1
|
Knyazev DG, Winter L, Vogt A, Posch S, Öztürk Y, Siligan C, Goessweiner-Mohr N, Hagleitner-Ertugrul N, Koch HG, Pohl P. YidC from Escherichia coli Forms an Ion-Conducting Pore upon Activation by Ribosomes. Biomolecules 2023; 13:1774. [PMID: 38136645 PMCID: PMC10741985 DOI: 10.3390/biom13121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Lukas Winter
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Yavuz Öztürk
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nikolaus Goessweiner-Mohr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nora Hagleitner-Ertugrul
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| |
Collapse
|
2
|
Kolli R, Soll J, Carrie C. Plant Mitochondrial Inner Membrane Protein Insertion. Int J Mol Sci 2018; 19:E641. [PMID: 29495281 PMCID: PMC5855863 DOI: 10.3390/ijms19020641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
During the biogenesis of the mitochondrial inner membrane, most nuclear-encoded inner membrane proteins are laterally released into the membrane by the TIM23 and the TIM22 machinery during their import into mitochondria. A subset of nuclear-encoded mitochondrial inner membrane proteins and all the mitochondrial-encoded inner membrane proteins use the Oxa machinery-which is evolutionarily conserved from the endosymbiotic bacterial ancestor of mitochondria-for membrane insertion. Compared to the mitochondria from other eukaryotes, plant mitochondria have several unique features, such as a larger genome and a branched electron transport pathway, and are also involved in additional cellular functions such as photorespiration and stress perception. This review focuses on the unique aspects of plant mitochondrial inner membrane protein insertion machinery, which differs from that in yeast and humans, and includes a case study on the biogenesis of Cox2 in yeast, humans, two plant species, and an algal species to highlight lineage-specific similarities and differences. Interestingly, unlike mitochondria of other eukaryotes but similar to bacteria and chloroplasts, plant mitochondria appear to use the Tat machinery for membrane insertion of the Rieske Fe/S protein.
Collapse
Affiliation(s)
- Renuka Kolli
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
In vivo Localization Studies in the Stramenopile Alga Nannochloropsis oceanica. Protist 2015; 166:161-71. [DOI: 10.1016/j.protis.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/21/2023]
|
4
|
A conserved cysteine residue of Bacillus subtilis SpoIIIJ is important for endospore development. PLoS One 2014; 9:e99811. [PMID: 25133632 PMCID: PMC4136701 DOI: 10.1371/journal.pone.0099811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/19/2014] [Indexed: 11/20/2022] Open
Abstract
During sporulation in Bacillus subtilis, the onset of activity of the late forespore-specific sigma factor σG coincides with completion of forespore engulfment by the mother cell. At this stage, the forespore becomes a free protoplast, surrounded by the mother cell cytoplasm and separated from it by two membranes that derive from the asymmetric division septum. Continued gene expression in the forespore, isolated from the surrounding medium, relies on the SpoIIIA-SpoIIQ secretion system assembled from proteins synthesised both in the mother cell and in the forespore. The membrane protein insertase SpoIIIJ, of the YidC/Oxa1/Alb3 family, is involved in the assembly of the SpoIIIA-SpoIIQ complex. Here we show that SpoIIIJ exists as a mixture of monomers and dimers stabilised by a disulphide bond. We show that residue Cys134 within transmembrane segment 2 (TM2) of SpoIIIJ is important to stabilise the protein in the dimeric form. Labelling of Cys134 with a Cys-reactive reagent could only be achieved under stringent conditions, suggesting a tight association at least in part through TM2, between monomers in the membrane. Substitution of Cys134 by an Ala results in accumulation of the monomer, and reduces SpoIIIJ function in vivo. Therefore, SpoIIIJ activity in vivo appears to require dimer formation.
Collapse
|
5
|
Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, Guiard B, Warscheid B, van der Laan M. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 2014; 289:27352-27362. [PMID: 25124039 DOI: 10.1074/jbc.m114.556498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.
Collapse
Affiliation(s)
- Carola S Mehnert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Sandra G Schrempp
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Lioba Kochbeck
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Bettina Warscheid
- Institut für Biologie II, Fakultät für Biologie, Funktionelle Proteomik, and Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and
| | - Martin van der Laan
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Universität Freiburg, 79104 Freiburg, Germany and.
| |
Collapse
|
6
|
Ostojić J, Glatigny A, Herbert CJ, Dujardin G, Bonnefoy N. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae? Biochimie 2013; 100:27-37. [PMID: 24262604 DOI: 10.1016/j.biochi.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Glatigny
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christopher J Herbert
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
7
|
The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain. EUKARYOTIC CELL 2013; 12:1600-8. [PMID: 24078306 DOI: 10.1128/ec.00237-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.
Collapse
|
8
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
9
|
Krüger V, Deckers M, Hildenbeutel M, van der Laan M, Hellmers M, Dreker C, Preuss M, Herrmann JM, Rehling P, Wagner R, Meinecke M. The mitochondrial oxidase assembly protein1 (Oxa1) insertase forms a membrane pore in lipid bilayers. J Biol Chem 2012; 287:33314-26. [PMID: 22829595 DOI: 10.1074/jbc.m112.387563] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.
Collapse
Affiliation(s)
- Vivien Krüger
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:274-85. [PMID: 22683763 DOI: 10.1016/j.bbamcr.2012.05.028] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/28/2022]
Abstract
Most mitochondrial proteins are encoded in the nucleus. They are synthesized as precursor forms in the cytosol and must be imported into mitochondria with the help of different protein translocases. Distinct import signals within precursors direct each protein to the mitochondrial surface and subsequently onto specific transport routes to its final destination within these organelles. In this review we highlight common principles of mitochondrial protein import and address different mechanisms of protein integration into mitochondrial membranes. Over the last years it has become clear that mitochondrial protein translocases are not independently operating units, but in fact closely cooperate with each other. We discuss recent studies that indicate how the pathways for mitochondrial protein biogenesis are embedded into a functional network of various other physiological processes, such as energy metabolism, signal transduction, and maintenance of mitochondrial morphology. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Jan Dudek
- Abteilung Biochemie II, Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
11
|
Stoldt S, Wenzel D, Hildenbeutel M, Wurm CA, Herrmann JM, Jakobs S. The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates. Mol Biol Cell 2012; 23:2292-301. [PMID: 22513091 PMCID: PMC3374748 DOI: 10.1091/mbc.e11-06-0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 11/16/2022] Open
Abstract
The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs.
Collapse
Affiliation(s)
- Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Bohnert M, Rehling P, Guiard B, Herrmann JM, Pfanner N, van der Laan M. Cooperation of Stop-Transfer and Conservative Sorting Mechanisms in Mitochondrial Protein Transport. Curr Biol 2010; 20:1227-32. [DOI: 10.1016/j.cub.2010.05.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
13
|
Becker T, Gebert M, Pfanner N, van der Laan M. Biogenesis of mitochondrial membrane proteins. Curr Opin Cell Biol 2009; 21:484-93. [DOI: 10.1016/j.ceb.2009.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 11/26/2022]
|
14
|
Zhang YJ, Tian HF, Wen JF. The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 2009; 9:137. [PMID: 19534824 PMCID: PMC2706819 DOI: 10.1186/1471-2148-9-137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 06/18/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life. RESULTS Our comprehensive analyses of the phylogenetic distribution and phylogeny of the YidC/Oxa/Alb3 family lead to the following findings: 1) In archaea, YidC homologs are only sporadically distributed in Euryarchaeota; 2) Most bacteria contain only one YidC gene copy; some species in a few taxa (Bacillus, Lactobacillales, Actinobacteria and Clostridia) have two gene copies; 3) Eukaryotic Oxa and Alb3 have two separate prokaryotic origins, but they might not arise directly from the YidC of proteobacteria and cyanobacteria through the endosymbiosis origins of mitochondrium and chloroplast, respectively; 4) An ancient duplication occurred on both Oxa and Alb3 immediately after their origins, and thus most eukaryotes generally bear two Oxa and two Alb3. However, secondary loss, duplication or acquisition of new domain also occurred on the two genes in some lineages, especially in protists, resulting in a rich diversity or adaptive differentiation of the two translocases in these lineages. CONCLUSION YidC is distributed in bacteria and some Euryarchaeota. Although mitochondrial Oxa and chloroplastic Alb3 are derived from the prokaryotic YidC, their origin might be not related to the endosymbiosis events of the two organelles. In some eukaryotic lineages, especially in protists, Oxa and Alb3 have diverse evolutionary histories. Finally, a model for the evolutionary history of the entire YidC/Oxa/Alb3 family in the three domains of life is proposed.
Collapse
Affiliation(s)
- Yu-Juan Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, PR China.
| | | | | |
Collapse
|
15
|
Sato T, Mihara K. Topogenesis of mammalian Oxa1, a component of the mitochondrial inner membrane protein export machinery. J Biol Chem 2009; 284:14819-27. [PMID: 19349278 DOI: 10.1074/jbc.m809520200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxa1 is a mitochondrial inner membrane protein with a predicted five-transmembrane segment (TM1 approximately 5) topology in which the N terminus and a hydrophilic loop, L2, are exposed to the intermembrane space and the C-terminal region and two loops, L1 and L3, are exposed to the matrix. Oxa1 mediates the insertion of mitochondrial DNA-encoded subunits of respiratory complexes and several nuclear DNA-encoded proteins into the inner membrane from the matrix. Compared with yeast Oxa1, little is known about the import and function of mammalian Oxa1. Here, we investigated the topogenesis of Oxa1 in HeLa cells using systematic deletion or mutation constructs and found that (i) the N-terminal 64-residue segment formed a presequence, and its deletion directed the mature protein to the endoplasmic reticulum, indicating that the presequence arrests cotranslational activation of the potential endoplasmic reticulum-targeting signal within mature Oxa1, (ii) systematic deletion of Oxa1 TM segments revealed that the presence of all five TMs is essential for efficient membrane integration, (iii) the species-conserved hexapeptide (GLPWWG) located near the N terminus of TM1 was essential for export of the N-terminal segment and L2 into the intermembrane space from the matrix, i.e. for correct topogenesis of Oxa1, and (iv) GLPWWG placed near the N terminus of TM2 or TM3 in the reporter construct also supported its membrane integration in the Nout-Cin orientation. Together, these results demonstrated that topogenesis of Oxa1 is a cooperative event of all five TMs, and GLPWWG followed immediately by TM1 is essential for correct Oxa1 topogenesis.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812, Japan
| | | |
Collapse
|
16
|
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:60-70. [PMID: 18522806 DOI: 10.1016/j.bbamcr.2008.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
17
|
Stiburek L, Fornuskova D, Wenchich L, Pejznochova M, Hansikova H, Zeman J. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J Mol Biol 2007; 374:506-16. [PMID: 17936786 DOI: 10.1016/j.jmb.2007.09.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
Abstract
The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells. Furthermore, human Oxa1l was found to be an integral membrane protein, and, using two-dimensional blue native/denaturing PAGE, the majority of the protein was identified as part of a 600-700 kDa complex. The stable short hairpin (sh)RNA-mediated knockdown of Oxa1l in HEK293 cells resulted in markedly decreased steady-state levels and ATP hydrolytic activity of the F(1)F(o)-ATP synthase and moderately reduced levels and activity of NADH:ubiquinone oxidoreductase (complex I). However, no significant accumulation of corresponding sub-complexes could be detected on blue native immunoblots. Intriguingly, the achieved depletion of Oxa1l protein did not adversely affect the assembly or activity of cytochrome c oxidase or the cytochrome bc(1) complex. Taken together, our results indicate that human Oxa1l represents a mitochondrial integral membrane protein required for the correct biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase.
Collapse
Affiliation(s)
- Lukas Stiburek
- Department of Pediatrics and Center of Applied Genomics, 1st Faculty of Medicine, Charles University, Prague, 128 08, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Buzhynskyy N, Sens P, Prima V, Sturgis JN, Scheuring S. Rows of ATP synthase dimers in native mitochondrial inner membranes. Biophys J 2007; 93:2870-6. [PMID: 17557793 PMCID: PMC1989723 DOI: 10.1529/biophysj.107.109728] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction.
Collapse
|