1
|
Falb N, Patil G, Furtmüller PG, Gabler T, Hofbauer S. Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis. Comput Struct Biotechnol J 2023; 21:3933-3945. [PMID: 37593721 PMCID: PMC10427985 DOI: 10.1016/j.csbj.2023.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The coproporphyrin dependent heme biosynthesis pathway is almost exclusively utilized by Gram-positive bacteria. This fact makes it a worthwhile topic for basic research, since a fundamental understanding of a metabolic pathway is necessary to translate the focus towards medical biotechnology, which is very relevant in this specific case, considering the need for new antibiotic targets to counteract the pathogenicity of Gram-positive superbugs. Over the years a lot of structural data on the set of enzymes acting in Gram-positive heme biosynthesis has accumulated in the Protein Database (www.pdb.org). One major challenge is to filter and analyze all available structural information in sufficient detail in order to be helpful and to draw conclusions. Here we pursued to give a holistic overview of structural information on enzymes involved in the coproporphyrin dependent heme biosynthesis pathway. There are many aspects to be extracted from experimentally determined structures regarding the reaction mechanisms, where the smallest variation of the position of an amino acid residue might be important, but also on a larger level regarding protein-protein interactions, where the focus has to be on surface characteristics and subunit (secondary) structural elements and oligomerization. This review delivers a status quo, highlights still missing information, and formulates future research endeavors in order to better understand prokaryotic heme biosynthesis.
Collapse
Affiliation(s)
- Nikolaus Falb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gaurav Patil
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
2
|
Dali A, Gabler T, Sebastiani F, Destinger A, Furtmüller PG, Pfanzagl V, Becucci M, Smulevich G, Hofbauer S. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation. Protein Sci 2023; 32:e4534. [PMID: 36479958 PMCID: PMC9794026 DOI: 10.1002/pro.4534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Thomas Gabler
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Alina Destinger
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Paul Georg Furtmüller
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Vera Pfanzagl
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy,INSTM Research Unit of FirenzeSesto Fiorentino (Fi)Italy
| | - Stefan Hofbauer
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
3
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Hunter GA, Ferreira GC. Metal ion coordination sites in ferrochelatase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Gabler T, Sebastiani F, Helm J, Dali A, Obinger C, Furtmüller PG, Smulevich G, Hofbauer S. Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups. FEBS J 2021; 289:1680-1699. [PMID: 34719106 DOI: 10.1111/febs.16257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Coproporpyhrin III is the substrate of coproporphyrin ferrochelatases (CpfCs). These enzymes catalyse the insertion of ferrous iron into the porphyrin ring. This is the penultimate step within the coproporphyrin-dependent haeme biosynthesis pathway. This pathway was discovered in 2015 and is mainly utilised by monoderm bacteria. Prior to this discovery, monoderm bacteria were believed to utilise the protoporphyrin-dependent pathway, analogously to diderm bacteria, where the substrate for the respective ferrochelatase is protoporphyrin IX, which has two propionate groups at positions 6 and 7 and two vinyl groups at positions 2 and 4. In this work, we describe for the first time the interactions of the four-propionate substrate, coproporphyrin III, and the four-propionate product, iron coproporphyrin III (coproheme), with the CpfC from Listeria monocytogenes and pin down differences with respect to the protoporphyrin IX and haeme b complexes in the wild-type (WT) enzyme. We further created seven LmCpfC variants aiming at altering substrate and product coordination. The WT enzyme and all the variants were comparatively studied by spectroscopic, thermodynamic and kinetic means to investigate in detail the H-bonding interactions, which govern complex stability and substrate specificity. We identified a tyrosine residue (Y124 in LmCpfC), coordinating the propionate at position 2, which is conserved in monoderm CpfCs, to be highly important for binding and stabilisation. Importantly, we also describe a tyrosine-serine-threonine triad, which coordinates the propionate at position 4. The study of the triad variants indicates structural differences between the coproporphyrin III and the coproheme complexes. ENZYME: EC 4.99.1.9.
Collapse
Affiliation(s)
- Thomas Gabler
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Federico Sebastiani
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy
| | - Johannes Helm
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Dali
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy.,INSTM Research Unit of Firenze, Sesto Fiorentino, Italy
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc Natl Acad Sci U S A 2021; 118:2102698118. [PMID: 34663697 PMCID: PMC8545490 DOI: 10.1073/pnas.2102698118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
During infection, extracellular “labile” heme, released from damaged red blood or parenchymal cells, acts as prototypical alarmin stimulating myeloid cells. A characteristic hallmark of myeloid cell activation is the development of trained immunity, specified as long-lasting adaptations based on transcriptional and epigenetic modifications. In vivo, this is maintained by the rerouting of hematopoiesis. We found that heme is a previously unrecognized trained immunity inducer promoting resistance to bacterial infection in mice. This goes along with extensive long-lasting epigenetic memory in hematopoietic stem cells provoking drastic changes in the transcription factor–binding landscape of myeloid progenitor cells. Given the critical role of heme during infections, we propose that trained immunity is a more general component of innate immunity than previously suggested. Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2–6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular “labile” heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94–100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.
Collapse
|
8
|
Hofbauer S, Helm J, Obinger C, Djinović-Carugo K, Furtmüller PG. Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase. FEBS J 2020; 287:2779-2796. [PMID: 31794133 PMCID: PMC7340540 DOI: 10.1111/febs.15164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023]
Abstract
Coproporphyrin ferrochelatases (CpfCs, EC 4.99.1.9) insert ferrous iron into coproporphyrin III yielding coproheme. CpfCs are utilized by prokaryotic, mainly monoderm (Gram-positive) bacteria within the recently detected coproporphyrin-dependent (CPD) heme biosynthesis pathway. Here, we present a comprehensive study on CpfC from Listeria monocytogenes (LmCpfC) including the first crystal structure of a coproheme-bound CpfC. Comparison of crystal structures of apo-LmCpfC and coproheme-LmCpfC allowed identification of structural rearrangements and of amino acids involved in tetrapyrrole macrocycle and Fe2+ binding. Differential scanning calorimetry of apo-, coproporphyrin III-, and coproheme-LmCpfC underline the pronounced noncovalent interaction of both coproporphyrin and coproheme with the protein (ΔTm = 11 °C compared to apo-LmCpfC), which includes the propionates (p2, p4, p6, p7) and the amino acids Arg29, Arg45, Tyr46, Ser53, and Tyr124. Furthermore, the thermodynamics and kinetics of coproporphyrin III and coproheme binding to apo-LmCpfC is presented as well as the kinetics of insertion of ferrous iron into coproporphyrin III-LmCpfC that immediately leads to formation of ferric coproheme-LmCpfC (kcat /KM = 4.7 × 105 m-1 ·s-1 ). We compare the crystal structure of coproheme-LmCpfC with available structures of CpfCs with artificial tetrapyrrole macrocycles and discuss our data on substrate binding, iron insertion and substrate release in the context of the CPD heme biosynthesis pathway. ENZYME: EC 4.99.1.9 DATABASE: pdb-codes of structural data in this work: 6RWV, 6SV3.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Helm
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
9
|
Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J Biol Chem 2019; 294:11131-11143. [PMID: 31167780 DOI: 10.1074/jbc.ra119.008434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.
Collapse
Affiliation(s)
- Marek Pazderník
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.,Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic .,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
10
|
Yadav P, Kumar M, Bansal R, Kaur P, Ethayathulla AS. Structure model of ferrochelatase from Salmonella Typhi elucidating metalation mechanism. Int J Biol Macromol 2019; 127:585-593. [PMID: 30660563 DOI: 10.1016/j.ijbiomac.2019.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
A homology model of ferrochelatase (HemH), the heme biosynthesis terminal step enzyme from Salmonella Typhi was generated to understand the mechanism of metal insertion into protoporphyrin IX for heme biosynthesis. The overall fold of membrane associated ferrochelatase (StFc) from S. Typhi is similar to human and Yeast ferrochelatase than Bacillus subtilis, and Bacillus anthracis. An insertion of 16 amino acid residues in helical switch having hydrophobic patch proposed to interact with membrane lipids and in opening and closing of heme binding cleft. The sequence analysis and the docking study revealed that the protoporphyrin binding site in StFc has a crucial replacement of Tyr/Met to Leu13 unique in comparison to other known structures, where Tyr13 observed in B. subtilis/B. anthracis while Met76 in human/yeast play important role in holding protoporphyrin in optimal orientation for metalation. A sitting-a-top (SAT) complex mechanism for metalation is proposed with His194 and Glu264 lie at the bottom and Leu13 on the top of the porphyrin ring. In addition, an entry and exit mechanism is also proposed for protoporphyrin binding into cavity by opening and closing of helical switch using molecular dynamics simulation studies of Apo and heme complexed model structure of S. Typhi HemH.
Collapse
Affiliation(s)
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rohit Bansal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
11
|
Gangemi CMA, Ognibene G, Randazzo R, D’Urso A, Purrello R, Fragalà ME. Easy sensing of lead and zinc in water using smart glass based on cationic porphyrin layers. NEW J CHEM 2018. [DOI: 10.1039/c8nj00736e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Easy to handle smart glasses for the real-time detection of Pb2+ and Zn2+ at sub-ppm levels in water obtained by spontaneous deposition of cationic porphyrins (H2T4) on glass.
Collapse
Affiliation(s)
- Chiara M. A. Gangemi
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| | - Giulia Ognibene
- Dipartimento di Scienze Chimiche and INSTM UdR di Catania
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| | - Rosalba Randazzo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| | - Maria Elena Fragalà
- Dipartimento di Scienze Chimiche and INSTM UdR di Catania
- Università degli Studi di Catania
- 6 – 95100 Catania
- Italy
| |
Collapse
|
12
|
Mamardashvili GM, Zhdanova DY, Mamardashvili NZ, Koifman OI, Dehaen W. Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present work, using the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride as an example, it has been shown how different amino acid additives (glycine, valine, leucine and tryptophan) catalyze or inhibit the formation of Cu-porphyrin as a function of the chemical environment (borate buffer (pH7.4), DMSO) and the concentration of the additive. It has been demonstrated that the type of amino acid affects the complexation reaction rate. Possible mechanisms of metalloporphyrin formation and the ways of their acceleration are discussed.
Collapse
Affiliation(s)
- Galina M. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskay st. 1, Ivanovo, 153045, Russia
| | - Daria Yu. Zhdanova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskay st. 1, Ivanovo, 153045, Russia
| | - Nugzar Zh. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskay st. 1, Ivanovo, 153045, Russia
| | - Oskar I. Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Av. 7, Ivanovo 153000, Russia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
13
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
14
|
Senge MO, MacGowan SA, O'Brien JM. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Chem Commun (Camb) 2016; 51:17031-63. [PMID: 26482230 DOI: 10.1039/c5cc06254c] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tetrapyrrole-containing proteins are one of the most fundamental classes of enzymes in nature and it remains an open question to give a chemical rationale for the multitude of biological reactions that can be catalyzed by these pigment-protein complexes. There are many fundamental processes where the same (i.e., chemically identical) porphyrin cofactor is involved in chemically quite distinct reactions. For example, heme is the active cofactor for oxygen transport and storage (hemoglobin, myoglobin) and for the incorporation of molecular oxygen in organic substrates (cytochrome P450). It is involved in the terminal oxidation (cytochrome c oxidase) and the metabolism of H2O2 (catalases and peroxidases) and catalyzes various electron transfer reactions in cytochromes. Likewise, in photosynthesis the same chlorophyll cofactor may function as a reaction center pigment (charge separation) or as an accessory pigment (exciton transfer) in light harvesting complexes (e.g., chlorophyll a). Whilst differences in the apoprotein sequences alone cannot explain the often drastic differences in physicochemical properties encountered for the same cofactor in diverse protein complexes, a critical factor for all biological functions must be the close structural interplay between bound cofactors and the respective apoprotein in addition to factors such as hydrogen bonding or electronic effects. Here, we explore how nature can use the same chemical molecule as a cofactor for chemically distinct reactions using the concept of conformational flexibility of tetrapyrroles. The multifaceted roles of tetrapyrroles are discussed in the context of the current knowledge on distorted porphyrins. Contemporary analytical methods now allow a more quantitative look at cofactors in protein complexes and the development of the field is illustrated by case studies on hemeproteins and photosynthetic complexes. Specific tetrapyrrole conformations are now used to prepare bioengineered designer proteins with specific catalytic or photochemical properties.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Stuart A MacGowan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jessica M O'Brien
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
15
|
Hunter GA, Vankayala SL, Gillam ME, Kearns FL, Lee Woodcock H, Ferreira GC. The conserved active site histidine-glutamate pair of ferrochelatase coordinately catalyzes porphyrin metalation. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to generate heme. Despite recent research on the reaction mechanism of ferrochelatase, the precise roles and localization of individual active site residues in catalysis, particularly those involved in the insertion of the ferrous iron into the protoporphyrin IX substrate, remain controversial. One outstanding question is from which side of the macrocycle of the bound porphyin substrate is the ferrous iron substrate inserted. Pre-steady state kinetic experiments done under single-turnover conditions conclusively demonstrate that metal ion insertion is pH-dependent, and that the conserved active site His-Glu pair coordinately catalyzes the metal ion insertion reaction. Further, p[Formula: see text] calculations and molecular dynamic simulations indicate that the active site His is deprotonated and the protonation state of the Glu relates to the conformational state of ferrochelatase. Specifically, the conserved Glu in the open conformation of ferrochelatase is deprotonated, while it remains protonated in the closed conformation. These findings support not only the role of the His-Glu pair in catalyzing metal ion insertion, as these residues need to be deprotonated to bind the incoming metal ion, but also the importance of the relationship between the protonation state of the Glu residue and the conformation of ferrochelatase. Finally, the results of this study are consistent with our previous proposal that the unwinding of the [Formula: see text]-helix, the major structural determinant of the closed to open conformational transition in ferrochelatase, is associated with the Glu residue binding the Fe[Formula: see text] substrate from a mitochondrial Fe[Formula: see text] donor.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | | | - Mallory E. Gillam
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Fiona L. Kearns
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
16
|
Porcine Ferrochelatase: The Relationship between Iron-Removal Reaction and the Conversion of Heme to Zn-Protoporphyrin. Biosci Biotechnol Biochem 2014; 74:1415-20. [DOI: 10.1271/bbb.100078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Medlock AE, Najahi-Missaoui W, Ross TA, Dailey TA, Burch J, O'Brien JR, Lanzilotta WN, Dailey HA. Identification and characterization of solvent-filled channels in human ferrochelatase. Biochemistry 2012; 51:5422-33. [PMID: 22712763 DOI: 10.1021/bi300598g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferrochelatase catalyzes the formation of protoheme from two potentially cytotoxic products, iron and protoporphyrin IX. While much is known from structural and kinetic studies on human ferrochelatase of the dynamic nature of the enzyme during catalysis and the binding of protoporphyrin IX and heme, little is known about how metal is delivered to the active site and how chelation occurs. Analysis of all ferrochelatase structures available to date reveals the existence of several solvent-filled channels that originate at the protein surface and continue to the active site. These channels have been proposed to provide a route for substrate entry, water entry, and proton exit during the catalytic cycle. To begin to understand the functions of these channels, we investigated in vitro and in vivo a number of variants that line these solvent-filled channels. Data presented herein support the role of one of these channels, which originates at the surface residue H240, in the delivery of iron to the active site. Structural studies of the arginyl variant of the conserved residue F337, which resides at the back of the active site pocket, suggest that it not only regulates the opening and closing of active site channels but also plays a role in regulating the enzyme mechanism. These data provide insight into the movement of the substrate and water into and out of the active site and how this movement is coordinated with the reaction mechanism.
Collapse
Affiliation(s)
- Amy E Medlock
- Biomedical and Health Sciences Institute, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, 30602, United States.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hunter GA, Al-Karadaghi S, Ferreira GC. FERROCHELATASE: THE CONVERGENCE OF THE PORPHYRIN BIOSYNTHESIS AND IRON TRANSPORT PATHWAYS. J PORPHYR PHTHALOCYA 2012; 15:350-356. [PMID: 21852895 DOI: 10.1142/s108842461100332x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferrochelatase (also known as PPIX ferrochelatase; Enzyme Commission number 4.9.9.1.1) catalyzes the insertion of ferrous iron into PPIX to form heme. This reaction unites the biochemically synchronized pathways of porphyrin synthesis and iron transport in nearly all living organisms. The ferrochelatases are an evolutionarily diverse family of enzymes with no more than six active site residues known to be perfectly conserved. The availability of over thirty different crystal structures, including many with bound metal ions or porphyrins, has added tremendously to our understanding of ferrochelatase structure and function. It is generally believed that ferrous iron is directly channeled to ferrochelatase in vivo, but the identity of the suspected chaperone remains uncertain despite much recent progress in this area. Identification of a conserved metal ion binding site at the base of the active site cleft may be an important clue as to how ferrochelatases acquire iron, and catalyze desolvation during transport to the catalytic site to complete heme synthesis.
Collapse
Affiliation(s)
- Gregory A Hunter
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, 33620
| | | | | |
Collapse
|
19
|
McIntyre NR, Franco R, Shelnutt JA, Ferreira GC. Nickel(II) chelatase variants directly evolved from murine ferrochelatase: porphyrin distortion and kinetic mechanism. Biochemistry 2011; 50:1535-44. [PMID: 21222436 DOI: 10.1021/bi101170p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heme biosynthetic pathway culminates with the ferrochelatase-catalyzed ferrous iron chelation into protoporphyrin IX to form protoheme. The catalytic mechanism of ferrochelatase has been proposed to involve the stabilization of a nonplanar porphyrin to present the pyrrole nitrogens to the metal ion substrate. Previously, we hypothesized that the ferrochelatase-induced nonplanar distortions of the porphyrin substrate impose selectivity for the divalent metal ion incorporated into the porphyrin ring and facilitate the release of the metalated porphyrin through its reduced affinity for the enzyme. Using resonance Raman spectroscopy, the structural properties of porphyrins bound to the active site of directly evolved Ni(2+)-chelatase variants are now examined with regard to the mode and extent of porphyrin deformation and related to the catalytic properties of the enzymes. The Ni(2+)-chelatase variants (S143T, F323L, and S143T/F323L), which were directly evolved to exhibit an enhanced Ni(2+)-chelatase activity over that of the parent wild-type ferrochelatase, induced a weaker saddling deformation of the porphyrin substrate. Steady-state kinetic parameters of the evolved variants for Ni(2+)- and Fe(2+)-chelatase activities increased compared to those of wild-type ferrochelatase. In particular, the reduced porphyrin saddling deformation correlated with increased catalytic efficiency toward the metal ion substrate (Ni(2+) or Fe(2+)). The results lead us to propose that the decrease in the induced protoporphyrin IX saddling mode is associated with a less stringent metal ion preference by ferrochelatase and a slower porphyrin chelation step.
Collapse
Affiliation(s)
- Neil R McIntyre
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | | | | | | |
Collapse
|
20
|
Hansson MD, Karlberg T, Söderberg CAG, Rajan S, Warren MJ, Al-Karadaghi S, Rigby SEJ, Hansson M. Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase. J Biol Inorg Chem 2010; 16:235-42. [DOI: 10.1007/s00775-010-0720-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
|
21
|
Karlberg T, Hansson MD, Yengo RK, Johansson R, Thorvaldsen HO, Ferreira GC, Hansson M, Al-Karadaghi S. Porphyrin binding and distortion and substrate specificity in the ferrochelatase reaction: the role of active site residues. J Mol Biol 2008; 378:1074-83. [PMID: 18423489 DOI: 10.1016/j.jmb.2008.03.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
Abstract
The specific insertion of a divalent metal ion into tetrapyrrole macrocycles is catalyzed by a group of enzymes called chelatases. Distortion of the tetrapyrrole has been proposed to be an important component of the mechanism of metallation. We present the structures of two different inhibitor complexes: (1) N-methylmesoporphyrin (N-MeMP) with the His183Ala variant of Bacillus subtilis ferrochelatase; (2) the wild-type form of the same enzyme with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride (dSDP). Analysis of the structures showed that only one N-MeMP isomer out of the eight possible was bound to the protein and it was different from the isomer that was earlier found to bind to the wild-type enzyme. A comparison of the distortion of this porphyrin with other porphyrin complexes of ferrochelatase and a catalytic antibody with ferrochelatase activity using normal-coordinate structural decomposition reveals that certain types of distortion are predominant in all these complexes. On the other hand, dSDP, which binds closer to the protein surface compared to N-MeMP, does not undergo any distortion upon binding to the protein, underscoring that the position of the porphyrin within the active site pocket is crucial for generating the distortion required for metal insertion. In addition, in contrast to the wild-type enzyme, Cu(2+)-soaking of the His183Ala variant complex did not show any traces of porphyrin metallation. Collectively, these results provide new insights into the role of the active site residues of ferrochelatase in controlling stereospecificity, distortion and metallation.
Collapse
Affiliation(s)
- Tobias Karlberg
- Department of Molecular Biophysics, Centre for Molecular Protein Science, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Medlock AE, Dailey TA, Ross TA, Dailey HA, Lanzilotta WN. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase. J Mol Biol 2007; 373:1006-16. [PMID: 17884090 PMCID: PMC2083577 DOI: 10.1016/j.jmb.2007.08.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/17/2022]
Abstract
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Due to the many critical roles of heme, synthesis of heme is required by the vast majority of organisms. Despite significant investigation of both the microbial and eukaryotic enzyme, details of metal chelation remain unidentified. Here we present the first structure of the wild-type human enzyme, a lead-inhibited intermediate of the wild-type enzyme with bound metallated porphyrin macrocycle, the product bound form of the enzyme, and a higher resolution model for the substrate-bound form of the E343K variant. These data paint a picture of an enzyme that undergoes significant changes in secondary structure during the catalytic cycle. The role that these structural alterations play in overall catalysis and potential protein-protein interactions with other proteins, as well as the possible molecular basis for these changes, is discussed. The atomic details and structural rearrangements presented herein significantly advance our understanding of the substrate binding mode of ferrochelatase and reveal new conformational changes in a structurally conserved pi-helix that is predicted to have a central role in product release.
Collapse
Affiliation(s)
- Amy E Medlock
- Biomedical and Health Sciences Institute, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
23
|
Shipovskov S, Reimann CT. Electrospray ionization mass spectrometry in enzymology: uncovering the mechanisms of two-substrate reactions. Analyst 2007; 132:397-402. [PMID: 17471382 DOI: 10.1039/b615394c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to draw attention to the use of electrospray ionization mass spectrometry (ESI-MS) for monitoring the course of enzyme-substrate interactions, in the particular case of complex systems in which two substrates participate. The determination and characterization of intra-molecular reactions, especially those that occur in the enzyme active site, is not a trivial task in chemical kinetics, typically requiring long measurement times and relatively expensive techniques such as nuclear magnetic resonance (NMR), X-ray crystallography or electron microscopy (EM). However, nowadays almost all laboratories are equipped with or else have access to the ESI-MS technique. The aim of this review is to focus on the possibilities of employing even quite simple MS equipment to tackle different applications in studies of complex enzymatic systems.
Collapse
Affiliation(s)
- Stepan Shipovskov
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UKM1 7DN.
| | | |
Collapse
|
24
|
Hansson MD, Karlberg T, Rahardja MA, Al-Karadaghi S, Hansson M. Amino Acid Residues His183 and Glu264 in Bacillus subtilis Ferrochelatase Direct and Facilitate the Insertion of Metal Ion into Protoporphyrin IX,. Biochemistry 2006; 46:87-94. [PMID: 17198378 DOI: 10.1021/bi061760a] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264.
Collapse
Affiliation(s)
- Mattias D Hansson
- Department of Biochemistry and Department of Molecular Biophysics, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Ohgo Y, Hoshino A, Uekusa H, Nakamura M. Peculiar sandwich-like π–π interaction regulating the nonplanarity of the model heme crystals. INORG CHEM COMMUN 2006. [DOI: 10.1016/j.inoche.2006.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Abstract
Protoporhyrin IX ferrochelatase catalyses the terminal step of the haem-biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. NMPP (N-methylprotoporphyrin), a transition-state analogue and potent inhibitor of ferrochelatase, is commonly used to induce haem deficiency in mammalian cell cultures. To create ferrochelatase variants with different extents of tolerance towards NMPP and to understand further the mechanism of ferrochelatase inhibition by NMPP, we isolated variants with increased NMPP resistance, bearing mutations in an active-site loop (murine ferrochelatase residues 248-257), which was previously shown to mediate a protein conformational change triggered by porphyrin binding. The kinetic mechanisms of inhibition of two variants, in which Pro255 was replaced with either arginine (P255R) or glycine (P255G), were investigated and compared with that of wild-type ferrochelatase. While the binding affinity of the P255X variants for NMPP decreased by one order of magnitude in relation to that of wild-type enzyme, the inhibition constant increased by approximately two orders of magnitude (K(i)(app) values of 1 microM and 2.3 microM for P255R and P255G respectively, as against 3 nM for wild-type ferrochelatase). Nonetheless, the drastically reduced inhibition of the variants by NMPP was not paralleled with a decrease in specificity constant (kcat/K(m, protoporhyrin IX)) and/or catalytic activity (kcat). Further, although NMPP binding to either wild-type ferrochelatase or P255R occurred via a similar two-step kinetic mechanism, the forward and reverse rate constants associated with the second and rate-limiting step were comparable for the two enzymes. Collectively, these results suggest that Pro255 has a crucial role in maintaining an appropriate protein conformation and modulating the selectivity and/or regiospecificity of ferrochelatase.
Collapse
Affiliation(s)
- Zhen Shi
- *Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, U.S.A
| | - Gloria C. Ferreira
- *Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, U.S.A
- †H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, University of South Florida, Tampa, FL 33612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC. Chelatases: distort to select? Trends Biochem Sci 2006; 31:135-42. [PMID: 16469498 PMCID: PMC2997100 DOI: 10.1016/j.tibs.2006.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/06/2005] [Accepted: 01/24/2006] [Indexed: 02/07/2023]
Abstract
Chelatases catalyze the insertion of a specific metal ion into porphyrins, a key step in the synthesis of metalated tetrapyrroles that are essential for many cellular processes. Despite apparent common structural features among chelatases, no general reaction mechanism accounting for metal ion specificity has been established. We propose that chelatase-induced distortion of the porphyrin substrate not only enhances the reaction rate by decreasing the activation energy of the reaction but also modulates which divalent metal ion is incorporated into the porphyrin ring. We evaluate the recently recognized interaction between ferrochelatase and frataxin as a way to regulate iron delivery to ferrochelatase, and thus iron and heme metabolism. We postulate that the ferrochelatase-frataxin interaction controls the type of metal ion that is delivered to ferrochelatase.
Collapse
Affiliation(s)
- Salam Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC. Chelatases: distort to select? Trends Biochem Sci 2006. [PMID: 16469498 DOI: 10.1016/j.tibs.2006.01.001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chelatases catalyze the insertion of a specific metal ion into porphyrins, a key step in the synthesis of metalated tetrapyrroles that are essential for many cellular processes. Despite apparent common structural features among chelatases, no general reaction mechanism accounting for metal ion specificity has been established. We propose that chelatase-induced distortion of the porphyrin substrate not only enhances the reaction rate by decreasing the activation energy of the reaction but also modulates which divalent metal ion is incorporated into the porphyrin ring. We evaluate the recently recognized interaction between ferrochelatase and frataxin as a way to regulate iron delivery to ferrochelatase, and thus iron and heme metabolism. We postulate that the ferrochelatase-frataxin interaction controls the type of metal ion that is delivered to ferrochelatase.
Collapse
Affiliation(s)
- Salam Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|