1
|
Lilly K, Wang M, Orr AA, Bondos SE, Phillips TD, Tamamis P. β-Lactoglobulin Enhances Clay and Activated Carbon Binding and Protection Properties for Cadmium and Lead. Ind Eng Chem Res 2024; 63:16124-16140. [PMID: 39319074 PMCID: PMC11417999 DOI: 10.1021/acs.iecr.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings. In this study, we used a combination of computational and experimental methods to delineate that β-lactoglobulin enhances CM and AC binding and protection properties for Cd and Pb. Modeling and molecular dynamics simulations investigated the formation of material systems formed by CM and AC in complex with β-lactoglobulin and predicted their capacity to bind heavy metal ions at neutral pH conditions. Our simulations suggest that the enhanced binding properties of the material systems are attributed to the presence of several binding pockets formed by β-lactoglobulin for the two heavy metal ions. At neutral pH conditions, divalent Cd and Pb shared comparable binding propensities in all material systems, with the former being consistently higher than the latter. To validate the interactions depicted in simulations, two ecotoxicological models (L. minor and H. vulgaris) were exposed to Cd, Pb, and a mixture of the two. The inclusion of CM-lactoglobulin (β-lactoglobulin amended CM) and AC-lactoglobulin (β-lactoglobulin amended AC) at 0.05-0.2% efficiently and dose-dependently reduced the severe toxicity of metals and increased the growth parameters. This high efficacy of protection shown in the ecotoxicological models may result from the numerous possible interaction pockets of the β-lactoglobulin-amended materials depicted in simulations. The ecotoxicological models support the agreement with computations. This study serves as a proof of concept on how computations in tandem with experiments can be used in the design of multicomponent clay- and carbon-based sorbent amended systems with augmented functionalities for particular toxins.
Collapse
Affiliation(s)
- Kendall Lilly
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Meichen Wang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department
of Medical Physiology Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, United States
| | - Timothy D. Phillips
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Stocker C, Khatanbaatar T, Bressan L, Würth-Roderer K, Cordara G, Krengel U, Kast P. Novel exported fusion enzymes with chorismate mutase and cyclohexadienyl dehydratase activity: Shikimate pathway enzymes teamed up in no man's land. J Biol Chem 2023; 299:105161. [PMID: 37586588 PMCID: PMC10520331 DOI: 10.1016/j.jbc.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Chorismate mutase (CM) and cyclohexadienyl dehydratase (CDT) catalyze two subsequent reactions in the intracellular biosynthesis of l-phenylalanine (Phe). Here, we report the discovery of novel and extremely rare bifunctional fusion enzymes, consisting of fused CM and CDT domains, which are exported from the cytoplasm. Such enzymes were found in only nine bacterial species belonging to non-pathogenic γ- or β-Proteobacteria. In γ-proteobacterial fusion enzymes, the CM domain is N-terminal to the CDT domain, whereas the order is inverted in β-Proteobacteria. The CM domains share 15% to 20% sequence identity with the AroQγ class CM holotype of Mycobacterium tuberculosis (∗MtCM), and the CDT domains 40% to 60% identity with the exported monofunctional enzyme of Pseudomonas aeruginosa (PheC). In vitro kinetics revealed a Km <7 μM, much lower than for ∗MtCM, whereas kinetic parameters are similar for CDT domains and PheC. There is no feedback inhibition of CM or CDT by the pathway's end product Phe, and no catalytic benefit of the domain fusion compared with engineered single-domain constructs. The fusion enzymes of Aequoribacter fuscus, Janthinobacterium sp. HH01, and Duganella sacchari were crystallized and their structures refined to 1.6, 1.7, and 2.4 Å resolution, respectively. Neither the crystal structures nor the size-exclusion chromatography show evidence for substrate channeling or higher oligomeric structure that could account for the cooperation of CM and CDT active sites. The genetic neighborhood with genes encoding transporter and substrate binding proteins suggests that these exported bifunctional fusion enzymes may participate in signaling systems rather than in the biosynthesis of Phe.
Collapse
Affiliation(s)
- Christian Stocker
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland
| | | | - Luca Bressan
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland
| | | | | | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway.
| | - Peter Kast
- Laboratory of Organic Chemistry, D-CHAB, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Shukla S, Nishanth Rao R, Bhuktar H, Edwin RK, Jamma T, Medishetti R, Banerjee S, Giliyaru VB, Shenoy GG, Oruganti S, Misra P, Pal M. Wang resin catalysed sonochemical synthesis of pyrazolo[4,3-d]pyrimidinones and 2,3-dihydroquinazolin-4(1H)-ones: Identification of chorismate mutase inhibitors having effects on Mycobacterium tuberculosis cell viability. Bioorg Chem 2023; 134:106452. [PMID: 36889201 DOI: 10.1016/j.bioorg.2023.106452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The enzyme chorismate mutase (or CM that is vital for the survival of bacteria) is an interesting pharmacological target for the identification of new anti-tubercular agents. The 5,5-disibstituted pyrazolo[4,3-d]pyrimidinone derivatives containing the fragment based on 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide were designed and explored as the potential inhibitors of chorismate mutase. Based on encouraging docking results of two representative molecules evaluated in silico against MtbCM (PDB: 2FP2) the Wang resin catalysed sonochemical synthesis of target N-heteroarenes were undertaken. The methodology involved the reaction of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide with the appropriate cyclic/acyclic ketones to afford the desired products in acceptable (51-94%) yields. The methodology was also extended successfully towards the synthesis of 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones in excellent (85-90%) yields. In vitro MTT assay against the RAW 264.7 cell line followed by enzymatic assay against MtbCM identified 3b and 3c as active compounds that showed two H-bonding via their NH (at position 6) and CO group with MtbCM in silico and encouraging (54-57%) inhibition at 30 µM in vitro. Notably, none of the 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones showed any significant inhibition of MtbCM suggesting the favourable role of the pyrazole moiety in case of pyrazolo[4,3-d]pyrimidinones. The favourable role of cyclopentyl ring attached to the pyrazolo[4,3-d]pyrimidinone moiety and that of two methyl groups in place of cyclopentyl ring was also indicated by the SAR study. Besides showing effects against MtbCM in the concentration response study, 3b and 3c showed little or no effects on mammalian cell viability up to 100 µM in an MTT assay but decreased the % Mtb cell viability at 10-30 µM with > 20% decrease at 30 µM in an Alamar Blue Assay. Moreover, no adverse effects were noted for these compounds when tested for teratogenicity and hepatotoxicity in zebrafish at various concentrations. Overall, being the only example of MtbCM inhibitors that showed effects on Mtb cell viability the compound 3b and 3c are of further interest form the view point of discovery and development of new anti-tubercular agents.
Collapse
Affiliation(s)
- Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - R Nishanth Rao
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Rebecca Kristina Edwin
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Trinath Jamma
- Department of Biological Sciences, B-225, BITS Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500 078, Telangana, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Varadaraj Bhat Giliyaru
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Gautham G Shenoy
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Parimal Misra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
4
|
Addu N, Miriyala H, Kapavarapu R, Kolli SK, Pal M. Wang-OSO3H catalyzed one-pot sonochemical synthesis of 1,2,4-benzothiadiazine-1,1-dioxide derivatives: their in silico / in vitro assessments against MtbCM. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Ramarao S, Pothireddy M, Venkateshwarlu R, Moturu KMVR, Siddaiah V, Kapavarapu R, Dandela R, Pal M. A rapid construction of 4(3H)-quinazolinone and related ring under ultrasound irradiation: In silico/in vitro studies of compounds synthesized. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Thorbjørnsrud H, Bressan L, Khatanbaatar T, Carrer M, Würth-Roderer K, Cordara G, Kast P, Cascella M, Krengel U. What Drives Chorismate Mutase to Top Performance? Insights from a Combined In Silico and In Vitro Study. Biochemistry 2023; 62:782-796. [PMID: 36705397 PMCID: PMC9910054 DOI: 10.1021/acs.biochem.2c00635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unlike typical chorismate mutases, the enzyme from Mycobacterium tuberculosis (MtCM) has only low activity on its own. Remarkably, its catalytic efficiency kcat/Km can be boosted more than 100-fold by complex formation with a partner enzyme. Recently, an autonomously fully active MtCM variant was generated using directed evolution, and its structure was solved by X-ray crystallography. However, key residues were involved in crystal contacts, challenging the functional interpretation of the structural changes. Here, we address these challenges by microsecond molecular dynamics simulations, followed up by additional kinetic and structural analyses of selected sets of specifically engineered enzyme variants. A comparison of wild-type MtCM with naturally and artificially activated MtCMs revealed the overall dynamic profiles of these enzymes as well as key interactions between the C-terminus and the active site loop. In the artificially evolved variant of this model enzyme, this loop is preorganized and stabilized by Pro52 and Asp55, two highly conserved residues in typical, highly active chorismate mutases. Asp55 stretches across the active site and helps to appropriately position active site residues Arg18 and Arg46 for catalysis. The role of Asp55 can be taken over by another acidic residue, if introduced at position 88 close to the C-terminus of MtCM, as suggested by molecular dynamics simulations and confirmed by kinetic investigations of engineered variants.
Collapse
Affiliation(s)
- Helen
V. Thorbjørnsrud
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Luca Bressan
- Laboratory
of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tamjidmaa Khatanbaatar
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Manuel Carrer
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | | | - Gabriele Cordara
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Peter Kast
- Laboratory
of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland,
| | - Michele Cascella
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway,
| | - Ute Krengel
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway,
| |
Collapse
|
7
|
Sangepu VR, Jain KK, Bhoomireddy RD, Sharma D, Venkateshwarlu R, Kapavarapu R, Dandela R, Pal M. One-pot sonochemical synthesis and in silico / in vitro antitubercular evaluation of 1-methyl-3-propyl-1H-pyrazole containing polynuclear fused N-heteroarenes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Krishnan SR, Bung N, Padhi S, Bulusu G, Misra P, Pal M, Oruganti S, Srinivasan R, Roy A. De novo design of anti-tuberculosis agents using a structure-based deep learning method. J Mol Graph Model 2023; 118:108361. [PMID: 36257148 DOI: 10.1016/j.jmgm.2022.108361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogen of major concern due to its ability to withstand both first- and second-line antibiotics, leading to drug resistance. Thus, there is a critical need for identification of novel anti-tuberculosis agents targeting Mtb-specific proteins. The ceaseless search for novel antimicrobial agents to combat drug-resistant bacteria can be accelerated by the development of advanced deep learning methods, to explore both existing and uncharted regions of the chemical space. The adaptation of deep learning methods to under-explored pathogens such as Mtb is a challenging aspect, as most of the existing methods rely on the availability of sufficient target-specific ligand data to design novel small molecules with optimized bioactivity. In this work, we report the design of novel anti-tuberculosis agents targeting the Mtb chorismate mutase protein using a structure-based drug design algorithm. The structure-based deep learning method relies on the knowledge of the target protein's binding site structure alone for conditional generation of novel small molecules. The method eliminates the need for curation of a high-quality target-specific small molecule dataset, which remains a challenge even for many druggable targets, including Mtb chorismate mutase. Novel molecules are proposed, that show high complementarity to the target binding site. The graph attention model could identify the probable key binding site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.
Collapse
Affiliation(s)
| | - Navneet Bung
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Siladitya Padhi
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Gopalakrishnan Bulusu
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Parimal Misra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Rajgopal Srinivasan
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India.
| |
Collapse
|
9
|
Winston DS, Gorman SD, Boehr DD. Conformational transitions in yeast chorismate mutase important for allosteric regulation as identified by nuclear magnetic resonance spectroscopy. J Mol Biol 2022; 434:167531. [DOI: 10.1016/j.jmb.2022.167531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
|
10
|
Maturana P, Tobar-Calfucoy E, Fuentealba M, Roversi P, Garratt R, Cabrera R. Crystal structure of the 6-phosphogluconate dehydrogenase from Gluconobacter oxydans reveals tetrameric 6PGDHs as the crucial intermediate in the evolution of structure and cofactor preference in the 6PGDH family. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16572.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The enzyme 6-phosphogluconate dehydrogenase (6PGDH) is the central enzyme of the oxidative pentose phosphate pathway. Members of the 6PGDH family belong to different classes: either homodimeric enzymes assembled from long-chain subunits or homotetrameric ones assembled from short-chain subunits. Dimeric 6PGDHs bear an internal duplication absent in tetrameric 6PGDHs and distant homologues of the β-hydroxyacid dehydrogenase (βHADH) superfamily. Methods: We use X-ray crystallography to determine the structure of the apo form of the 6PGDH from Gluconobacter oxydans (Go6PGDH). We carried out a structural and phylogenetic analysis of short and long-chain 6PGDHs. We put forward an evolutionary hypothesis explaining the differences seen in oligomeric state vs. dinucleotide preference of the 6PGDH family. We determined the cofactor preference of Go6PGDH at different 6-phosphogluconate concentrations, characterizing the wild-type enzyme and three-point mutants of residues in the cofactor binding site of Go6PGDH. Results: The structural comparison suggests that the 6PG binding site initially evolved by exchanging C-terminal α-helices between subunits. An internal duplication event changed the quaternary structure of the enzyme from a tetrameric to a dimeric arrangement. The phylogenetic analysis suggests that 6PGDHs have spread from Bacteria to Archaea and Eukarya on multiple occasions by lateral gene transfer. Sequence motifs consistent with NAD+- and NADP+-specificity are found in the β2-α2 loop of dimeric and tetrameric 6PGDHs. Site-directed mutagenesis of Go6PGDH inspired by this analysis fully reverses dinucleotide preference. One of the mutants we engineered has the highest efficiency and specificity for NAD+ so far described for a 6PGDH. Conclusions: The family 6PGDH comprises dimeric and tetrameric members whose active sites are conformed by a C-terminal α-helix contributed from adjacent subunits. Dimeric 6PGDHs have evolved from the duplication-fusion of the tetrameric C-terminal domain before independent transitions of cofactor specificity. Changes in the conserved β2-α2 loop are crucial to modulate the cofactor specificity in Go6PGDH.
Collapse
|
11
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
12
|
Fahrig-Kamarauskait J, Würth-Roderer K, Thorbjørnsrud HV, Mailand S, Krengel U, Kast P. Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance. J Biol Chem 2020; 295:17514-17534. [PMID: 33453995 PMCID: PMC7762937 DOI: 10.1074/jbc.ra120.014924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Indexed: 11/06/2022] Open
Abstract
Chorismate mutase (CM), an essential enzyme at the branch-point of the shikimate pathway, is required for the biosynthesis of phenylalanine and tyrosine in bacteria, archaea, plants, and fungi. MtCM, the CM from Mycobacterium tuberculosis, has less than 1% of the catalytic efficiency of a typical natural CM and requires complex formation with 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase for high activity. To explore the full potential of MtCM for catalyzing its native reaction, we applied diverse iterative cycles of mutagenesis and selection, thereby raising kcat/Km 270-fold to 5 × 105m−1s−1, which is even higher than for the complex. Moreover, the evolutionarily optimized autonomous MtCM, which had 11 of its 90 amino acids exchanged, was stabilized compared with its progenitor, as indicated by a 9 °C increase in melting temperature. The 1.5 Å crystal structure of the top-evolved MtCM variant reveals the molecular underpinnings of this activity boost. Some acquired residues (e.g. Pro52 and Asp55) are conserved in naturally efficient CMs, but most of them lie beyond the active site. Our evolutionary trajectories reached a plateau at the level of the best natural enzymes, suggesting that we have exhausted the potential of MtCM. Taken together, these findings show that the scaffold of MtCM, which naturally evolved for mediocrity to enable inter-enzyme allosteric regulation of the shikimate pathway, is inherently capable of high activity.
Collapse
Affiliation(s)
| | | | | | - Susanne Mailand
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway.
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. MOLECULAR PLANT PATHOLOGY 2020; 21:1634-1646. [PMID: 33084136 PMCID: PMC7694671 DOI: 10.1111/mpp.13003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
Hirschmanniella oryzae is one of the most devastating nematodes on rice, leading to substantial yield losses. Effector proteins aid the nematode during the infection process by subduing plant defence responses. In this research we characterized two potential H. oryzae effector proteins, chorismate mutase (HoCM) and isochorismatase (HoICM), and investigated their enzymatic activity and their role in plant immunity. Both HoCM and HoICM proved to be enzymatically active in complementation tests in mutant Escherichia coli strains. Infection success by the migratory nematode H. oryzae was significantly higher in transgenic rice lines constitutively expressing HoCM or HoICM. Expression of HoCM, but not HoICM, increased rice susceptibility against the sedentary nematode Meloidogyne graminicola also. Transcriptome and metabolome analyses indicated reductions in secondary metabolites in the transgenic rice plants expressing the potential nematode effectors. The results presented here demonstrate that both HoCM and HoICM suppress the host immune system and that this may be accomplished by lowering secondary metabolite levels in the plant.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kris Morreel
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Department of Plant Biotechnology and BioinformaticsFaculty of SciencesGhent UniversityGhentBelgium
| | - Wout Boerjan
- VIB‐UGent Center for Plant Systems BiologyGhentBelgium
- Department of Plant Biotechnology and BioinformaticsFaculty of SciencesGhent UniversityGhentBelgium
| | - Hannes Lefevere
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
14
|
Renevey A, Riniker S. Improved accuracy of hybrid atomistic/coarse-grained simulations using reparametrised interactions. J Chem Phys 2018; 146:124131. [PMID: 28388132 DOI: 10.1063/1.4979128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reducing the number of degrees of freedom in molecular models-so-called coarse-graining-is a popular approach to increase the accessible time scales and system sizes in molecular dynamics simulations. It involves, however, per se a loss of information. In order to retain a high accuracy in the region of interest, hybrid methods that combine two levels of resolution in a single system are an attractive trade-off. Hybrid atomistic (AT)/coarse-grained (CG) simulations have previously been shown to preserve the secondary structure elements of AT proteins in CG water but to cause an artificial increase in intramolecular hydrogen bonds, resulting in a reduced flexibility of the proteins. Recently, it was found that the AT-CG interactions employed in these simulations were too favourable for apolar solutes and not favourable enough for polar solutes. Here, the AT-CG interactions are reparametrised to reproduce the solvation free energy of a series of AT alkanes and side-chain analogues in CG water, while retaining the good mixing behaviour of AT water with CG water. The new AT-CG parameters are tested in hybrid simulations of four proteins in CG water. Structural and dynamic properties are compared to those obtained in fully AT simulations and, if applicable, to experimental data. The results show that the artificial increase of intramolecular hydrogen bonds is drastically reduced, leading to a better reproduction of the structural properties and flexibility of the proteins in atomistic water, without the need for an atomistic solvent layer.
Collapse
Affiliation(s)
- Annick Renevey
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Asojo OA, Dranow DM, Serbzhinskiy D, Subramanian S, Staker B, Edwards TE, Myler PJ. Crystal structure of chorismate mutase from Burkholderia thailandensis. Acta Crystallogr F Struct Biol Commun 2018; 74:294-299. [PMID: 29717997 PMCID: PMC5931142 DOI: 10.1107/s2053230x1800506x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Burkholderia thailandensis is often used as a model for more virulent members of this genus of proteobacteria that are highly antibiotic-resistant and are potential agents of biological warfare that are infective by inhalation. As part of ongoing efforts to identify potential targets for the development of rational therapeutics, the structures of enzymes that are absent in humans, including that of chorismate mutase from B. thailandensis, have been determined by the Seattle Structural Genomics Center for Infectious Disease. The high-resolution structure of chorismate mutase from B. thailandensis was determined in the monoclinic space group P21 with three homodimers per asymmetric unit. The overall structure of each protomer has the prototypical AroQγ topology and shares conserved binding-cavity residues with other chorismate mutases, including those with which it has no appreciable sequence identity.
Collapse
Affiliation(s)
- Oluwatoyin A. Asojo
- National School of Tropical Medicine, Baylor College of Medicine, 1102 Bates Avenue Suite 550, Mail Stop BCM320, Houston, TX 77030-3411, USA
| | - David M. Dranow
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Thomas E. Edwards
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
16
|
Sterritt OW, Kessans SA, Jameson GB, Parker EJ. A Pseudoisostructural Type II DAH7PS Enzyme from Pseudomonas aeruginosa: Alternative Evolutionary Strategies to Control Shikimate Pathway Flux. Biochemistry 2018; 57:2667-2678. [DOI: 10.1021/acs.biochem.8b00082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Oliver W. Sterritt
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Geoffrey B. Jameson
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
- Institute of Fundamental Sciences and the Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Emily J. Parker
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
17
|
Asojo OA, Subramanian S, Abendroth J, Exley I, Lorimer DD, Edwards TE, Myler PJ. Crystal structure of chorismate mutase from Burkholderia phymatum. Acta Crystallogr F Struct Biol Commun 2018; 74:187-192. [PMID: 29633965 PMCID: PMC5894103 DOI: 10.1107/s2053230x18002868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/18/2018] [Indexed: 11/10/2022] Open
Abstract
The bacterium Burkholderia phymatum is a promiscuous symbiotic nitrogen-fixating bacterium that belongs to one of the largest groups of Betaproteobacteria. Other Burkholderia species are known to cause disease in plants and animals, and some are potential agents for biological warfare. Structural genomics efforts include characterizing the structures of enzymes from pathways that can be targeted for drug development. As part of these efforts, chorismate mutase from B. phymatum was produced and crystallized, and a 1.95 Å resolution structure is reported. This enzyme shares less than 33% sequence identity with other homologs of known structure. There are two classes of chorismate mutase: AroQ and AroH. The bacterial subclass AroQγ has reported roles in virulence. Chorismate mutase from B. phymatum has the prototypical AroQγ topology and retains the characteristic chorismate mutase active site. This suggests that substrate-based chorismate mutase inhibitors will not be specific and are likely to affect beneficial bacteria such as B. phymatum.
Collapse
Affiliation(s)
- Oluwatoyin A. Asojo
- National School of Tropical Medicine, Baylor College of Medicine, 1102 Bates Avenue Suite 550, Mail Stop BCM320, Houston, TX 77030-3411, USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Ilyssa Exley
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Burschowsky D, Krengel U, Uggerud E, Balcells D. Quantum chemical modeling of the reaction path of chorismate mutase based on the experimental substrate/product complex. FEBS Open Bio 2017; 7:789-797. [PMID: 28593134 PMCID: PMC5458464 DOI: 10.1002/2211-5463.12224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/26/2017] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
Chorismate mutase is a well-known model enzyme, catalyzing the Claisen rearrangement of chorismate to prephenate. Recent high-resolution crystal structures along the reaction coordinate of this enzyme enabled computational analyses at unprecedented detail. Using quantum chemical simulations, we investigated how the catalytic reaction mechanism is affected by electrostatic and hydrogen-bond interactions. Our calculations showed that the transition state (TS) was mainly stabilized electrostatically, with Arg90 playing the leading role. The effect was augmented by selective hydrogen-bond formation to the TS in the wild-type enzyme, facilitated by a small-scale local induced fit. We further identified a previously underappreciated water molecule, which separates the negative charges during the reaction. The analysis includes the wild-type enzyme and a non-natural enzyme variant, where the catalytic arginine was replaced with an isosteric citrulline residue.
Collapse
Affiliation(s)
- Daniel Burschowsky
- Department of Chemistry University of Oslo Norway.,Present address: Leicester Institute of Structural and Chemical Biology University of Leicester Leicester UK
| | - Ute Krengel
- Department of Chemistry University of Oslo Norway
| | | | | |
Collapse
|
19
|
Mycobacterium tuberculosis chorismate mutase: A potential target for TB. Bioorg Med Chem 2017; 25:1725-1736. [PMID: 28202315 DOI: 10.1016/j.bmc.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis chorismate mutase (MtbCM) catalyzes the rearrangement of chorismate to prephenate in the shikimate biosynthetic pathway to form the essential amino acids, phenylalanine and tyrosine. Two genes encoding chorismate mutase have been identified in Mtb. The secretory form,∗MtbCM (encoded by Rv1885c) is assumed to play a key role in pathogenesis of tuberculosis. Also, the inhibition of MtbCM may hinder the supply of nutrients to the organism. Indeed, the existence of chorismate mutase (CM) in bacteria, fungi and higher plants but not in human and low sequence homology among known CM makes it an interesting target for the discovery of anti-tubercular agents. The present article mainly focuses on the recent developments in the structure, function and inhibition of MtbCM. The understanding of various aspects of MtbCM as presented in the current article may facilitate the design and subsequent chemical synthesis of new inhibitors against ∗MtbCM, that could lead to the discovery and development of novel and potent anti-tubercular agents in future.
Collapse
|
20
|
Synthetic strategy with representation on mechanistic pathway for the therapeutic applications of dihydroquinazolinones. Eur J Med Chem 2016; 123:596-630. [DOI: 10.1016/j.ejmech.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/25/2023]
|
21
|
Remote Control by Inter-Enzyme Allostery: A Novel Paradigm for Regulation of the Shikimate Pathway. J Mol Biol 2016; 428:1237-1255. [DOI: 10.1016/j.jmb.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|
22
|
Cahn JKB, Brinkmann-Chen S, Buller AR, Arnold FH. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases. Protein Sci 2015; 25:1241-8. [PMID: 26644020 DOI: 10.1002/pro.2852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
23
|
Szklarczyk OM, Bieler NS, Hünenberger PH, van Gunsteren WF. Flexible Boundaries for Multiresolution Solvation: An Algorithm for Spatial Multiscaling in Molecular Dynamics Simulations. J Chem Theory Comput 2015; 11:5447-63. [PMID: 26574333 DOI: 10.1021/acs.jctc.5b00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An algorithm is proposed for performing molecular dynamics (MD) simulations of a biomolecular solute represented at atomistic resolution surrounded by a surface layer of atomistic fine-grained (FG) solvent molecules within a bulk represented by coarse-grained (CG) solvent beads. The method, called flexible boundaries for multiresolution solvation (FBMS), is based on: (i) a three-region layering of the solvent around the solute, involving an FG layer surrounded by a mixed FG-CG buffer layer, itself surrounded by a bulk CG region; (ii) a definition of the layer boundary that relies on an effective distance to the solute surface and is thus adapted to the shape of the solute as well as adjusts to its conformational changes. The effective surface distance is defined by inverse-nth power averaging over the distances to all non-hydrogen solute atoms, and the layering is enforced by means of half-harmonic distance restraints, attractive for the FG molecules and repulsive for the CG beads. A restraint-free region at intermediate distances enables the formation of the buffer layer, where the FG and CG solvents can mix freely. The algorithm is tested and validated using the GROMOS force field and the associated FG (SPC) and CG (polarizable CGW) water models. The test systems include pure-water systems, where one FG molecule plays the role of a solute, and a deca-alanine peptide with two widely different solute shapes considered, α-helical and fully extended. In particular, as the peptide unfolds, the number of FG molecules required to fill its close-range solvation layer increases, with the additional molecules being provided by the buffer layer. Further validation involves simulations of four proteins in multiresolution FG/CG mixtures. The resulting structural, energetic, and solvation properties are found to be similar to those observed in corresponding pure FG simulations.
Collapse
Affiliation(s)
- Oliwia M Szklarczyk
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Noah S Bieler
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH , 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Bachmann SJ, van Gunsteren WF. Structural and energetic effects of the use of polarisable water to solvate proteins. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1042085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Functional mapping of protein-protein interactions in an enzyme complex by directed evolution. PLoS One 2014; 9:e116234. [PMID: 25551646 PMCID: PMC4281200 DOI: 10.1371/journal.pone.0116234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/06/2014] [Indexed: 11/19/2022] Open
Abstract
The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.
Collapse
|
26
|
Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis. Proc Natl Acad Sci U S A 2014; 111:17516-21. [PMID: 25422475 DOI: 10.1073/pnas.1408512111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.
Collapse
|
27
|
Salicylanilide diethyl phosphates as potential inhibitors of some mycobacterial enzymes. ScientificWorldJournal 2014; 2014:703053. [PMID: 25538961 PMCID: PMC4236894 DOI: 10.1155/2014/703053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022] Open
Abstract
Antimycobacterially active salicylanilide diethyl phosphates were evaluated to identify their potential drug target(s) for the inhibition of several mycobacterial enzymes, including isocitrate lyase, L-alanine dehydrogenase (MtAlaDH), lysine ε-aminotransferase, chorismate mutase, and pantothenate synthetase. The enzymes are related to the nongrowing state of Mycobacterium tuberculosis. Salicylanilide diethyl phosphates represent new candidates with significant inhibitory activity especially against L-alanine dehydrogenase. The most active MtAlaDH inhibitor, 5-chloro-2-[(3-chlorophenyl)carbamoyl]phenyl diethyl phosphate, has an IC50 of 4.96 µM and the best docking results. Other mycobacterial enzymes were mostly inhibited by some derivatives but at higher concentrations; isocitrate lyase showed the highest resistance to salicylanilide diethyl phosphates.
Collapse
|
28
|
Jeankumar VU, Alokam R, Sridevi JP, Suryadevara P, Matikonda SS, Peddi S, Sahithi S, Alvala M, Yogeeswari P, Sriram D. Discovery and Structure Optimization of a Series of Isatin Derivatives asMycobacterium tuberculosisChorismate Mutase Inhibitors. Chem Biol Drug Des 2014; 83:498-506. [DOI: 10.1111/cbdd.12265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Variam U. Jeankumar
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Reshma Alokam
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Jonnalagadda P. Sridevi
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Priyanka Suryadevara
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Siddharth S. Matikonda
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Santosh Peddi
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Seedarala Sahithi
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Mallika Alvala
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Perumal Yogeeswari
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| | - Dharmarajan Sriram
- Department of Pharmacy; Birla Institute of Technology & Science-Pilani; Hyderabad Campus; Shameerpet, R.R. District Hyderabad Andhra Pradesh 500078 India
| |
Collapse
|
29
|
Choutko A, van Gunsteren WF. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis. Protein Sci 2013; 21:1672-81. [PMID: 22898919 DOI: 10.1002/pro.2143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site.
Collapse
Affiliation(s)
- Alexandra Choutko
- Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | | |
Collapse
|
30
|
Reif MM, Winger M, Oostenbrink C. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins. J Chem Theory Comput 2013; 9:1247-1264. [PMID: 23418406 PMCID: PMC3572754 DOI: 10.1021/ct300874c] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 11/28/2022]
Abstract
![]()
The GROMOS 54A8 force field [Reif et al. J. Chem.
Theory
Comput.2012, 8, 3705–3723]
is the first of its kind to contain nonbonded parameters for charged
amino acid side chains that are derived in a rigorously thermodynamic
fashion, namely a calibration against single-ion hydration free energies.
Considering charged moieties in solution, the most decisive signature
of the GROMOS 54A8 force field in comparison to its predecessor 54A7
can probably be found in the thermodynamic equilibrium between salt-bridged
ion pair formation and hydration. Possible shifts in this equilibrium
might crucially affect the properties of electrolyte solutions or/and
the stability of (bio)molecules. It is therefore important to investigate
the consequences of the altered description of charged oligoatomic
species in the GROMOS 54A8 force field. The present study focuses
on examining the ability of the GROMOS 54A8 force field to accurately
model the structural properties of electrolyte solutions, lipid bilayers,
and proteins. It is found that (i) aqueous electrolytes
involving oligoatomic species (sodium acetate, methylammonium chloride,
guanidinium chloride) reproduce experimental salt activity derivatives
for concentrations up to 1.0 m (1.0-molal) very well, and good agreement
between simulated and experimental data is also reached for sodium
acetate and methylammonium chloride at 2.0 m concentration, while
not even qualitative agreement is found for sodium chloride throughout
the whole range of examined concentrations, indicating a failure of
the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account
for the balance between ion–ion and ion–water binding
propensities of sodium and chloride ions; (ii) the
GROMOS 54A8 force field reproduces the liquid crystalline-like phase
of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature
of 323 K, the area per lipid being in agreement with experimental
data, whereas other structural properties (volume per lipid, bilayer
thickness) appear underestimated; (iii) the secondary
structure of a range of different proteins simulated with the GROMOS
54A8 force field at pH 7 is maintained and compatible with experimental
NMR data, while, as also observed for the GROMOS 54A7 force field,
α-helices are slightly overstabilized with respect to 310-helices; (iv) with the GROMOS 54A8 force
field, the side chains of arginine, lysine, aspartate, and glutamate
residues appear slightly more hydrated and present a slight excess
of oppositely-charged solution components in their vicinity, whereas
salt-bridge formation properties between charged residues at the protein
surface, as assessed by probability distributions of interionic distances,
are largely equivalent in the GROMOS 54A7 and 54A8 force-field parameter
sets.
Collapse
Affiliation(s)
- Maria M Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | | |
Collapse
|
31
|
Munack S, Leroux V, Roderer K, Ökvist M, van Eerde A, Gundersen LL, Krengel U, Kast P. When Inhibitors Do Not Inhibit: Critical Evaluation of Rational Drug Design Targeting Chorismate Mutase fromMycobacterium tuberculosis. Chem Biodivers 2012; 9:2507-27. [DOI: 10.1002/cbdv.201200322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 12/16/2022]
|
32
|
Riniker S, Eichenberger AP, van Gunsteren WF. Structural Effects of an Atomic-Level Layer of Water Molecules around Proteins Solvated in Supra-Molecular Coarse-Grained Water. J Phys Chem B 2012; 116:8873-9. [DOI: 10.1021/jp304188z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sereina Riniker
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Andreas P. Eichenberger
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich, Switzerland
| |
Collapse
|
33
|
Riniker S, Eichenberger AP, van Gunsteren WF. Solvating atomic level fine-grained proteins in supra-molecular level coarse-grained water for molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:647-61. [PMID: 22797564 DOI: 10.1007/s00249-012-0837-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
Abstract
Simulation of the dynamics of a protein in aqueous solution using an atomic model for both the protein and the many water molecules is still computationally extremely demanding considering the time scale of protein motions. The use of supra-atomic or supra-molecular coarse-grained (CG) models may enhance the computational efficiency, but inevitably at the cost of reduced accuracy. Coarse-graining solvent degrees of freedom is likely to yield a favourable balance between reduced accuracy and enhanced computational speed. Here, the use of a supra-molecular coarse-grained water model that largely preserves the thermodynamic and dielectric properties of atomic level fine-grained (FG) water in molecular dynamics simulations of an atomic model for four proteins is investigated. The results of using an FG, a CG, an implicit, or a vacuum solvent environment of the four proteins are compared, and for hen egg-white lysozyme a comparison to NMR data is made. The mixed-grained simulations do not show large differences compared to the FG atomic level simulations, apart from an increased tendency to form hydrogen bonds between long side chains, which is due to the reduced ability of the supra-molecular CG beads that represent five FG water molecules to make solvent-protein hydrogen bonds. But, the mixed-grained simulations are at least an order of magnitude faster than the atomic level ones.
Collapse
Affiliation(s)
- Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Degrassi G, Devescovi G, Bigirimana J, Venturi V. Xanthomonas oryzae pv. oryzae XKK.12 contains an AroQgamma chorismate mutase that is involved in rice virulence. PHYTOPATHOLOGY 2010; 100:262-270. [PMID: 20128700 DOI: 10.1094/phyto-100-3-0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chorismate mutase (CM) is a key enzyme in the shikimate pathway which is responsible for the synthesis of aromatic amino acids. There are two classes of CMs, AroQ and AroH, and several pathogenic bacteria have been reported to possess a subgroup of CMs designated AroQ(gamma). These CMs are usually exported to the periplasm or outside the cell; in a few cases, they have been reported to be involved in virulence and their precise role is currently unknown. Here, we report that the important rice pathogen Xanthomonas oryzae pv. oryzae XKK.12 produces an AroQ(gamma) CM which we have purified and characterized from spent supernatants. This enzyme is synthesized in planta and X. oryzae pv. oryzae knock-out mutants are hypervirulent to rice. The role of this enzyme in X. oryzae pv. oryzae rice virulence is discussed.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Trieste, Italy.
| | | | | | | |
Collapse
|
35
|
Ökvist M, Sasso S, Roderer K, Kast P, Krengel U. A novel noncovalent complex of chorismate mutase and DAHP synthase from Mycobacterium tuberculosis: protein purification, crystallization and X-ray diffraction analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1048-52. [PMID: 19851019 PMCID: PMC2765898 DOI: 10.1107/s1744309109035878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 11/10/2022]
Abstract
Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM-MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM-MtDS complex diffracted to 1.6 and 2.1 A resolution, respectively.
Collapse
Affiliation(s)
- Mats Ökvist
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Severin Sasso
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Kathrin Roderer
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
36
|
Sasso S, Okvist M, Roderer K, Gamper M, Codoni G, Krengel U, Kast P. Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner. EMBO J 2009; 28:2128-42. [PMID: 19556970 DOI: 10.1038/emboj.2009.165] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active-site residues. However, its catalytic efficiency increases >100-fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate-pathway enzyme. The 2.35 A crystal structure of the MtCM-MtDS complex bound to a transition-state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active-site residues on binding to MtDS. The mutagenesis of the C-terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate-mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non-covalent enzyme complexes comprising an AroQ(delta) subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.
Collapse
Affiliation(s)
- Severin Sasso
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Vanholme B, Kast P, Haegeman A, Jacob J, Grunewald W, Gheysen G. Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. MOLECULAR PLANT PATHOLOGY 2009; 10:189-200. [PMID: 19236568 PMCID: PMC6640496 DOI: 10.1111/j.1364-3703.2008.00521.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this article, we present the cloning of Hscm1, a gene for chorismate mutase (CM) from the beet cyst nematode Heterodera schachtii. CM is a key branch-point enzyme of the shikimate pathway, and secondary metabolites that arise from this pathway control developmental programmes and defence responses of the plant. By manipulating the plant's endogenous shikimate pathway, the nematode can influence the plant physiology for its own benefit. Hscm1 is a member of the CM gene family and is expressed during the pre-parasitic and parasitic stages of the nematode's life cycle. In situ mRNA hybridization reveals an expression pattern specific to the subventral and dorsal pharyngeal glands. The predicted protein has a signal peptide for secretion in addition to two domains. The N-terminal domain of the mature protein, which is only found in cyst nematodes, contains six conserved cysteine residues, which may reflect the importance of disulphide bond formation for protein stabilization. The C-terminal domain holds a single catalytic site and has similarity to secreted CMs of pathogenic bacteria, classifying HsCM1 as an AroQ(gamma) enzyme. The presumed catalytic residues are discussed in detail, and genetic complementation experiments indicate that the C-terminal domain is essential for enzyme activity. Finally, we show how the modular design of the protein is mirrored in the genomic sequence by the intron/exon organization, suggesting exon shuffling as a mechanism for the evolutionary assembly of this protein.
Collapse
Affiliation(s)
- Bartel Vanholme
- Molecular Biotechnology Department, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A. Cpn20: siamese twins of the chaperonin world. PLANT MOLECULAR BIOLOGY 2009; 69:227-38. [PMID: 19031045 DOI: 10.1007/s11103-008-9432-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/08/2008] [Indexed: 05/08/2023]
Abstract
The chloroplast cpn20 protein is a functional homolog of the cpn10 co-chaperonin, but its gene consists of two cpn10-like units joined head-to-tail by a short chain of amino acids. This double protein is unique to plastids and was shown to exist in plants as well plastid-containing parasites. In vitro assays showed that this cpn20 co-chaperonin is a functional homolog of cpn10. In terms of structure, existing data indicate that the oligomer is tetrameric, yet it interacts with a heptameric cpn60 partner. Thus, the functional oligomeric structure remains a mystery. In this review, we summarize what is known about this distinctive chaperonin and use a bioinformatics approach to examine the expression of cpn20 in Arabidopsis thaliana relative to other chaperonin genes in this species. In addition, we examine the primary structure of the two homologous domains for similarities and differences, in comparison with cpn10 from other species. Lastly, we hypothesize as to the oligomeric structure and raison d'être of this unusual co-chaperonin homolog.
Collapse
Affiliation(s)
- Celeste Weiss
- Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
39
|
Lu SW, Tian D, Borchardt-Wier HB, Wang X. Alternative splicing: A novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 2008; 162:1-15. [DOI: 10.1016/j.molbiopara.2008.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/13/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
|
40
|
Kim SK, Reddy SK, Nelson BC, Robinson H, Reddy PT, Ladner JE. A comparative biochemical and structural analysis of the intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H37Rv and the secreted chorismate mutase (y2828) from Yersinia pestis. FEBS J 2008; 275:4824-35. [DOI: 10.1111/j.1742-4658.2008.06621.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Affiliation(s)
- Christian Jäckel
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland; ,
| |
Collapse
|
42
|
Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities. Microbiol Mol Biol Rev 2008; 72:13-53, table of contents. [PMID: 18322033 DOI: 10.1128/mmbr.00026-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.
Collapse
|
43
|
The two chorismate mutases from both Mycobacterium tuberculosis and Mycobacterium smegmatis: biochemical analysis and limited regulation of promoter activity by aromatic amino acids. J Bacteriol 2007; 190:122-34. [PMID: 17965159 DOI: 10.1128/jb.01332-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate in the biosynthetic pathway that forms phenylalanine and tyrosine in bacteria, fungi, plants, and apicomplexan parasites. Since this enzyme is absent from mammals, it represents a promising target for the development of new antimycobacterial drugs, which are needed to combat Mycobacterium tuberculosis, the causative agent of tuberculosis. Until recently, two putative open reading frames (ORFs), Rv0948c and Rv1885c, showing low sequence similarity to CMs have been described as "conserved hypothetical proteins" in the M. tuberculosis genome. However, we and others demonstrated that these ORFs are in fact monofunctional CMs of the AroQ structural class and that they are differentially localized in the mycobacterial cell. Since homologues to the M. tuberculosis enzymes are also present in Mycobacterium smegmatis, we cloned the coding sequences corresponding to ORFs MSMEG5513 and MSMEG2114 from the latter. The CM activities of both ORFs was determined, as well as their translational start sites. In addition, we analyzed the promoter activities of three M. tuberculosis loci related to phenylalanine and tyrosine biosynthesis under a variety of conditions using M. smegmatis as a surrogate host. Our results indicate that the aroQ (Rv0948c), *aroQ (Rv1885c), and fbpB (Rv1886c) genes from M. tuberculosis are constitutively expressed or subjected to minor regulation by aromatic amino acids levels, especially tryptophan.
Collapse
|
44
|
Agrawal H, Kumar A, Bal NC, Siddiqi MI, Arora A. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 2007; 17:3053-8. [PMID: 17418569 DOI: 10.1016/j.bmcl.2007.03.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/28/2007] [Accepted: 03/16/2007] [Indexed: 11/25/2022]
Abstract
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.
Collapse
Affiliation(s)
- Himanshu Agrawal
- Molecular and Structural Biology, Central Drug Research Institute, Lucknow 226 001, India
| | | | | | | | | |
Collapse
|
45
|
Lassila JK, Keeffe JR, Kast P, Mayo SL. Exhaustive Mutagenesis of Six Secondary Active-Site Residues in Escherichia coli Chorismate Mutase Shows the Importance of Hydrophobic Side Chains and a Helix N-Capping Position for Stability and Catalysis. Biochemistry 2007; 46:6883-91. [PMID: 17506527 DOI: 10.1021/bi700215x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secondary active-site residues in enzymes, including hydrophobic amino acids, may contribute to catalysis through critical interactions that position the reacting molecule, organize hydrogen-bonding residues, and define the electrostatic environment of the active site. To ascertain the tolerance of an important model enzyme to mutation of active-site residues that do not directly hydrogen bond with the reacting molecule, all 19 possible amino acid substitutions were investigated in six positions of the engineered chorismate mutase domain of the Escherichia coli chorismate mutase-prephenate dehydratase. The six secondary active-site residues were selected to clarify results of a previous test of computational enzyme design procedures. Five of the positions encode hydrophobic side chains in the wild-type enzyme, and one forms a helix N-capping interaction as well as a salt bridge with a catalytically essential residue. Each mutant was evaluated for its ability to complement an auxotrophic chorismate mutase deletion strain. Kinetic parameters and thermal stabilities were measured for variants with in vivo activity. Altogether, we find that the enzyme tolerated 34% of the 114 possible substitutions, with a few mutations leading to increases in the catalytic efficiency of the enzyme. The results show the importance of secondary amino acid residues in determining enzymatic activity, and they point to strengths and weaknesses in current computational enzyme design procedures.
Collapse
Affiliation(s)
- Jonathan Kyle Lassila
- Biochemistry Option, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
46
|
Kim SK, Reddy SK, Nelson BC, Vasquez GB, Davis A, Howard AJ, Patterson S, Gilliland GL, Ladner JE, Reddy PT. Biochemical and structural characterization of the secreted chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv: an *AroQ enzyme not regulated by the aromatic amino acids. J Bacteriol 2007; 188:8638-48. [PMID: 17146044 PMCID: PMC1698256 DOI: 10.1128/jb.00441-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene Rv1885c from the genome of Mycobacterium tuberculosis H37Rv encodes a monofunctional and secreted chorismate mutase (*MtCM) with a 33-amino-acid cleavable signal sequence; hence, it belongs to the *AroQ class of chorismate mutases. Consistent with the heterologously expressed *MtCM having periplasmic destination in Escherichia coli and the absence of a discrete periplasmic compartment in M. tuberculosis, we show here that *MtCM secretes into the culture filtrate of M. tuberculosis. *MtCM functions as a homodimer and exhibits a dimeric state of the protein at a concentration as low as 5 nM. *MtCM exhibits simple Michaelis-Menten kinetics with a Km of 0.5 +/- 0.05 mM and a k(cat) of 60 s(-1) per active site (at 37 degrees C and pH 7.5). The crystal structure of *MtCM has been determined at 1.7 A resolution (Protein Data Bank identifier 2F6L). The protein has an all alpha-helical structure, and the active site is formed within a single chain without any contribution from the second chain in the dimer. Analysis of the structure shows a novel fold topology for the protein with a topologically rearranged helix containing Arg134. We provide evidence by site-directed mutagenesis that the residues Arg49, Lys60, Arg72, Thr105, Glu109, and Arg134 constitute the catalytic site; the numbering of the residues includes the signal sequence. Our investigation on the effect of phenylalanine, tyrosine, and tryptophan on *MtCM shows that *MtCM is not regulated by the aromatic amino acids. Consistent with this observation, the X-ray structure of *MtCM does not have an allosteric regulatory site.
Collapse
Affiliation(s)
- Sook-Kyung Kim
- Biochemical Science Division, National Institute of Standards and Technology, Mail stop 831.2, Bldg. 227, Room B244, Gaithersburg, MD 20899, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zaitseva J, Lu J, Olechoski KL, Lamb AL. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa. J Biol Chem 2006; 281:33441-9. [PMID: 16914555 DOI: 10.1074/jbc.m605470200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
48
|
Andreeva A, Murzin AG. Evolution of protein fold in the presence of functional constraints. Curr Opin Struct Biol 2006; 16:399-408. [PMID: 16650981 DOI: 10.1016/j.sbi.2006.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 03/28/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
The functional requirement to form and maintain the active site structure probably exerts a strong selective pressure on a protein to adopt just one stable and evolutionarily conserved fold. Nonetheless, new evidence suggests the likelihood of protein fold being neither physically nor biologically invariant. Alternative folds discovered in several proteins are composed of constant and variable parts. The latter display context-dependent conformations and a tendency to form new oligomeric interfaces. In turn, oligomerisation mediates fold evolution without loss of protein function. Gene duplication breaks down homo-oligomeric symmetry and relieves the pressure to maintain the local architecture of redundant active sites; this can lead to further structural changes.
Collapse
Affiliation(s)
- Antonina Andreeva
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
49
|
Krengel U, Dey R, Sasso S, Okvist M, Ramakrishnan C, Kast P. Preliminary X-ray crystallographic analysis of the secreted chorismate mutase from Mycobacterium tuberculosis: a tricky crystallization problem solved. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:441-5. [PMID: 16682771 PMCID: PMC2219981 DOI: 10.1107/s1744309106012036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022]
Abstract
Chorismate mutase catalyzes the conversion of chorismate to prephenate in the biosynthesis of the aromatic amino acids tyrosine and phenylalanine in bacteria, fungi and plants. Here, the crystallization of the unusual secreted chorismate mutase from Mycobacterium tuberculosis (encoded by Rv1885c), a 37.2 kDa dimeric protein belonging to the AroQ(gamma) subclass of mutases, is reported. Crystal optimization was non-trivial and is discussed in detail. To obtain crystals of sufficient quality, it was critical to initiate crystallization at higher precipitant concentration and then transfer the drops to lower precipitant concentrations within 5-15 min, in an adaptation of a previously described technique [Saridakis & Chayen (2000), Protein Sci. 9, 755-757]. As a result of the optimization, diffraction improved from 3.5 to 1.3 A resolution. The crystals belong to space group P2(1), with unit-cell parameters a = 42.6, b = 72.6, c = 62.0 angstroms, beta = 104.5 degrees. The asymmetric unit contains one biological dimer, with 167 amino acids per protomer. A soak with a transition-state analogue is also described.
Collapse
Affiliation(s)
- Ute Krengel
- Department of Chemistry and Bioscience, Chalmers University of Technology, PO Box 462, SE-40530 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|