1
|
Sridhar S, Kiema T, Schmitz W, Widersten M, Wierenga RK. Structural enzymology studies with the substrate 3S-hydroxybutanoyl-CoA: bifunctional MFE1 is a less efficient dehydrogenase than monofunctional HAD. FEBS Open Bio 2024; 14:655-674. [PMID: 38458818 PMCID: PMC10988713 DOI: 10.1002/2211-5463.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Multifunctional enzyme, type-1 (MFE1) catalyzes the second and third step of the β-oxidation cycle, being, respectively, the 2E-enoyl-CoA hydratase (ECH) reaction (N-terminal part, crotonase fold) and the NAD+-dependent, 3S-hydroxyacyl-CoA dehydrogenase (HAD) reaction (C-terminal part, HAD fold). Structural enzymological properties of rat MFE1 (RnMFE1) as well as of two of its variants, namely the E123A variant (a glutamate of the ECH active site is mutated into alanine) and the BCDE variant (without domain A of the ECH part), were studied, using as substrate 3S-hydroxybutanoyl-CoA. Protein crystallographic binding studies show the hydrogen bond interactions of 3S-hydroxybutanoyl-CoA as well as of its 3-keto, oxidized form, acetoacetyl-CoA, with the catalytic glutamates in the ECH active site. Pre-steady state binding experiments with NAD+ and NADH show that the kon and koff rate constants of the HAD active site of monomeric RnMFE1 and the homologous human, dimeric 3S-hydroxyacyl-CoA dehydrogenase (HsHAD) for NAD+ and NADH are very similar, being the same as those observed for the E123A and BCDE variants. However, steady state and pre-steady state kinetic data concerning the HAD-catalyzed dehydrogenation reaction of the substrate 3S-hydroxybutanoyl-CoA show that, respectively, the kcat and kchem rate constants for conversion into acetoacetyl-CoA by RnMFE1 (and its two variants) are about 10 fold lower as when catalyzed by HsHAD. The dynamical properties of dehydrogenases are known to be important for their catalytic efficiency, and it is discussed that the greater complexity of the RnMFE1 fold correlates with the observation that RnMFE1 is a slower dehydrogenase than HsHAD.
Collapse
Affiliation(s)
- Shruthi Sridhar
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| | | | - Werner Schmitz
- Theodor Boveri Institute of Biosciences (Biocenter)University of WürzburgGermany
| | | | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluFinland
| |
Collapse
|
2
|
Li Y, Luan P, Dong L, Liu J, Jiang L, Bai J, Liu F, Jiang Y. Asymmetric reduction of conjugated C C bonds by immobilized fusion of old yellow enzyme and glucose dehydrogenase. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Son HF, Ahn JW, Hong J, Seok J, Jin KS, Kim KJ. Crystal structure of multi-functional enzyme FadB from Cupriavidus necator: Non-formation of FadAB complex. Arch Biochem Biophys 2022; 730:109391. [PMID: 36087768 DOI: 10.1016/j.abb.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Cupriavidus necator H16 is a gram-negative chemolithoautotrophic bacterium that has been extensively studied for biosynthesis and biodegradation of polyhydroxyalkanoate (PHA) plastics. To improve our understanding of fatty acid metabolism for PHA production, we determined the crystal structure of multi-functional enoyl-CoA hydratase from Cupriavidus necator H16 (CnFadB). The predicted model of CnFadB created by AlphaFold was used to solve the phase problem during determination of the crystal structure of the protein. The CnFadB structure consists of two distinctive domains, an N-terminal enol-CoA hydratase (ECH) domain and a C-terminal 3-hydroxyacyl-CoA dehydrogenase (HAD) domain, and the substrate- and cofactor-binding modes of these two functional domains were identified. Unlike other known FadB enzymes that exist as dimers complexed with FadA, CnFadB functions as a monomer without forming a complex with CnFadA. Small angle X-ray scattering (SAXS) measurement further proved that CnFadB exists as a monomer in solution. The non-sequential action of FadA and FadB in C. necator appears to affect β-oxidation and PHA synthesis/degradation.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Woo Ahn
- Postech Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea; Center for Biomolecular Capture Technology, Bio Open Innovation Center, Pohang University of Science and Technology, 47 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jiyeon Hong
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jihye Seok
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Sridhar S, Schmitz W, Hiltunen JK, Venkatesan R, Bergmann U, Kiema TR, Wierenga RK. Crystallographic binding studies of rat peroxisomal multifunctional enzyme type 1 with 3-ketodecanoyl-CoA: capturing active and inactive states of its hydratase and dehydrogenase catalytic sites. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1256-1269. [DOI: 10.1107/s2059798320013819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 11/11/2022]
Abstract
The peroxisomal multifunctional enzyme type 1 (MFE1) catalyzes two successive reactions in the β-oxidation cycle: the 2E-enoyl-CoA hydratase (ECH) and NAD+-dependent 3S-hydroxyacyl-CoA dehydrogenase (HAD) reactions. MFE1 is a monomeric enzyme that has five domains. The N-terminal part (domains A and B) adopts the crotonase fold and the C-terminal part (domains C, D and E) adopts the HAD fold. A new crystal form of MFE1 has captured a conformation in which both active sites are noncompetent. This structure, at 1.7 Å resolution, shows the importance of the interactions between Phe272 in domain B (the linker helix; helix H10 of the crotonase fold) and the beginning of loop 2 (of the crotonase fold) in stabilizing the competent ECH active-site geometry. In addition, protein crystallographic binding studies using optimized crystal-treatment protocols have captured a structure with both the 3-ketodecanoyl-CoA product and NAD+bound in the HAD active site, showing the interactions between 3-ketodecanoyl-CoA and residues of the C, D and E domains. Structural comparisons show the importance of domain movements, in particular of the C domain with respect to the D/E domains and of the A domain with respect to the HAD part. These comparisons suggest that the N-terminal part of the linker helix, which interacts tightly with domains A and E, functions as a hinge region for movement of the A domain with respect to the HAD part.
Collapse
|
5
|
Contreras MA, Alzate O, Singh AK, Singh I. PPARα activation induces N(ε)-Lys-acetylation of rat liver peroxisomal multifunctional enzyme type 1. Lipids 2013; 49:119-31. [PMID: 24092543 DOI: 10.1007/s11745-013-3843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022]
Abstract
Peroxisomes are ubiquitous subcellular organelles that participate in metabolic and disease processes, with few of its proteins undergoing posttranslational modifications. As the role of lysine-acetylation has expanded into the cellular intermediary metabolism, we used a combination of differential centrifugation, organelle isolation by linear density gradient centrifugation, western blot analysis, and peptide fingerprinting and amino acid sequencing by mass spectrometry to investigate protein acetylation in control and ciprofibrate-treated rat liver peroxisomes. Organelle protein samples isolated by density gradient centrifugation from PPARα-agonist treated rat liver screened with an anti-N(ε)-acetyl lysine antibody revealed a single protein band of 75 kDa. Immunoprecipitation with this antibody resulted in the precipitation of a protein from the protein pool of ciprofibrate-induced peroxisomes, but not from the protein pool of non-induced peroxisomes. Peptide mass fingerprinting analysis identified the protein as the peroxisomal multifunctional enzyme type 1. In addition, mass spectrometry-based amino acid sequencing resulted in the identification of unique peptides containing 4 acetylated-Lys residues (K¹⁵⁵, K¹⁷³, K¹⁹⁰, and K⁵⁸³). This is the first report that demonstrates posttranslational acetylation of a peroxisomal enzyme in PPARα-dependent proliferation of peroxisomes in rat liver.
Collapse
Affiliation(s)
- Miguel A Contreras
- Department of Pediatrics, The Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA,
| | | | | | | |
Collapse
|
6
|
Kasaragod P, Schmitz W, Hiltunen JK, Wierenga RK. The isomerase and hydratase reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from structures of complexes with 3S-hydroxy-acyl-CoA. FEBS J 2013; 280:3160-75. [PMID: 23351063 DOI: 10.1111/febs.12150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 01/20/2023]
Abstract
The multifunctional enzyme, type-1 (MFE1) is involved in several lipid metabolizing pathways. It catalyses: (a) enoyl-CoA isomerase and (b) enoyl-CoA hydratase (EC 4.2.1.17) reactions in its N-terminal crotonase part, as well as (3) a 3S-hydroxy-acyl-CoA dehydrogenase (HAD; EC 1.1.1.35) reaction in its C-terminal 3S-hydroxy-acyl-CoA dehydrogenase part. Crystallographic binding studies with rat peroxisomal MFE1, using unbranched and branched 2E-enoyl-CoA substrate molecules, show that the substrate has been hydrated by the enzyme in the crystal and that the product, 3S-hydroxy-acyl-CoA, remains bound in the crotonase active site. The fatty acid tail points into an exit tunnel shaped by loop-2. The thioester oxygen is bound in the classical oxyanion hole of the crotonase fold, stabilizing the enolate reaction intermediate. The structural data of these enzyme product complexes suggest that the catalytic base, Glu123, initiates the isomerase reaction by abstracting the C2-proton from the substrate molecule. Subsequently, in the hydratase reaction, Glu123 completes the catalytic cycle by reprotonating the C2 atom. A catalytic water, bound between the OE1-atoms of the two catalytic glutamates, Glu103 and Glu123, plays an important role in the enoyl-CoA isomerase and the enoyl-CoA hydratase reaction mechanism of MFE1. The structural variability of loop-2 between MFE1 and its monofunctional homologues correlates with differences in the respective substrate preferences and catalytic rates.
Collapse
Affiliation(s)
- Prasad Kasaragod
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
7
|
Arent S, Christensen CE, Pye VE, Nørgaard A, Henriksen A. The multifunctional protein in peroxisomal beta-oxidation: structure and substrate specificity of the Arabidopsis thaliana protein MFP2. J Biol Chem 2010; 285:24066-77. [PMID: 20463021 PMCID: PMC2911295 DOI: 10.1074/jbc.m110.106005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
Plant fatty acids can be completely degraded within the peroxisomes. Fatty acid degradation plays a role in several plant processes including plant hormone synthesis and seed germination. Two multifunctional peroxisomal isozymes, MFP2 and AIM1, both with 2-trans-enoyl-CoA hydratase and l-3-hydroxyacyl-CoA dehydrogenase activities, function in mouse ear cress (Arabidopsis thaliana) peroxisomal beta-oxidation, where fatty acids are degraded by the sequential removal of two carbon units. A deficiency in either of the two isozymes gives rise to a different phenotype; the biochemical and molecular background for these differences is not known. Structure determination of Arabidopsis MFP2 revealed that plant peroxisomal MFPs can be grouped into two families, as defined by a specific pattern of amino acid residues in the flexible loop of the acyl-binding pocket of the 2-trans-enoyl-CoA hydratase domain. This could explain the differences in substrate preferences and specific biological functions of the two isozymes. The in vitro substrate preference profiles illustrate that the Arabidopsis AIM1 hydratase has a preference for short chain acyl-CoAs compared with the Arabidopsis MFP2 hydratase. Remarkably, neither of the two was able to catabolize enoyl-CoA substrates longer than 14 carbon atoms efficiently, suggesting the existence of an uncharacterized long chain enoyl-CoA hydratase in Arabidopsis peroxisomes.
Collapse
Affiliation(s)
- Susan Arent
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Caspar E. Christensen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Valerie E. Pye
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Allan Nørgaard
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Anette Henriksen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
8
|
Kasaragod P, Venkatesan R, Kiema TR, Hiltunen JK, Wierenga RK. Crystal structure of liganded rat peroxisomal multifunctional enzyme type 1: a flexible molecule with two interconnected active sites. J Biol Chem 2010; 285:24089-98. [PMID: 20463028 PMCID: PMC2911341 DOI: 10.1074/jbc.m110.117606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/27/2010] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the full-length rat peroxisomal multifunctional enzyme, type 1 (rpMFE1), has been determined at 2.8 A resolution. This enzyme has three catalytic activities and two active sites. The N-terminal part has the crotonase fold, which builds the active site for the Delta(3),Delta(2)-enoyl-CoA isomerase and the Delta(2)-enoyl-CoA hydratase-1 catalytic activities, and the C-terminal part has the (3S)-hydroxyacyl-CoA dehydrogenase fold and makes the (3S)-hydroxyacyl-CoA dehydrogenase active site. rpMFE1 is a multidomain protein having five domains (A-E). The crystal structure of full-length rpMFE1 shows a flexible arrangement of the A-domain with respect to the B-E-domains. Because of a hinge region near the end of the A-domain, two different positions of the A-domain were observed for the two protein molecules (A and B) of the asymmetric unit. In the most closed conformation, the mode of binding of CoA is stabilized by domains A and B (helix-10), as seen in other crotonase fold members. Domain B, although functionally belonging to the N-terminal part, is found tightly associated with the C-terminal part, i.e. fixed to the E-domain. The two active sites of rpMFE1 are approximately 40 A apart, separated by a tunnel, characterized by an excess of positively charged side chains. Comparison of the structures of rpMFE1 with the monofunctional crotonase and (3S)-hydroxyacyl-CoA dehydrogenase superfamily enzymes, as well as with the bacterial alpha(2)beta(2)-fatty acid oxidation multienzyme complex, reveals that this tunnel could be important for substrate channeling, as observed earlier on the basis of the kinetics of rpMFE1 purified from rat liver.
Collapse
Affiliation(s)
- Prasad Kasaragod
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Rajaram Venkatesan
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Tiila R. Kiema
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - J. Kalervo Hiltunen
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Rik K. Wierenga
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
9
|
Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1413-26. [PMID: 17028011 DOI: 10.1016/j.bbamcr.2006.08.034] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Collapse
Affiliation(s)
- Yves Poirier
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|