1
|
Carré L, Henneke G, Henry E, Flament D, Girard É, Franzetti B. DNA Polymerization in Icy Moon Abyssal Pressure Conditions. ASTROBIOLOGY 2024; 24:151-162. [PMID: 36622808 DOI: 10.1089/ast.2021.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evidence of stable liquid water oceans beneath the ice crust of moons within the Solar System is of great interest for astrobiology. In particular, subglacial oceans may present hydrothermal processes in their abysses, similarly to terrestrial hydrothermal vents. Therefore, terrestrial extremophilic deep life can be considered a model for putative icy moon extraterrestrial life. However, the comparison between putative extraterrestrial abysses and their terrestrial counterparts suffers from a potentially determinant difference. Indeed, some icy moons oceans may be so deep that the hydrostatic pressure would exceed the maximal pressure at which hydrothermal vent organisms have been isolated. While terrestrial microorganisms that are able to survive in such conditions are known, the effect of high pressure on fundamental biochemical processes is still unclear. In this study, the effects of high hydrostatic pressure on DNA synthesis catalyzed by DNA polymerases are investigated for the first time. The effect on both strand displacement and primer extension activities is measured, and pressure tolerance is compared between enzymes of various thermophilic organisms isolated at different depths.
Collapse
Affiliation(s)
- Lorenzo Carré
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Etienne Henry
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Didier Flament
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, Université de Brest, Plouzané, France
| | - Éric Girard
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Bruno Franzetti
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
2
|
Betancurt-Anzola L, Martínez-Carranza M, Delarue M, Zatopek KM, Gardner AF, Sauguet L. Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases. Nat Commun 2023; 14:8306. [PMID: 38097591 PMCID: PMC10721889 DOI: 10.1038/s41467-023-44125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Replicative DNA polymerases duplicate entire genomes at high fidelity. This feature is shared among the three domains of life and is facilitated by their dual polymerase and exonuclease activities. Family D replicative DNA polymerases (PolD), found exclusively in Archaea, contain an unusual RNA polymerase-like catalytic core, and a unique Mre11-like proofreading active site. Here, we present cryo-EM structures of PolD trapped in a proofreading mode, revealing an unanticipated correction mechanism that extends the repertoire of protein domains known to be involved in DNA proofreading. Based on our experimental structures, mutants of PolD were designed and their contribution to mismatch bypass and exonuclease kinetics was determined. This study sheds light on the convergent evolution of structurally distinct families of DNA polymerases, and the domain acquisition and exchange mechanism that occurred during the evolution of the replisome in the three domains of life.
Collapse
Affiliation(s)
- Leonardo Betancurt-Anzola
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
- New England Biolabs France, 5 Rue Henri Auguste Desbruères, 91000, Évry-Courcouronnes, France
- Sorbonne Université, Collège Doctoral, ED 515, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Kelly M Zatopek
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Andrew F Gardner
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
3
|
Pan L, Liu Y, Lan H, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. Biological Mechanisms Induced by Soybean Agglutinin Using an Intestinal Cell Model of Monogastric Animals. Front Vet Sci 2021; 8:639792. [PMID: 34150879 PMCID: PMC8207199 DOI: 10.3389/fvets.2021.639792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean agglutinin (SBA) has a toxic effect on most animals. The anti-nutritional mechanisms of SBA are not fully understood, in terms of cell survival activity and metabolism of intestinal cells. This study aims to investigate the effects of SBA on the cell cycle, apoptosis, and to verify the mechanism of SBA anti-nutritional characters based on proteomic-based analysis. The IPEC-J2 cell line was cultured with medium containing 0.0, 0.5, or 2.0 mg/mL SBA. With increasing SBA levels, the percentage of the cells at G0/G1 phase, cell apoptosis rates, expressions of Bax and p21, and the activities of Casp-3 and Casp-9 were increased, while cyclin D1 and Bcl-2 expressions were declined (p < 0.05). The proteomic analysis showed that the numbers of differentially expressed proteins, induced by SBA, were mainly enriched in different pathways including DNA replication, base excision repair, nucleus excision repair, mismatch repair, amide and peptide biosynthesis, ubiquitin-mediated proteolysis, as well as structures and functions of mitochondria and ribosome. In conclusion, the anti-nutritional mechanism of SBA is a complex cellular process. Such process including DNA related activities; protein synthesis and metabolism; signal-conducting relation; as well as subcellular structure and function. This study provides comprehensive information to understand the toxic mechanism of SBA in monogastrics.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Oki K, Yamagami T, Nagata M, Mayanagi K, Shirai T, Adachi N, Numata T, Ishino S, Ishino Y. DNA polymerase D temporarily connects primase to the CMG-like helicase before interacting with proliferating cell nuclear antigen. Nucleic Acids Res 2021; 49:4599-4612. [PMID: 33849056 PMCID: PMC8096248 DOI: 10.1093/nar/gkab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Naruhiko Adachi
- Structure Biology Research Center, Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Zatopek KM, Alpaslan E, Evans T, Sauguet L, Gardner A. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Nucleic Acids Res 2020; 48:12204-12218. [PMID: 33137176 PMCID: PMC7708050 DOI: 10.1093/nar/gkaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.
Collapse
Affiliation(s)
| | - Ece Alpaslan
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Thomas C Evans
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France
| | | |
Collapse
|
6
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
7
|
Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48:10142-10156. [PMID: 32976577 PMCID: PMC7544198 DOI: 10.1093/nar/gkaa760] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Patrick Forterre
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
8
|
Mayanagi K, Oki K, Miyazaki N, Ishino S, Yamagami T, Morikawa K, Iwasaki K, Kohda D, Shirai T, Ishino Y. Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biol 2020; 18:152. [PMID: 33115459 PMCID: PMC7594292 DOI: 10.1186/s12915-020-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a β-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan.
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
9
|
Hogrel G, Lu Y, Alexandre N, Bossé A, Dulermo R, Ishino S, Ishino Y, Flament D. Role of RadA and DNA Polymerases in Recombination-Associated DNA Synthesis in Hyperthermophilic Archaea. Biomolecules 2020; 10:E1045. [PMID: 32674430 PMCID: PMC7407445 DOI: 10.3390/biom10071045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023] Open
Abstract
Among the three domains of life, the process of homologous recombination (HR) plays a central role in the repair of double-strand DNA breaks and the restart of stalled replication forks. Curiously, main protein actors involved in the HR process appear to be essential for hyperthermophilic Archaea raising interesting questions about the role of HR in replication and repair strategies of those Archaea living in extreme conditions. One key actor of this process is the recombinase RadA, which allows the homologous strand search and provides a DNA substrate required for following DNA synthesis and restoring genetic information. DNA polymerase operation after the strand exchange step is unclear in Archaea. Working with Pyrococcus abyssi proteins, here we show that both DNA polymerases, family-B polymerase (PolB) and family-D polymerase (PolD), can take charge of processing the RadA-mediated recombination intermediates. Our results also indicate that PolD is far less efficient, as compared with PolB, to extend the invaded DNA at the displacement-loop (D-loop) substrate. These observations coincide with previous genetic analyses obtained on Thermococcus species showing that PolB is mainly involved in DNA repair without being essential probably because PolD could take over combined with additional partners.
Collapse
Affiliation(s)
- Gaëlle Hogrel
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Yang Lu
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Nicolas Alexandre
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Audrey Bossé
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Rémi Dulermo
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan; (S.I.); (Y.I.)
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan; (S.I.); (Y.I.)
| | - Didier Flament
- Laboratoire de Microbiologie des Environnements Extrêmes, Ifremer, CNRS, Univ Brest, 29280 Plouzané, France; (G.H.); (Y.L.); (N.A.); (A.B.); (R.D.)
- LIA1211 MICROBSEA, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Xiamen-Plouzané, France
| |
Collapse
|
10
|
Madru C, Henneke G, Raia P, Hugonneau-Beaufet I, Pehau-Arnaudet G, England P, Lindahl E, Delarue M, Carroni M, Sauguet L. Structural basis for the increased processivity of D-family DNA polymerases in complex with PCNA. Nat Commun 2020; 11:1591. [PMID: 32221299 PMCID: PMC7101311 DOI: 10.1038/s41467-020-15392-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. In Eukarya and Archaea, the processivity of replicative DNAPs is greatly enhanced by its binding to the proliferative cell nuclear antigen (PCNA) that encircles the DNA. We determined the cryo-EM structure of the DNA-bound PolD–PCNA complex from Pyrococcus abyssi at 3.77 Å. Using an integrative structural biology approach — combining cryo-EM, X-ray crystallography, protein–protein interaction measurements, and activity assays — we describe the molecular basis for the interaction and cooperativity between a replicative DNAP and PCNA. PolD recruits PCNA via a complex mechanism, which requires two different PIP-boxes. We infer that the second PIP-box, which is shared with the eukaryotic Polα replicative DNAP, plays a dual role in binding either PCNA or primase, and could be a master switch between an initiation and a processive phase during replication. Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. Here, the authors present a cryo-EM structure of the DNA-bound PolD–PCNA complex from Pyrococcus abyssi to reveal the molecular basis for the interaction and cooperativity between a replicative DNAP and PCNA.
Collapse
Affiliation(s)
- Clément Madru
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | - Ghislaine Henneke
- CNRS, Ifremer, Université de Brest, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Pierre Raia
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France.,Sorbonne Université, École Doctorale Complexité du Vivant (ED515), Paris, France
| | - Inès Hugonneau-Beaufet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | | | - Patrick England
- Molecular Biophysics Platform, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and CNRS UMR 3528, Paris, France.
| |
Collapse
|
11
|
Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta 1. J Allergy Clin Immunol 2019; 145:391-401.e8. [PMID: 31629014 DOI: 10.1016/j.jaci.2019.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mutations affecting DNA polymerases have been implicated in genomic instability and cancer development, but the mechanisms by which they can affect the immune system remain largely unexplored. OBJECTIVE We sought to establish the role of DNA polymerase δ1 catalytic subunit (POLD1) as the cause of a primary immunodeficiency in an extended kindred. METHODS We performed whole-exome and targeted gene sequencing, lymphocyte characterization, molecular and functional analyses of the DNA polymerase δ (Polδ) complex, and T- and B-cell antigen receptor repertoire analysis. RESULTS We identified a missense mutation (c. 3178C>T; p.R1060C) in POLD1 in 3 related subjects who presented with recurrent, especially herpetic, infections and T-cell lymphopenia with impaired T-cell but not B-cell proliferation. The mutation destabilizes the Polδ complex, leading to ineffective recruitment of replication factor C to initiate DNA replication. Molecular dynamics simulation revealed that the R1060C mutation disrupts the intramolecular interaction between the POLD1 CysB motif and the catalytic domain and also between POLD1 and the Polδ subunit POLD2. The patients exhibited decreased numbers of naive CD4 and especially CD8 T cells in favor of effector memory subpopulations. This skewing was associated with oligoclonality and restricted T-cell receptor β-chain V-J pairing in CD8+ but not CD4+ T cells, suggesting that POLD1R1060C differentially affects peripheral CD8+ T-cell expansion and possibly thymic selection. CONCLUSION These results identify gene defects in POLD1 as a novel cause of T-cell immunodeficiency.
Collapse
|
12
|
Kushida T, Narumi I, Ishino S, Ishino Y, Fujiwara S, Imanaka T, Higashibata H. Pol B, a Family B DNA Polymerase, in Thermococcus kodakarensis is Important for DNA Repair, but not DNA Replication. Microbes Environ 2019; 34:316-326. [PMID: 31353332 PMCID: PMC6759347 DOI: 10.1264/jsme2.me19075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thermococcus kodakarensis possesses two DNA polymerases, Pol B and Pol D. We generated a T. kodakarensis strain (DPB1) in which polB was completely deleted and a derivative of DPB1 in which polB was overexpressed; neither of the generated strains exhibited any growth delay, indicating that the lack or overexpression of Pol B in T. kodakarensis did not affect cell growth. We also found that DPB1 showed higher sensitivity to four DNA-damaging agents (ultraviolet C irradiation, γ-ray irradiation, methyl methanesulfonate, and mitomycin C) than the parental strain. The sensitivity of DPB1 was restored to the level of the parent strain by the introduction of a plasmid harboring polB, suggesting that the DNA damage-sensitive phenotype of DPB1 was due to the loss of polB. Collectively, these results indicate that Pol B is involved in DNA repair, but not DNA replication, which, in turn, implies that Pol D is the sole replicative DNA polymerase in Thermococcus species.
Collapse
Affiliation(s)
| | - Issay Narumi
- Graduate School of Life Sciences, Toyo University
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University
| | | |
Collapse
|
13
|
Killelea T, Palud A, Akcha F, Lemor M, L'haridon S, Godfroy A, Henneke G. The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic Archaea. eLife 2019; 8:45320. [PMID: 31184586 PMCID: PMC6559790 DOI: 10.7554/elife.45320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
8-oxodeoxyguanosine (8-oxodG), a major oxidised base modification, has been investigated to study its impact on DNA replication in hyperthermophilic Archaea. Here we show that 8-oxodG is formed in the genome of growing cells, with elevated levels following exposure to oxidative stress. Functional characterisation of cell-free extracts and the DNA polymerisation enzymes, PolB, PolD, and the p41/p46 complex, alone or in the presence of accessory factors (PCNA and RPA) indicates that translesion synthesis occurs under replicative conditions. One of the major polymerisation effects was stalling, but each of the individual proteins could insert and extend past 8-oxodG with differing efficiencies. The introduction of RPA and PCNA influenced PolB and PolD in similar ways, yet provided a cumulative enhancement to the polymerisation performance of p41/p46. Overall, 8-oxodG translesion synthesis was seen to be potentially mutagenic leading to errors that are reminiscent of dA:8-oxodG base pairing.
Collapse
Affiliation(s)
- Tom Killelea
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Farida Akcha
- Laboratoire d'Ecotoxicologie, Ifremer, Nantes, France
| | - Mélanie Lemor
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Stephane L'haridon
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| |
Collapse
|
14
|
Sauguet L. The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution. J Mol Biol 2019; 431:4167-4183. [PMID: 31103775 DOI: 10.1016/j.jmb.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
DNA and RNA polymerases (DNAP and RNAP) play central roles in genome replication, maintenance and repair, as well as in the expression of genes through their transcription. Multisubunit RNAPs carry out transcription and are represented, without exception, in all cellular life forms as well as in nucleo-cytoplasmic DNA viruses. Since their discovery, multisubunit RNAPs have been the focus of intense structural and functional studies revealing that they all share a well-conserved active-site region called the two-barrel catalytic core. The two-barrel core hosts the polymerase active site, which is located at the interface between two double-psi β-barrel domains that contribute distinct amino acid residues to the active site in an asymmetrical fashion. Recently, sequencing and structural studies have added a surprising variety of DNA and RNA to the two-barrel superfamily, including the archaeal replicative DNAP (PolD), which extends the family to DNA-dependent DNAPs involved in replication. While all these polymerases share a minimal core that must have been present in their common ancestor, the two-barrel polymerase superfamily now encompasses a remarkable diversity of enzymes, including DNA-dependent RNAPs, RNA-dependent RNAPs, and DNA-dependent DNAPs, which participate in critical biological processes such as DNA transcription, DNA replication, and gene silencing. The present review will discuss both common features and differences among the extended two-barrel polymerase superfamily, focusing on the newly discovered members. Comparing their structures provides insights into the molecular mechanisms evolved by the contemporary two-barrel polymerases to accomplish their different biological functions.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France.
| |
Collapse
|
15
|
Nagata M, Ishino S, Yamagami T, Ishino Y. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis. Biosci Biotechnol Biochem 2019; 83:695-704. [DOI: 10.1080/09168451.2018.1559722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
17
|
Raia P, Carroni M, Henry E, Pehau-Arnaudet G, Brûlé S, Béguin P, Henneke G, Lindahl E, Delarue M, Sauguet L. Structure of the DP1-DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases. PLoS Biol 2019; 17:e3000122. [PMID: 30657780 PMCID: PMC6355029 DOI: 10.1371/journal.pbio.3000122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/31/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
Abstract
PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo-electron microscopy (cryo-EM) structure of the heterodimeric DP1-DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site. Comparison of PolD and RNAPs extends their structural similarities and brings to light the minimal catalytic core shared by all cellular transcriptases. Finally, elucidating the structure of the PolD DP1-DP2 interface, which is conserved in all eukaryotic replicative DNAPs, clarifies their evolutionary relationships with PolD and sheds light on the domain acquisition and exchange mechanism that occurred during the evolution of the eukaryotic replisome.
Collapse
Affiliation(s)
- Pierre Raia
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant (ED515), Paris, France
| | - Marta Carroni
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Etienne Henry
- CNRS, IFREMER, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | | | - Sébastien Brûlé
- Molecular Biophysics Platform, Pasteur Institute, C2RT and CNRS UMR 3528, Paris, France
| | - Pierre Béguin
- Unit of Molecular Biology of Gene in Extremophiles, Pasteur Institute, Paris, France
| | - Ghislaine Henneke
- IFREMER, CNRS, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Erik Lindahl
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, Paris, France
| |
Collapse
|
18
|
Takashima N, Ishino S, Oki K, Takafuji M, Yamagami T, Matsuo R, Mayanagi K, Ishino Y. Elucidating functions of DP1 and DP2 subunits from the Thermococcus kodakarensis family D DNA polymerase. Extremophiles 2018; 23:161-172. [PMID: 30506100 DOI: 10.1007/s00792-018-1070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.
Collapse
Affiliation(s)
- Natsuki Takashima
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Keisuke Oki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mika Takafuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryotaro Matsuo
- Division of Malvern Panalytical, Spectris Co., Ltd, Tokyo, 105-0013, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
20
|
Lemor M, Kong Z, Henry E, Brizard R, Laurent S, Bossé A, Henneke G. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea. J Mol Biol 2018; 430:4908-4924. [PMID: 30342933 DOI: 10.1016/j.jmb.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Consistent with the fact that ribonucleotides (rNTPs) are in excess over deoxyribonucleotides (dNTPs) in vivo, recent findings indicate that replicative DNA polymerases (DNA Pols) are able to insert ribonucleotides (rNMPs) during DNA synthesis, raising crucial questions about the fidelity of DNA replication in both Bacteria and Eukarya. Here, we report that the level of rNTPs is 20-fold higher than that of dNTPs in Pyrococcus abyssi cells. Using dNTP and rNTP concentrations present in vivo, we recorded rNMP incorporation in a template-specific manner during in vitro synthesis, with the family-D DNA Pol (PolD) having the highest propensity compared with the family-B DNA Pol and the p41/p46 complex. We also showed that ribonucleotides accumulate at a relatively high frequency in the genome of wild-type Thermococcales cells, and this frequency significantly increases upon deletion of RNase HII, the major enzyme responsible for the removal of RNA from DNA. Because ribonucleotides remain in genomic DNA, we then analyzed the effects on polymerization activities by the three DNA Pols. Depending on the identity of the base and the sequence context, all three DNA Pols bypass rNMP-containing DNA templates with variable efficiency and nucleotide (mis)incorporation ability. Unexpectedly, we found that PolD correctly base-paired a single ribonucleotide opposite rNMP-containing DNA templates. An evolutionary scenario is discussed concerning rNMP incorporation into DNA and genome stability.
Collapse
Affiliation(s)
- Mélanie Lemor
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Etienne Henry
- CNRS, Ifremer, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - Raphaël Brizard
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France.
| |
Collapse
|
21
|
Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Nucleic Acids Res 2017; 45:12425-12440. [PMID: 29040737 PMCID: PMC5716173 DOI: 10.1093/nar/gkx927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/14/2022] Open
Abstract
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.
Collapse
Affiliation(s)
- Céline Ralec
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Mélanie Lemor
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Tom Killelea
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
22
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1510938. [PMID: 27721668 PMCID: PMC5045986 DOI: 10.1155/2016/1510938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.
Collapse
|
24
|
Sauguet L, Raia P, Henneke G, Delarue M. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography. Nat Commun 2016; 7:12227. [PMID: 27548043 PMCID: PMC4996933 DOI: 10.1038/ncomms12227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. The structures of many DNA polymerases is known, but PolD was a missing piece. Here, the authors report the crystal structure of this protein and use it to connect the DNA replication machinery with the transcription machinery in the same protein family.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, 75015 Paris, France
| | - Pierre Raia
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, 75015 Paris, France.,Pierre and Marie Curie University, Paris 6, 75006 Paris, France
| | - Ghislaine Henneke
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,UBO, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Pasteur Institute and CNRS UMR 3528, 75015 Paris, France
| |
Collapse
|
25
|
Abellón-Ruiz J, Waldron KJ, Connolly BA. Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil. J Mol Biol 2016; 428:2805-13. [PMID: 27320386 PMCID: PMC4942837 DOI: 10.1016/j.jmb.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Abstract
Archaeal family-D DNA polymerases (Pol-D) comprise a small (DP1) proofreading subunit and a large (DP2) polymerase subunit. Pol-D is one of the least studied polymerase families, and this publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D). The C-terminal region of DP2 contains two conserved cysteine clusters, and their roles are investigated using site-directed mutagenesis. The cluster nearest the C terminus is essential for polymerase activity, and the cysteines are shown to serve as ligands for a single, critical Zn(2+) ion. The cysteines farthest from the C terminal were not required for activity, and a role for these amino acids has yet to be defined. Additionally, it is shown that Afu Pol-D activity is slowed by the template strand hypoxanthine, extending previous results that demonstrated inhibition by uracil. Hypoxanthine was a weaker inhibitor than uracil. Investigations with isolated DP2, which has a measurable polymerase activity, localised the deaminated base binding site to this subunit. Uracil and hypoxanthine slowed Afu Pol-D "in trans", that is, a copied DNA strand could be inhibited by a deaminated base in the alternate strand of a replication fork. The error rate of Afu Pol-D, measured in vitro, was 0.24×10(-5), typical for a polymerase that has been proposed to carry out genome replication in the Archaea. Deleting the 3'-5' proofreading exonuclease activity reduced fidelity twofold. The results presented in this publication considerably increase our knowledge of Pol-D.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
26
|
A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases. SCIENCE CHINA-LIFE SCIENCES 2016; 59:709-16. [DOI: 10.1007/s11427-016-5076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
|
27
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
28
|
Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 2015; 99:6585-97. [DOI: 10.1007/s00253-015-6781-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
29
|
Greenough L, Kelman Z, Gardner AF. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation. J Biol Chem 2015; 290:12514-22. [PMID: 25814667 PMCID: PMC4432273 DOI: 10.1074/jbc.m115.638130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/03/2023] Open
Abstract
During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| | - Zvi Kelman
- the National Institute of Standards and Technology, Rockville, Maryland 20850
| | - Andrew F Gardner
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| |
Collapse
|
30
|
Castillo-Lizardo M, Henneke G, Viguera E. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi. Front Microbiol 2014; 5:403. [PMID: 25177316 PMCID: PMC4134008 DOI: 10.3389/fmicb.2014.00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.
Collapse
Affiliation(s)
- Melissa Castillo-Lizardo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Institut Français de Recherche pour l'Exploitation de la Mer, Université de Bretagne Occidentale Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Enrique Viguera
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| |
Collapse
|
31
|
Makarova KS, Krupovic M, Koonin EV. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 2014; 5:354. [PMID: 25101062 PMCID: PMC4104785 DOI: 10.3389/fmicb.2014.00354] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 01/15/2023] Open
Abstract
The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the family D archaeal polymerases.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
32
|
Chen CY. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 2014; 5:305. [PMID: 25009536 PMCID: PMC4068291 DOI: 10.3389/fmicb.2014.00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.
Collapse
|
33
|
Killelea T, Saint-Pierre C, Ralec C, Gasparutto D, Henneke G. Anomalous electrophoretic migration of short oligodeoxynucleotides labelled with 5'-terminal Cy5 dyes. Electrophoresis 2014; 35:1938-46. [PMID: 24659099 DOI: 10.1002/elps.201400018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/10/2022]
Abstract
By using a fluorescent exonuclease assay, we reported unusual electrophoretic mobility of 5'-indocarbo-cyanine 5 (5'-Cy5) labelled DNA fragments in denaturing polyacrylamide gels. Incubation time and enzyme concentration were two parameters involved in the formation of 5'-Cy5-labelled degradation products, while the structure of the substrate was slightly interfering. Replacement of positively charged 5'-Cy5-labelled DNA oligonucleotides (DNA oligos) by electrically neutral 5'-carboxyfluorescein (5'-FAM) labelled DNA oligos abolished the anomalous migration pattern of degradation products. MS analysis demonstrated that anomalously migrating products were in fact 5'-labelled DNA fragments ranging from 1 to 8 nucleotides. Longer 5'-Cy5-labelled DNA fragments migrated at the expected position. Altogether, these data highlighted, for the first time, the influence of the mass/charge ratio of 5'-Cy5-labelled DNA oligos on their electrophoretic mobility. Although obtained by performing 3' to 5' exonuclease assays with the family B DNA polymerase from Pyrococcus abyssi, these observations represent a major concern in DNA technology involving most DNA degrading enzymes.
Collapse
Affiliation(s)
- Tom Killelea
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France; Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UMR 6197, Plouzané, France; CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Plouzané, France
| | | | | | | | | |
Collapse
|
34
|
Killelea T, Ralec C, Bossé A, Henneke G. PCR performance of a thermostable heterodimeric archaeal DNA polymerase. Front Microbiol 2014; 5:195. [PMID: 24847315 PMCID: PMC4019886 DOI: 10.3389/fmicb.2014.00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/12/2014] [Indexed: 11/17/2022] Open
Abstract
DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.
Collapse
Affiliation(s)
- Tom Killelea
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Céline Ralec
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Audrey Bossé
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Ghislaine Henneke
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| |
Collapse
|
35
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
36
|
Diversity of the DNA replication system in the Archaea domain. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:675946. [PMID: 24790526 PMCID: PMC3984812 DOI: 10.1155/2014/675946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 12/11/2022]
Abstract
The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.
Collapse
|
37
|
Matsui E, Urushibata Y, Abe J, Matsui I. Serial intermediates with a 1 nt 3'-flap and 5' variable-length flaps are formed by cooperative functioning of Pyrococcus horikoshii FEN-1 with either B or D DNA polymerases. Extremophiles 2014; 18:415-27. [PMID: 24509689 DOI: 10.1007/s00792-014-0627-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Abstract
Flap endonuclease-1 (FEN-1) plays important roles with DNA polymerases in DNA replication, repair and recombination. FEN-1 activity is elevated by the presence of a 1 nucleotide expansion at the 3' end in the upstream primer of substrates called "structures with a 1 nt 3'-flap", which appear to be the most preferable substrates for FEN-1; however, it is unclear how such substrates are generated in vivo. Here, we show that substrate production occurred by the cooperative function of FEN-1(phFEN-1) and Pyrococcus horikoshii DNA polymerase B (phPol B) or D (phPol D). Using various substrates, the activities of several phFEN-1 F79 mutants were compared with those of the wild type. Analysis of the activity profiles of these mutants led us to discriminate "structures with a 1 nt 3'-flap" from substrates with a 3' -projection longer than 2 nt or from those without a 3'-projection. When phFEN-1 processed a gap substrate with phPol B or phPol D, "structures with a 1 nt 3'-flap" were assumed the reaction intermediates. Furthermore, the phFEN-1 cleavage products with phPol B or D were from 1mer to 7mer, corresponding to the sizes of the strand-displacement products of these polymerases. This suggests that a series of 1 nt 3'-flap with 5'-variable length-flap configurations were generated as transient intermediates, in which the length of the 5'-flaps depended on the displacement distance of the downstream strand by phPol B or D. Therefore, phFEN-1 might act successively on displaced 5'-variable flaps.
Collapse
Affiliation(s)
- Eriko Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1 Central 6-9, Tsukuba, Ibaraki, 305-8566, Japan,
| | | | | | | |
Collapse
|
38
|
Trakselis MA, Bauer RJ. Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Pluchon PF, Fouqueau T, Crezé C, Laurent S, Briffotaux J, Hogrel G, Palud A, Henneke G, Godfroy A, Hausner W, Thomm M, Nicolas J, Flament D. An extended network of genomic maintenance in the archaeon Pyrococcus abyssi highlights unexpected associations between eucaryotic homologs. PLoS One 2013; 8:e79707. [PMID: 24244547 PMCID: PMC3820547 DOI: 10.1371/journal.pone.0079707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.
Collapse
Affiliation(s)
- Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Thomas Fouqueau
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Christophe Crezé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Julien Briffotaux
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Adeline Palud
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Ghislaine Henneke
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Regensburg, Germany
| | - Jacques Nicolas
- IRISA-INRIA, Campus de Beaulieu, Rennes, France
- * E-mail: (DF); (JN)
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- * E-mail: (DF); (JN)
| |
Collapse
|
40
|
Abstract
Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously uncharacterized archaeal proteins involved in replication and currently reveal a nearly complete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were comparable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionalization of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific duplications of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal replication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | | |
Collapse
|
41
|
Matsui I, Matsui E, Yamasaki K, Yokoyama H. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase. Life (Basel) 2013; 3:375-85. [PMID: 25369811 PMCID: PMC4187176 DOI: 10.3390/life3030375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 02/01/2023] Open
Abstract
Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.
Collapse
Affiliation(s)
- Ikuo Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Eriko Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Hideshi Yokoyama
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
42
|
Sun F, Huang L. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 2013; 41:8182-95. [PMID: 23821667 PMCID: PMC3783171 DOI: 10.1093/nar/gkt588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Fei Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
43
|
Abstract
In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden.
| | | |
Collapse
|
44
|
Yuan H, Liu XP, Han Z, Allers T, Hou JL, Liu JH. RecJ-like protein from Pyrococcus furiosus has 3'-5' exonuclease activity on RNA: implications for proofreading of 3'-mismatched RNA primers in DNA replication. Nucleic Acids Res 2013; 41:5817-26. [PMID: 23605041 PMCID: PMC3675489 DOI: 10.1093/nar/gkt275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3'-mismatched RNA primer because it cannot remove the 3'-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3'-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3'-5' direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3'-mismatched RNA primers. Replication protein A, the single-stranded DNA-binding protein, stimulates the removal of 3'-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3'-mismatched RNA primer after the 3'-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3'-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.
Collapse
Affiliation(s)
- Hui Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
45
|
Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 2013; 195:2322-8. [PMID: 23504010 DOI: 10.1128/jb.02037-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.
Collapse
|
46
|
Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 2013; 110:4726-31. [PMID: 23487778 DOI: 10.1073/pnas.1220225110] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A comprehensive whole-genome analysis of gene function by transposon mutagenesis and deep sequencing methodology has been implemented successfully in a representative of the Archaea domain. Libraries of transposon mutants were generated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative of the Tn5 transposon. About 89,000 unique insertions were mapped to the genome, which allowed for the classification of 526 genes or about 30% of the genome as possibly essential or strongly advantageous for growth in rich medium. Many of these genes were homologous to eukaryotic genes that encode fundamental processes in replication, transcription, and translation, providing direct evidence for their importance in Archaea. Some genes classified as possibly essential were unique to the archaeal or methanococcal lineages, such as that encoding DNA polymerase PolD. In contrast, the archaeal homolog to the gene encoding DNA polymerase B was not essential for growth, a conclusion confirmed by construction of an independent deletion mutation. Thus PolD, and not PolB, likely plays a fundamental role in DNA replication in methanococci. Similarly, 121 hypothetical ORFs were classified as possibly essential and likely play fundamental roles in methanococcal information processing or metabolism that are not established outside this group of prokaryotes.
Collapse
|
47
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
48
|
In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways. Biochem J 2012; 447:271-80. [PMID: 22849643 DOI: 10.1042/bj20120959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using model DNA substrates and purified recombinant proteins from Pyrococcus abyssi, I have reconstituted the enzymatic reactions involved in RNA primer elimination in vitro. In my dual-labelled system, polymerase D performed efficient strand displacement DNA synthesis, generating 5'-RNA flaps which were subsequently released by Fen1, before ligation by Lig1. In this pathway, the initial cleavage event by RNase HII facilitated RNA primer removal of Okazaki fragments. In addition, I have shown that polymerase B was able to displace downstream DNA strands with a single ribonucleotide at the 5'-end, a product resulting from a single cut in the RNA initiator by RNase HII. After RNA elimination, the combined activities of strand displacement DNA synthesis by polymerase B and flap cleavage by Fen1 provided a nicked substrate for ligation by Lig1. The unique specificities of Okazaki fragment maturation enzymes and replicative DNA polymerases strongly support the existence of two pathways in the resolution of RNA fragments.
Collapse
|
49
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Ishino Y, Ishino S. Rapid progress of DNA replication studies in Archaea, the third domain of life. SCIENCE CHINA-LIFE SCIENCES 2012; 55:386-403. [PMID: 22645083 DOI: 10.1007/s11427-012-4324-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/04/2023]
Abstract
Archaea, the third domain of life, are interesting organisms to study from the aspects of molecular and evolutionary biology. Archaeal cells have a unicellular ultrastructure without a nucleus, resembling bacterial cells, but the proteins involved in genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of Eukaryota. Therefore, archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells. Moreover, the hyperthermophilic archaea provide very stable proteins, which are especially useful for the isolation of replisomal multicomplexes, to analyze their structures and functions. This review focuses on the history, current status, and future directions of archaeal DNA replication studies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|