1
|
Jin M, Zhang Z, Yu Z, Chen W, Wang X, Lei D, Zhang W. Structure-function analysis of an ancient TsaD-TsaC-SUA5-TcdA modular enzyme reveals a prototype of tRNA t6A and ct6A synthetases. Nucleic Acids Res 2023; 51:8711-8729. [PMID: 37427786 PMCID: PMC10484737 DOI: 10.1093/nar/gkad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
N 6-threonylcarbamoyladenosine (t6A) is a post-transcriptional modification found uniquely at position 37 of tRNAs that decipher ANN-codons in the three domains of life. tRNA t6A plays a pivotal role in promoting translational fidelity and maintaining protein homeostasis. The biosynthesis of tRNA t6A requires members from two evolutionarily conserved protein families TsaC/Sua5 and TsaD/Kae1/Qri7, and a varying number of auxiliary proteins. Furthermore, tRNA t6A is modified into a cyclic hydantoin form of t6A (ct6A) by TcdA in bacteria. In this work, we have identified a TsaD-TsaC-SUA5-TcdA modular protein (TsaN) from Pandoraviruses and determined a 3.2 Å resolution cryo-EM structure of P. salinus TsaN. The four domains of TsaN share strong structural similarities with TsaD/Kae1/Qri7 proteins, TsaC/Sua5 proteins, and Escherichia coli TcdA. TsaN catalyzes the formation of threonylcarbamoyladenylate (TC-AMP) using L-threonine, HCO3- and ATP, but does not participate further in tRNA t6A biosynthesis. We report for the first time that TsaN catalyzes a tRNA-independent threonylcarbamoyl modification of adenosine phosphates, leading to t6ADP and t6ATP. Moreover, TsaN is also active in catalyzing tRNA-independent conversion of t6A nucleoside to ct6A. Our results imply that TsaN from Pandoraviruses might be a prototype of the tRNA t6A- and ct6A-modifying enzymes in some cellular organisms.
Collapse
Affiliation(s)
- Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zelin Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhijiang Yu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Wei Chen
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongsheng Lei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Pabis M, Termathe M, Ravichandran KE, Kienast SD, Krutyhołowa R, Sokołowski M, Jankowska U, Grudnik P, Leidel SA, Glatt S. Molecular basis for the bifunctional Uba4-Urm1 sulfur-relay system in tRNA thiolation and ubiquitin-like conjugation. EMBO J 2020; 39:e105087. [PMID: 32901956 PMCID: PMC7527816 DOI: 10.15252/embj.2020105087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.
Collapse
Affiliation(s)
- Marta Pabis
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Martin Termathe
- Max Planck Institute for Molecular BiomedicineMuensterGermany
| | - Keerthiraju E Ravichandran
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Sandra D Kienast
- Max Planck Institute for Molecular BiomedicineMuensterGermany
- Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Mikołaj Sokołowski
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Przemysław Grudnik
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Sebastian A Leidel
- Max Planck Institute for Molecular BiomedicineMuensterGermany
- Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| |
Collapse
|
3
|
Panchamia B, Raimalani V, Prashar V, Kumar M, Ratna Prabha C. Structural and Functional Characterisation of the Domains of Ubiquitin-Activating Enzyme (E1) of Saccharomyces cerevisiae. Cell Biochem Biophys 2020; 78:309-319. [PMID: 32583128 DOI: 10.1007/s12013-020-00924-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/05/2020] [Indexed: 10/23/2022]
Abstract
Ubiquitin-activating enzyme (E1) is the first enzyme of the ubiquitination pathway and is required to activate ubiquitin. E1 of Saccharomyces cerevisiae is a large multidomain monomeric protein. There are no studies available on the domains of yeast E1 as independent entities. Four domains of E1 namely, first catalytic cysteine half-domain (FCCH), four-helix bundle (4HB), second catalytic cysteine half-domain (SCCH) and ubiquitin fold domain (UFD) were characterised to understand their structural and functional independence vis-a-vis full length E1. Spectroscopic characterisation using circular dichroism and fluorescence suggested that these domains can act as independent folding units and attain native-like secondary structure. The structural features obtained with the peptides SCCH and FCCH of S. cerevisiae bear a high degree of structural similarity to the corresponding fragments of mouse from literature. Nearly 50% of the residues of the 4HB domain of the S. cerevisiae sample showed helical conformation. They displayed a high degree of conservation when compared with 4HB of mouse with respect to their identity and arrangement. The fragment UFD of yeast formed an α/β domain as in the whole protein and exhibited 45% homology with that of mouse, showing a similar arrangement of α and β elements in its secondary structure. Overexpression of the domains in vivo indicated that the SCCH domain and to some extent UFD apparently interfere with cellular functions such as survival under various stresses.
Collapse
Affiliation(s)
- Brinda Panchamia
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Varsha Raimalani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 450085, India
| | - Mukesh Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 450085, India
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| |
Collapse
|
4
|
Lin YL, Chung CL, Huang PJ, Chen CH, Fang SC. Revised annotation and extended characterizations of components of the Chlamydomonas reinhardtii SUMOylation system. PLANT DIRECT 2020; 4:e00266. [PMID: 33015534 PMCID: PMC7522501 DOI: 10.1002/pld3.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 05/16/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation, or SUMOylation, is a reversible post-translational modification that is important for regulation of many cellular processes including cell division cycle in the eukaryotic kingdom. However, only a portion of the components of the Chlamydomonas SUMOylation system are known and their functions and regulation investigated. The present studies are aimed at extending discovery and characterization of new components and improving the annotation and nomenclature of all known proteins and genes involved in the system. Even though only one copy of the heterodimerized SUMO-activating enzyme, SAE1 and SAE2, was identified, the number of SUMO-conjugating enzymes (SCEs) and SUMO proteases/isopeptidase was expanded in Chlamydomonas. Using the reconstituted SUMOylation system, we showed that SCE1, SCE2, and SCE3 have SUMO-conjugating activity. In addition to SUMOylation, components required for other post-translational modifications such as NEDDylation, URMylation, and UFMylation, were confirmed to be present in Chlamydomonas. Our data also showed that besides isopeptidase activity, the SUMO protease domain of SUPPRESSOR OF MAT3 7/SENTRIN-SPECIFIC PROTEASE 1 (SMT7/SENP1) has endopeptidase activity that is capable of processing SUMO precursors. Moreover, the key cell cycle regulators of Chlamydomonas E2F1, DP1, CDKG1, CYCD2, and CYCD3 were SUMOylated in vitro, suggesting SUMOylation may be part of regulatory pathway modulating cell cycle regulators.
Collapse
Affiliation(s)
- Yen-Ling Lin
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
- Ph.D. Program in Microbial Genomics National Chung Hsing University and Academia Sinica Taichung Taiwan
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Pin-Jui Huang
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan Academia Sinica Tainan Taiwan
- Agricultural Biotechnology Research Center Academia Sinica Taipei Taiwan
- Ph.D. Program in Microbial Genomics National Chung Hsing University and Academia Sinica Taichung Taiwan
- Institute of Tropical Plant Sciences and Microbiology National Cheng Kung University Tainan Taiwan
- National Cheng Kung University-Academia Sinica Graduate Program in Translational Agricultural Sciences Tainan Taiwan
| |
Collapse
|
5
|
Xu X, Wang T, Niu Y, Liang K, Yang Y. The ubiquitin-like modification by ThiS and ThiF in Escherichia coli. Int J Biol Macromol 2019; 141:351-357. [PMID: 31442507 DOI: 10.1016/j.ijbiomac.2019.08.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Escherichia coli, one of the most well-studied gram-negative bacterial species, encodes two ubiquitin-like proteins (UBLs), ThiS and MoaD. The studies on prokaryotic UBLs such as Pup, and small archaeal modifier protein have revealed the function of UBLs. However, in gram-negative bacteria, the functions of UBLs in protein modification are still poorly understood to date. Here, we report that ThiS, which has a β-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, is able to form protein conjugates in vivo and in vitro. We also constructed in vitro ThiS conjugation (thisylation) system and identified the modified lysine sites by MS/MS, this provides an essential platform for studying the UBLs thisylation system in E. coli. The modification system is dependent on lysine 83 (ATPase activity site) and cysteine 169 (zinc binding site) in ThiF and three important substrates, GroEL, PriC, FtsA, were found to be covalently modified by this system in vitro. Taken together, this study provided evidence that the protein conjugation function of β-grasp fold UBLs is conserved in the three major evolutionary lineages of life.
Collapse
Affiliation(s)
- Xibing Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; Medical College, Henan University of Science and Technology, Luoyang 471000, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ke Liang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Cheng Z, Bown L, Piercey B, Bignell DRD. Positive and Negative Regulation of the Virulence-Associated Coronafacoyl Phytotoxin in the Potato Common Scab Pathogen Streptomyces scabies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1348-1359. [PMID: 31107631 DOI: 10.1094/mpmi-03-19-0070-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potato common scab pathogen Streptomyces scabies produces N-coronafacoyl-l-isoleucine (CFA-Ile), which is a member of the coronafacoyl family of phytotoxins that are synthesized by multiple plant pathogenic bacteria. The CFA-Ile biosynthetic gene cluster contains a regulatory gene, cfaR, which directly controls the expression of the phytotoxin structural genes. In addition, a gene designated orf1 encodes a predicted ThiF family protein and is cotranscribed with cfaR, suggesting that it also plays a role in the regulation of CFA-Ile production. In this study, we demonstrated that CfaR is an essential activator of coronafacoyl phytotoxin production, while ORF1 is dispensable for phytotoxin production and may function as a helper protein for CfaR. We also showed that CFA-Ile inhibits the ability of CfaR to bind to the promoter region driving expression of the phytotoxin biosynthetic genes and that elevated CFA-Ile production by overexpression of both cfaR and orf1 in S. scabies increases the severity of disease symptoms induced by the pathogen during colonization of potato tuber tissue. Overall, our study reveals novel insights into the regulatory mechanisms controlling CFA-Ile production in S. scabies and it provides further evidence that CFA-Ile is an important virulence factor for this organism.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Brandon Piercey
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
7
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Smith DRM, Uria AR, Helfrich EJN, Milbredt D, van Pée KH, Piel J, Goss RJM. An Unusual Flavin-Dependent Halogenase from the Metagenome of the Marine Sponge Theonella swinhoei WA. ACS Chem Biol 2017; 12:1281-1287. [PMID: 28198609 DOI: 10.1021/acschembio.6b01115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uncultured bacteria from sponges have been demonstrated to be responsible for the generation of many potent, bioactive natural products including halogenated metabolites.1 The identification of gene clusters from the metagenomes of such bacterial communities enables the discovery of enzymes that mediate new and useful chemistries and allows insight to be gained into the biogenesis of potentially pharmacologically important natural products. Here we report a new pathway to the keramamides (krm); the first functional evidence for the existence of a distinct producer in the Theonella swinhoei WA chemotype is revealed, and a key enzyme on the pathway, a unique flavin-dependent halogenase with a broad substrate specificity, with potential as a useful new biocatalytic tool, is described.
Collapse
Affiliation(s)
- Duncan R. M. Smith
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Agustinus R. Uria
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Eric J. N. Helfrich
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rebecca J. M. Goss
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
9
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Abstract
The biosynthesis of thiamin pyrophosphate (TPP) in prokaryotes, as represented by the Escherichia coli and the Bacillus subtilis pathways, is summarized in this review. The thiazole heterocycle is formed by the convergence of three separate pathways. First, the condensation of glyceraldehyde 3-phosphate and pyruvate, catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (Dxs), gives 1-deoxy-D-xylulose 5-phosphate (DXP). Next, the sulfur carrier protein ThiS-COO- is converted to its carboxyterminal thiocarboxylate in reactions catalyzed by ThiF, ThiI, and NifS (ThiF and IscS in B. subtilis). Finally, tyrosine (glycine in B. subtilis) is converted to dehydroglycine by ThiH (ThiO in B. subtilis). Thiazole synthase (ThiG) catalyzes the complex condensation of ThiS-COSH, dehydroglycine, and DXP to give a thiazole tautomer, which is then aromatized to carboxythiazole phosphate by TenI (B. subtilis). Hydroxymethyl pyrimidine phosphate (HMP-P) is formed by a complicated rearrangement reaction of 5-aminoimidazole ribotide (AIR) catalyzed by ThiC. ThiD then generates hydroxymethyl pyrimidine pyrophosphate. The coupling of the two heterocycles and decarboxylation, catalyzed by thiamin phosphate synthase (ThiE), gives thiamin phosphate. A final phosphorylation, catalyzed by ThiL, completes the biosynthesis of TPP, the biologically active form of the cofactor. This review reviews the current status of mechanistic and structural studies on the enzymes involved in this pathway. The availability of multiple orthologs of the thiamin biosynthetic enzymes has also greatly facilitated structural studies, and most of the thiamin biosynthetic and salvage enzymes have now been structurally characterized.
Collapse
|
11
|
The Structure of Escherichia coli TcdA (Also Known As CsdL) Reveals a Novel Topology and Provides Insight into the tRNA Binding Surface Required for N(6)-Threonylcarbamoyladenosine Dehydratase Activity. J Mol Biol 2015; 427:3074-85. [PMID: 26101842 DOI: 10.1016/j.jmb.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
Escherichia coli TcdA (also known as CsdL) was previously shown to catalyze the ATP-dependent dehydration/cyclization of hypermodified tRNA N(6)-threonylcarbamoyladenosine into further cyclic N(6)-threonylcarbamoyladenosine. In this study, we report the X-ray crystal structures of E. coli TcdA with either AMP or ATP bound. The AMP/ATP-bound N-terminal sub-domain of TcdA resembles the ATP-binding Rossmann fold of E. coli ThiF and MoeB that are enzymes respectively taking part in the biosynthesis of thiamine and molybdopterin; however, the remaining C-terminal sub-domain of TcdA adopts a structure unrelated to any other known folds. In TcdA, the ATP-utilizing adenylation of tRNA N(6)-threonylcarbamoyladenosine and a subsequent thioester formation via an active cysteine, similar to the mechanisms in ThiF and MoeB, could take place for the dehydratase function. Analysis of the structure with sequence alignment suggests the disordered Cys234 of TcdA as the most likely catalytic residue. The structure further indicates that the C-terminal sub-domain can provide a binding interface for the tRNA substrate. Binding study using the surface mutants of TcdA and tRNA reveals that the positively charged regions of mainly the C-terminal sub-domain are important for the tRNA recognition.
Collapse
|
12
|
Kim S, Kim KY, Park JK, Lee BI, Kim YG, Park S. Overproduction, crystallization and preliminary X-ray crystallographic analysis of Escherichia coli tRNA N6-threonylcarbamoyladenosine dehydratase. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1517-20. [PMID: 25372820 DOI: 10.1107/s2053230x14020883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022]
Abstract
Escherichia coli tRNA N6-threonylcarbamoyladenosine dehydratase (TcdA), previously called CsdL or YgdL, was overproduced and purified from E. coli and crystallized using polyethylene glycol 3350 as a crystallizing agent. X-ray diffraction data were collected to 2.70 Å resolution under cryoconditions using synchrotron X-rays. The crystals belonged to space group P2₁, with unit-cell parameters a=65.4, b=96.8, c=83.3 Å, β=111.7°. According to the Matthews coefficient, the asymmetric unit may contain up to four subunits of the monomeric protein, with a crystal volume per protein mass (VM) of 2.12 Å3 Da(-1) and 42.1% solvent content.
Collapse
Affiliation(s)
- Sunmin Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Jeong Kuk Park
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Byung Il Lee
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 156-743, Republic of Korea
| |
Collapse
|
13
|
Abstract
Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.
Collapse
|
14
|
Schäfer A, Kuhn M, Schindelin H. Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules. ACTA ACUST UNITED AC 2014; 70:1311-20. [DOI: 10.1107/s1399004714002910] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/09/2014] [Indexed: 01/01/2023]
Abstract
The activation of ubiquitin by the ubiquitin-activating enzyme Uba1 (E1) constitutes the first step in the covalent modification of target proteins with ubiquitin. This activation is a three-step process in which ubiquitin is adenylated at its C-terminal glycine, followed by the covalent attachment of ubiquitin to a catalytic cysteine residue of Uba1 and the subsequent adenylation of a second ubiquitin. Here, a ubiquitin E1 structure loaded with two ubiquitin molecules is presented for the first time. While one ubiquitin is bound in its adenylated form to the active adenylation domain of E1, the second ubiquitin represents the status after transfer and is covalently linked to the active-site cysteine. The covalently linked ubiquitin enables binding of the E2 enzyme without further modification of the ternary Uba1–ubiquitin2arrangement. This doubly loaded E1 structure constitutes a missing link in the structural analysis of the ubiquitin-transfer cascade.
Collapse
|
15
|
Yuan S, Wang X, Xu J, Yan Z, Wang N. Ubiquitin-like prokaryotic MoaD as a fusion tag for expression of heterologous proteins in Escherichia coli. BMC Biotechnol 2014; 14:5. [PMID: 24444081 PMCID: PMC3906898 DOI: 10.1186/1472-6750-14-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/14/2022] Open
Abstract
Background Eukaryotic ubiquitin and SUMO are frequently used as tags to enhance the fusion protein expression in microbial host. They increase the solubility and stability, and protect the peptides from proteolytic degradation due to their stable and highly conserved structures. Few of prokaryotic ubiquitin-like proteins was used as fusion tags except ThiS, which enhances the fusion expression, however, reduces the solubility and stability of the expressed peptides in E. coli. Hence, we investigated if MoaD, a conserved small sulfur carrier in prokaryotes with the similar structure of ubiquitin, could also be used as fusion tag in heterologous expression in E. coli. Results Fusion of MoaD to either end of EGFP enhanced the expression yield of EGFP with a similar efficacy of ThiS. However, the major parts of the fusion proteins were expressed in the aggregated form, which was associated with the retarded folding of EGFP, similar to ThiS fusions. Fusion of MoaD to insulin chain A or B did not boost their expression as efficiently as ThiS tag did, probably due to a less efficient aggregation of products. Interestingly, fusion of MoaD to the murine ribonuclease inhibitor enhanced protein expression by completely protecting the protein from intracellular degradation in contrast to ThiS fusion, which enhanced degradation of this unstable protein when expressed in E. coli. Conclusions Prokaryotic ubiquitin-like protein MoaD can act as a fusion tag to promote the fusion expression with varying mechanisms, which enriches the arsenal of fusion tags in the category of insoluble expression.
Collapse
Affiliation(s)
| | | | | | | | - Nan Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Materia Medica, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Nakayama T, Yuasa E, Kanemaru A, Saito M, Saitoh H. Construction of a mouse Aos1-Uba2 chimeric SUMO-E1 enzyme, mAU, and its expression in baculovirus-insect cells. Bioengineered 2014; 5:133-7. [PMID: 24637489 DOI: 10.4161/bioe.27544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a highly conserved protein that is covalently attached to target proteins. This posttranslational modification, designated SUMOylation, is a major protein-conjugation-driven strategy designed to regulate structure and function of cellular proteins. SUMOylation consists of an enzymatic cascade involving the E1-activating enzyme and the E2-conjugating enzyme. The SUMO-E1 enzyme consists of two subunits, a heterodimer of activation of Smt3p 1 (Aos1) and ubiquitin activating enzyme 2 (Uba2), which resembles the N- and C-terminal halves of ubiquitin E1 (Uba1). Herein, we describe the rational design of a single polypeptide version of SUMO-E1, a chimera of mouse Aos1 and Uba2 subunits, termed mAU, in which the functional domains appear to be arranged in a fashion similar to Uba1. We also describe the construction of a mAU plasmid for expression in a baculovirus-insect cell system and present an in situ SUMOylation assay using the recombinant mAU. Our results showed that mAU has SUMO-E1 activity, thereby indicating that mAU can be expressed in baculovirus-insect cells and represents a suitable source of SUMO-E1.
Collapse
Affiliation(s)
- Tomofumi Nakayama
- Department of Biological Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan
| | - Eri Yuasa
- Department of Biological Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan
| | - Ayumi Kanemaru
- Department of Biological Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan
| | - Masayuki Saito
- Department of Biological Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan
| | - Hisato Saitoh
- Department of Biological Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan; Department of New Frontier Sciences; Graduate School of Science and Technology; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
17
|
Lorenz S, Cantor AJ, Rape M, Kuriyan J. Macromolecular juggling by ubiquitylation enzymes. BMC Biol 2013; 11:65. [PMID: 23800009 PMCID: PMC3748819 DOI: 10.1186/1741-7007-11-65] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/18/2013] [Indexed: 01/28/2023] Open
Abstract
The posttranslational modification of target proteins with ubiquitin and
ubiquitin-like proteins is accomplished by the sequential action of E1, E2, and
E3 enzymes. Members of the E1 and E3 enzyme families can undergo particularly
large conformational changes during their catalytic cycles, involving the
remodeling of domain interfaces. This enables the efficient, directed and
regulated handover of ubiquitin from one carrier to the next one. We review some
of these conformational transformations, as revealed by crystallographic
studies.
Collapse
Affiliation(s)
- Sonja Lorenz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
18
|
Begley TP, Ealick SE, McLafferty FW. Thiamin biosynthesis: still yielding fascinating biological chemistry. Biochem Soc Trans 2012; 40:555-60. [PMID: 22616866 PMCID: PMC3771315 DOI: 10.1042/bst20120084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present paper describes the biosynthesis of the thiamin thiazole in Bacillus subtilis and Saccharomyces cerevisiae. The two pathways are quite different: in B. subtilis, the thiazole is formed by an oxidative condensation of glycine, deoxy-D-xylulose 5-phosphate and a protein thiocarboxylate, whereas, in S. cerevisiae, the thiazole is assembled from glycine, NAD and Cys205 of the thiazole synthase.
Collapse
Affiliation(s)
- Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, U.S.A.
| | | | | |
Collapse
|
19
|
Abstract
Since its discovery over three decades ago, it has become abundantly clear that the ubiquitin (Ub) system is a quintessential feature of all aspects of eukaryotic biology. At the heart of the system lies the conjugation and deconjugation of Ub and Ub-like (Ubls) proteins to proteins or lipids drastically altering the biochemistry of the targeted molecules. In particular, it represents the primary mechanism by which protein stability is regulated in eukaryotes. Ub/Ubls are typified by the β-grasp fold (β-GF) that has additionally been recruited for a strikingly diverse range of biochemical functions. These include catalytic roles (e.g., NUDIX phosphohydrolases), scaffolding of iron-sulfur clusters, binding of RNA and other biomolecules such as co-factors, sulfur transfer in biosynthesis of diverse metabolites, and as mediators of key protein-protein interactions in practically every conceivable cellular context. In this chapter, we present a synthetic overview of the structure, evolution, and natural classification of Ub, Ubls, and other members of the β-GF. The β-GF appears to have differentiated into at least seven clades by the time of the last universal common ancestor of all extant organisms, encompassing much of the structural diversity observed in extant versions. The β-GF appears to have first emerged in the context of translation-related RNA-interactions and subsequently exploded to occupy various functional niches. Most biochemical diversification of the fold occurred in prokaryotes, with the eukaryotic phase of its evolution mainly marked by the expansion of the Ubl clade of the β-GF. Consequently, at least 70 distinct Ubl families are distributed across eukaryotes, of which nearly 20 families were already present in the eukaryotic common ancestor. These included multiple protein and one lipid conjugated forms and versions that functions as adapter domains in multimodule polypeptides. The early diversification of the Ubl families in eukaryotes played a major role in the emergence of characteristic eukaryotic cellular substructures and systems pertaining to nucleo-cytoplasmic compartmentalization, vesicular trafficking, lysosomal targeting, protein processing in the endoplasmic reticulum, and chromatin dynamics. Recent results from comparative genomics indicate that precursors of the eukaryotic Ub-system were already present in prokaryotes. The most basic versions are those combining an Ubl and an E1-like enzyme involved in metabolic pathways related to metallopterin, thiamine, cysteine, siderophore and perhaps modified base biosynthesis. Some of these versions also appear to have given rise to simple protein-tagging systems such as Sampylation in archaea and Urmylation in eukaryotes. However, other prokaryotic systems with Ubls of the YukD and other families, including one very close to Ub itself, developed additional elements that more closely resemble the eukaryotic state in possessing an E2, a RING-type E3, or both of these components. Additionally, prokaryotes have evolved conjugation systems that are independent of Ub ligases, such as the Pup system.
Collapse
|
20
|
Burroughs AM, Iyer LM, Aravind L. The natural history of ubiquitin and ubiquitin-related domains. Front Biosci (Landmark Ed) 2012; 17:1433-60. [PMID: 22201813 DOI: 10.2741/3996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- Omics Science Center (OSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
21
|
Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 2011; 44:462-75. [PMID: 22055191 DOI: 10.1016/j.molcel.2011.08.035] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/11/2011] [Accepted: 08/31/2011] [Indexed: 01/07/2023]
Abstract
E1 enzymes activate ubiquitin-like proteins and transfer them to cognate E2 enzymes. Atg7, a noncanonical E1, activates two ubiquitin-like proteins, Atg8 and Atg12, and plays a crucial role in autophagy. Here, we report crystal structures of full-length Atg7 and its C-terminal domain bound to Atg8 and MgATP, as well as a solution structure of Atg8 bound to the extreme C-terminal domain (ECTD) of Atg7. The unique N-terminal domain (NTD) of Atg7 is responsible for Atg3 (E2) binding, whereas its C-terminal domain is comprised of a homodimeric adenylation domain (AD) and ECTD. The structural and biochemical data demonstrate that Atg8 is initially recognized by the C-terminal tail of ECTD and is then transferred to an AD, where the Atg8 C terminus is attacked by the catalytic cysteine to form a thioester bond. Atg8 is then transferred via a trans mechanism to the Atg3 bound to the NTD of the opposite protomer within a dimer.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute of Microbial Chemistry, Tokyo, Tokyo 141-0021, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell 2011; 44:451-61. [PMID: 22055190 PMCID: PMC3277881 DOI: 10.1016/j.molcel.2011.08.034] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/18/2011] [Accepted: 08/16/2011] [Indexed: 01/07/2023]
Abstract
Atg7 is a noncanonical, homodimeric E1 enzyme that interacts with the noncanonical E2 enzyme, Atg3, to mediate conjugation of the ubiquitin-like protein (UBL) Atg8 during autophagy. Here we report that the unique N-terminal domain of Atg7 (Atg7(NTD)) recruits a unique "flexible region" from Atg3 (Atg3(FR)). The structure of an Atg7(NTD)-Atg3(FR) complex reveals hydrophobic residues from Atg3 engaging a conserved groove in Atg7, important for Atg8 conjugation. We also report the structure of the homodimeric Atg7 C-terminal domain, which is homologous to canonical E1s and bacterial antecedents. The structures, SAXS, and crosslinking data allow modeling of a full-length, dimeric (Atg7~Atg8-Atg3)(2) complex. The model and biochemical data provide a rationale for Atg7 dimerization: Atg8 is transferred in trans from the catalytic cysteine of one Atg7 protomer to Atg3 bound to the N-terminal domain of the opposite Atg7 protomer within the homodimer. The studies reveal a distinctive E1~UBL-E2 architecture for enzymes mediating autophagy.
Collapse
Affiliation(s)
- Asad M. Taherbhoy
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA,Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stephen W. Tait
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen E. Kaiser
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allison H. Williams
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Alan Deng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda Nourse
- Hartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, Memphis TN 38105 USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, Argonne, Illinois, USA
| | - Charles. O. Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brenda A. Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA,Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA,Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. J Mol Biol 2010; 405:1040-55. [PMID: 21112336 DOI: 10.1016/j.jmb.2010.11.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/23/2022]
Abstract
In archaea, two ubiquitin-like small archaeal modifier protein (SAMPs) were recently shown to be conjugated to proteins in vivo. SAMPs display homology to bacterial MoaD sulfur transfer proteins and eukaryotic ubiquitin-like proteins, and they share with them the conserved C-terminal glycine-glycine motif. Here, we report the solution structure of SAMP1 from Methanosarcina acetivorans and the activation of SAMPs by an archaeal protein with homology to eukaryotic E1 enzymes. Our results show that SAMP1 possesses a β-grasp fold and that its hydrophobic and electrostatic surface features are similar to those of MoaD. M. acetivorans SAMP1 exhibits an extensive flexible surface loop between helix-2 and the third strand of the β-sheet, which contributes to an elongated surface groove that is not observed in bacterial ubiquitin homologues and many other SAMPs. We provide in vitro biochemical evidence that SAMPs are activated in an ATP-dependent manner by an E1-like enzyme that we have termed E1-like SAMP activator (ELSA). We show that activation occurs by formation of a mixed anhydride (adenylate) at the SAMP C-terminus and is detectable by SDS-PAGE and electrospray ionization mass spectrometry.
Collapse
|
24
|
Woolery AR, Luong P, Broberg CA, Orth K. AMPylation: Something Old is New Again. Front Microbiol 2010; 1:113. [PMID: 21607083 PMCID: PMC3095399 DOI: 10.3389/fmicb.2010.00113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 09/22/2010] [Indexed: 01/21/2023] Open
Abstract
The post-translational modification AMPylation is emerging as a significant regulatory mechanism in both prokaryotic and eukaryotic biology. This process involves the covalent addition of an adenosine monophosphate to a protein resulting in a modified protein with altered activity. Proteins capable of catalyzing AMPylation, termed AMPylators, are comparable to kinases in that they both hydrolyze ATP and reversibly transfer a part of this primary metabolite to a hydroxyl side chain of the protein substrate. To date, only four AMPylators have been characterized, though many more potential candidates have been identified through amino acid sequence analysis and preliminary in vitro studies. This modification was first discovered over 40 years ago by Earl Stadtman and colleagues through the modification of glutamine synthetase by adenylyl transferase; however research into this mechanism has only just been reenergized by the studies on bacterial effectors. New AMPylators were revealed due to the discovery that a bacterial effector having a conserved Fic domain transfers an AMP group to protein substrates. Current research focuses on identifying and characterizing various types of AMPylators homologous to Fic domains and adenylyl transferase domains and their respective substrates. While all AMPylators characterized thus far are bacterial proteins, the conservation of the Fic domain in eukaryotic organisms suggests that AMPylation is omnipresent in various forms of life and has significant impact on a wide range of regulatory processes.
Collapse
Affiliation(s)
- Andrew R Woolery
- Department of Molecular Biology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
25
|
Bacik JP, Walker JR, Ali M, Schimmer AD, Dhe-Paganon S. Crystal structure of the human ubiquitin-activating enzyme 5 (UBA5) bound to ATP: mechanistic insights into a minimalistic E1 enzyme. J Biol Chem 2010; 285:20273-80. [PMID: 20368332 PMCID: PMC2888440 DOI: 10.1074/jbc.m110.102921] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/05/2010] [Indexed: 12/17/2022] Open
Abstract
E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys(250)) is part of the adenylation domain in an alpha-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.
Collapse
Affiliation(s)
- John-Paul Bacik
- From the Structural Genomics Consortium and
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | | | - Mohsin Ali
- The Ontario Cancer Institute, The Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | - Aaron D. Schimmer
- The Ontario Cancer Institute, The Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | - Sirano Dhe-Paganon
- From the Structural Genomics Consortium and
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| |
Collapse
|
26
|
Gonzalez DJ, Lee SW, Hensler ME, Markley AL, Dahesh S, Mitchell DA, Bandeira N, Nizet V, Dixon JE, Dorrestein PC. Clostridiolysin S, a post-translationally modified biotoxin from Clostridium botulinum. J Biol Chem 2010; 285:28220-8. [PMID: 20581111 DOI: 10.1074/jbc.m110.118554] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through elaboration of its botulinum toxins, Clostridium botulinum produces clinical syndromes of infant botulism, wound botulism, and other invasive infections. Using comparative genomic analysis, an orphan nine-gene cluster was identified in C. botulinum and the related foodborne pathogen Clostridium sporogenes that resembled the biosynthetic machinery for streptolysin S, a key virulence factor from group A Streptococcus responsible for its hallmark beta-hemolytic phenotype. Genetic complementation, in vitro reconstitution, mass spectral analysis, and plasmid intergrational mutagenesis demonstrate that the streptolysin S-like gene cluster from Clostridium sp. is responsible for the biogenesis of a novel post-translationally modified hemolytic toxin, clostridiolysin S.
Collapse
Affiliation(s)
- David J Gonzalez
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Haft DH, Basu MK, Mitchell DA. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol 2010; 8:70. [PMID: 20500830 PMCID: PMC2887384 DOI: 10.1186/1741-7007-8-70] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM). As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP) family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P), but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for secondary metabolism. Precursors for TOMMs and lanthionine-containing peptides derived from larger proteins to which other functions are attributed, may be widespread. The functions of these natural products have yet to be elucidated, but it is probable that some will display valuable industrial or medical activities.
Collapse
Affiliation(s)
- Daniel H Haft
- The J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
28
|
Abstract
Attachment of ubiquitin and ubiquitin-like proteins to cellular targets represents a fundamental regulatory strategy within eukaryotes and exhibits remarkably pleiotropic effects on cell function. These posttranslational modifications share a common mechanism comprised of three steps: an activating enzyme to couple ATP hydrolysis to formation of a high-energy intermediate at the carboxyl terminus of ubiquitin or the ubiquitin-like protein, a ligase to couple aminolysis of the activated polypeptide to formation of the new peptide bond and a carrier protein to link the two half reactions. The activating enzymes play pivotal roles in defining pathway specificity for ubiquitin or the ubiquitin-like protein and for target protein specificity in charging the cognate carrier protein supporting downstream ligation steps. Therefore, the family of activating enzymes are critical components of cell regulation that have only recently been recognized as important pharmacological targets.
Collapse
Affiliation(s)
- Frederick C Streich
- Department of Biochemistry and Molecular Biology School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
29
|
Burroughs AM, Iyer LM, Aravind L. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins 2009; 75:895-910. [PMID: 19089947 DOI: 10.1002/prot.22298] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The E1-like superfamily is central to ubiquitin (Ub) conjugation, biosynthesis of cysteine, thiamine, and MoCo, and several secondary metabolites. Yet, its functional diversity and evolutionary history is not well understood. We develop a natural classification of this superfamily and use it to decipher the major adaptive trends occurring in the evolution of the E1-like superfamily. Within the Rossmann fold, E1-like proteins are closest to NAD(P)/FAD-dependent dehydrogenases and S-AdoMet-dependent methyltransferases. Hence, their phosphotransfer activity is an independent catalytic "invention" with respect to such activities seen in other Rossmannoid folds. Sequence and structure analysis reveals a striking diversity of residues and structures involved in adenylation, sulfotransfer, and substrate binding between different E1-like families, allowing us to predict previously uncharacterized functional adaptations. E1-like proteins are fused to several previously undetected domains, such as a predicted sulfur transfer domain containing a novel superfamily of the TATA-binding protein fold, different types of catalytic domains, a novel winged helix-turn-helix domain and potential adaptor domains related to Ub conjugation. On the basis of these fusions, we develop a generalized model for the linking of E1 catalyzed adenylation/thiolation with further downstream reactions. This is likely to involve a dynamic interplay between the E1 active sites and diverse fused C-terminal domains. We also predict participation of E1-like domains in previously uncharacterized bacterial secondary metabolism pathways, new cysteine biosynthesis systems, such as those associated with archaeal O-phosphoseryl tRNA, metal-sulfur cluster assembly (e.g., in nitrogen fixation) and Ub-conjugation. Evolutionary reconstructions suggest that the last universal common ancestor contained a single E1-like domain possessing both phosphotransfer and thiolating activities and participating in multiple sulfotransfer reactions. The E1-like superfamily subsequently expanded to include 26 families clustering into three major radiations. These are broadly involved in Ub activation, cofactor and cysteine biosynthesis, and biosynthesis of secondary metabolites. In light of this, we present evidence that in eukaryotes other E1-like enzymes such as Urm1 were independently recruited for Ubl conjugation, probably functioning without conventional E2-like enzymes.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
30
|
How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. EMBO J 2009; 28:1953-64. [PMID: 19494832 DOI: 10.1038/emboj.2009.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 05/08/2009] [Indexed: 11/08/2022] Open
Abstract
The 39-kDa Escherichia coli enzyme MccB catalyses a remarkable posttranslational modification of the MccA heptapeptide during the biosynthesis of microcin C7 (MccC7), a 'Trojan horse' antibiotic. The approximately 260-residue C-terminal region of MccB is homologous to ubiquitin-like protein (UBL) activating enzyme (E1) adenylation domains. Accordingly, MccB-catalysed C-terminal MccA-acyl-adenylation is reminiscent of the E1-catalysed activation reaction. However, unlike E1 substrates, which are UBLs with a C-terminal di-glycine sequence, MccB's substrate, MccA, is a short peptide with an essential C-terminal Asn. Furthermore, after an intramolecular rearrangement of MccA-acyl-adenylate, MccB catalyses a second, unique reaction, producing a stable phosphoramidate-linked analogue of acyl-adenylated aspartic acid. We report six-crystal structures of MccB in apo, substrate-, intermediate-, and inhibitor-bound forms. Structural and kinetic analyses reveal a novel-peptide clamping mechanism for MccB binding to heptapeptide substrates and a dynamic-active site for catalysing dual adenosine triphosphate-consuming reactions. The results provide insight into how a distinctive member of the E1 superfamily carries out two-step activation for generating the peptidyl-antibiotic MccC7.
Collapse
|
31
|
Abstract
Eukaryotic proteins can be modified through attachment to various small molecules and proteins. One such modification is conjugation to ubiquitin and ubiquitin-like proteins (UBLs), which controls an enormous range of physiological processes. Bound UBLs mainly regulate the interactions of proteins with other macromolecules, for example binding to the proteasome or recruitment to chromatin. The various UBL systems use related enzymes to attach specific UBLs to proteins (or other molecules), and most of these attachments are transient. There is increasing evidence suggesting that such UBL-protein modification evolved from prokaryotic sulphurtransferase systems or related enzymes. Moreover, proteins similar to UBL-conjugating enzymes and UBL-deconjugating enzymes seem to have already been widespread at the time of the last common ancestor of eukaryotes, suggesting that UBL-protein conjugation did not first evolve in eukaryotes.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, PO Box 208114, New Haven, Connecticut 06520, USA.
| |
Collapse
|
32
|
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-31. [PMID: 19352404 PMCID: PMC2712597 DOI: 10.1038/nrm2673] [Citation(s) in RCA: 662] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Attachment of ubiquitin or ubiquitin-like proteins (known as UBLs) to their targets through multienzyme cascades is a central mechanism to modulate protein functions. This process is initiated by a family of mechanistically and structurally related E1 (or activating) enzymes. These activate UBLs through carboxy-terminal adenylation and thiol transfer, and coordinate the use of UBLs in specific downstream pathways by charging cognate E2 (or conjugating) enzymes, which then interact with the downstream ubiquitylation machinery to coordinate the modification of the target. A broad understanding of how E1 enzymes activate UBLs and how they selectively coordinate UBLs with downstream function has come from enzymatic, structural and genetic studies.
Collapse
Affiliation(s)
- Brenda A. Schulman
- Howard Hughes Medical Institute, Departments of Structural Biology, and Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| |
Collapse
|
33
|
Noda NN, Ohsumi Y, Inagaki F. ATG Systems from the Protein Structural Point of View. Chem Rev 2009; 109:1587-98. [DOI: 10.1021/cr800459r] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Abstract
Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.
Collapse
Affiliation(s)
- Christopher T. Jurgenson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520;
| | - Tadhg P. Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
35
|
Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. EMBO J 2008; 27:3267-78. [PMID: 19037260 DOI: 10.1038/emboj.2008.246] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 11/04/2008] [Indexed: 11/08/2022] Open
Abstract
2-Thioribothymidine (s(2)T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s(2)T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s(2)T in Thermus thermophilus and examined in vitro s(2)T formation by TtuC and previously identified s(2)T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s(2)T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB-TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system.
Collapse
|
36
|
A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci U S A 2008; 105:18255-60. [PMID: 19017811 DOI: 10.1073/pnas.0808756105] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urm1 is a highly conserved ubiquitin-related modifier of unknown function. A reduction of cellular Urm1 levels causes severe cytokinesis defects in HeLa cells, resulting in the accumulation of enlarged multinucleated cells. To understand the underlying mechanism, we applied a functional proteomics approach and discovered an enzymatic activity that links Urm1 to a tRNA modification pathway. Unlike ubiquitin (Ub) and many Ub-like modifiers, which are commonly conjugated to proteinaceous targets, Urm1 is activated by an unusual mechanism to yield a thiocarboxylate intermediate that serves as sulfur donor in tRNA thiolation reactions. This mechanism is reminiscent of that used by prokaryotic sulfur carriers and thus defines the evolutionary link between ancient Ub progenitors and the eukaryotic Ub/Ub-like modification systems.
Collapse
|
37
|
Lee I, Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 2008; 134:268-78. [PMID: 18662542 DOI: 10.1016/j.cell.2008.05.046] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 03/20/2008] [Accepted: 05/12/2008] [Indexed: 11/15/2022]
Abstract
Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are conjugated to their targets by specific cascades involving three classes of enzymes, E1, E2, and E3. Each E1 adenylates the C terminus of its cognate Ubl, forms a E1 approximately Ubl thioester intermediate, and ultimately generates a thioester-linked E2 approximately Ubl product. We have determined the crystal structure of yeast Uba1, revealing a modular architecture with individual domains primarily mediating these specific activities. The negatively charged C-terminal ubiquitin-fold domain (UFD) is primed for binding of E2s and recognizes their positively charged first alpha helix via electrostatic interactions. In addition, a mobile loop from the domain harboring the E1 catalytic cysteine contributes to E2 binding. Significant, experimentally observed motions in the UFD around a hinge in the linker connecting this domain to the rest of the enzyme suggest a conformation-dependent mechanism for the transthioesterification function of Uba1; however, this mechanism clearly differs from that of other E1 enzymes.
Collapse
Affiliation(s)
- Imsang Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
38
|
Begley TP, Chatterjee A, Hanes JW, Hazra A, Ealick SE. Cofactor biosynthesis--still yielding fascinating new biological chemistry. Curr Opin Chem Biol 2008; 12:118-25. [PMID: 18314013 DOI: 10.1016/j.cbpa.2008.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 11/26/2022]
Abstract
This mini review covers recent advances in the mechanistic enzymology of cofactor biosynthesis.
Collapse
Affiliation(s)
- Tadhg P Begley
- Cornell University, Department of Chemistry and Chemical Biology, 120 Baker Lab, Ithaca, NY 14853, United States.
| | | | | | | | | |
Collapse
|
39
|
Groettrup M, Pelzer C, Schmidtke G, Hofmann K. Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 2008; 33:230-7. [PMID: 18353650 DOI: 10.1016/j.tibs.2008.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 01/28/2023]
Abstract
Since its discovery in 1981, ubiquitin-activating enzyme 1 was thought to be the only E1-type enzyme responsible for ubiquitin activation. Recently, a relatively uncharacterized E1 enzyme, designated ubiquitin-like modifier activating enzyme 6, was also shown to activate ubiquitin. Ubiquitin-activating enzyme 1 and ubiquitin-like modifier activating enzyme 6 are both essential proteins, and each uses a different spectrum of ubiquitin-conjugating (E2) enzymes. Ubiquitin-like modifier activating enzyme 6 activates not only ubiquitin, but also the ubiquitin-like modifier FAT10 (human leukocyte antigen F-associated transcript 10), which, similarly to ubiquitin, serves as a signal for proteasomal degradation. This new layer of regulation in ubiquitin activation markedly increases the versatility of the ubiquitin conjugation system.
Collapse
Affiliation(s)
- Marcus Groettrup
- Division of Immunology, Department of Biology, University of Constance, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
40
|
Jin J, Li X, Gygi SP, Harper JW. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 2007; 447:1135-8. [PMID: 17597759 DOI: 10.1038/nature05902] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 05/01/2007] [Indexed: 11/09/2022]
Abstract
Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1-E2-E3 cascade controls many signalling networks. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction. Charged E2s function with E3s to ubiquitinate substrates. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.
Collapse
Affiliation(s)
- Jianping Jin
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
41
|
Burroughs AM, Balaji S, Iyer LM, Aravind L. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2007; 2:18. [PMID: 17605815 PMCID: PMC1949818 DOI: 10.1186/1745-6150-2-18] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The beta-grasp fold (beta-GF), prototyped by ubiquitin (UB), has been recruited for a strikingly diverse range of biochemical functions. These functions include providing a scaffold for different enzymatic active sites (e.g. NUDIX phosphohydrolases) and iron-sulfur clusters, RNA-soluble-ligand and co-factor-binding, sulfur transfer, adaptor functions in signaling, assembly of macromolecular complexes and post-translational protein modification. To understand the basis for the functional versatility of this small fold we undertook a comprehensive sequence-structure analysis of the fold and developed a natural classification for its members. RESULTS As a result we were able to define the core distinguishing features of the fold and numerous elaborations, including several previously unrecognized variants. Systematic analysis of all known interactions of the fold showed that its manifold functional abilities arise primarily from the prominent beta-sheet, which provides an exposed surface for diverse interactions or additionally, by forming open barrel-like structures. We show that in the beta-GF both enzymatic activities and the binding of diverse co-factors (e.g. molybdopterin) have independently evolved on at least three occasions each, and iron-sulfur-cluster-binding on at least two independent occasions. Our analysis identified multiple previously unknown large monophyletic assemblages within the beta-GF, including one which unifies versions found in the fasciclin-1 superfamily, the ribosomal protein L25, the phosphoribosyl AMP cyclohydrolase (HisI) and glutamine synthetase. We also uncovered several new groups of beta-GF domains including a domain found in bacterial flagellar and fimbrial assembly components, and 5 new UB-like domains in the eukaryotes. CONCLUSION Evolutionary reconstruction indicates that the beta-GF had differentiated into at least 7 distinct lineages by the time of the last universal common ancestor of all extant organisms, encompassing much of the structural diversity observed in extant versions of the fold. The earliest beta-GF members were probably involved in RNA metabolism and subsequently radiated into various functional niches. Most of the structural diversification occurred in the prokaryotes, whereas the eukaryotic phase was mainly marked by a specific expansion of the ubiquitin-like beta-GF members. The eukaryotic UB superfamily diversified into at least 67 distinct families, of which at least 19-20 families were already present in the eukaryotic common ancestor, including several protein and one lipid conjugated forms. Another key aspect of the eukaryotic phase of evolution of the beta-GF was the dramatic increase in domain architectural complexity of proteins related to the expansion of UB-like domains in numerous adaptor roles.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
42
|
Iyer LM, Burroughs AM, Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 2007; 7:R60. [PMID: 16859499 PMCID: PMC1779556 DOI: 10.1186/gb-2006-7-7-r60] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/14/2022] Open
Abstract
A systematic analysis of prokaryotic ubiquitin-related beta-grasp fold proteins provides new insights into the Ubiquitin family functional history. Background Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results We systematically analyzed prokaryotic Ub-related β-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to function together in signaling systems just as in eukaryotes.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
- Bioinformatics Program, Boston University, Cummington Street, Boston, Massachusetts 02215, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
43
|
Lehmann C, Begley TP, Ealick SE. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 2006; 45:11-9. [PMID: 16388576 PMCID: PMC2566941 DOI: 10.1021/bi051502y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have determined the crystal structure of the Escherichia coli ThiS-ThiF protein complex at 2.0 A resolution. ThiS and ThiF are bacterial proteins involved in the synthesis of the thiazole moiety of thiamin. ThiF catalyzes the adenylation of the carboxy terminus of ThiS and the subsequent displacement of AMP catalyzed by ThiI-persulfide to give a ThiS-ThiI acyl disulfide. Disulfide interchange, involving Cys184 on ThiF, then generates the ThiS-ThiF acyl disulfide, which functions as the sulfur donor for thiazole formation. ThiS is a small 7.2 kDa protein that structurally resembles ubiquitin and the molybdopterin biosynthetic protein MoaD. ThiF is a 27 kDa protein with distinct sequence and structural similarity to the ubiquitin activating enzyme E1 and the molybdopterin biosynthetic protein MoeB. The ThiF-ThiS structure clarifies the mechanism of the sulfur transfer chemistry involved in thiazole biosynthesis.
Collapse
Affiliation(s)
- Christopher Lehmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Tadhg P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|