data are consistent with long-range base pairing interactions and a three-domain genome architecture. The compact domains of the STMV RNA have dimensions of 10-45 nm. Each of the three domains corresponds to a specific functional component of the virus: The central domain corresponds to the coding sequence of the single (capsid) protein encoded by the virus, whereas the 5' and 3' untranslated domains span signals essential for translation and replication, respectively. This three-domain architecture is compatible with interactions between the capsid protein and short RNA helices previously visualized by crystallography. STMV is among the simplest of the icosahedral viruses but, nonetheless, has an RNA genome with a complex higher-order structure that likely reflects high information content and an evolutionary relationship between RNA domain structure and essential replicative functions.
Collapse
Affiliation(s)
- Eva J Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | | | | | |
Collapse
|