1
|
Shabalina IG, Jiménez B, Sousa-Filho CPB, Cannon B, Nedergaard J. In isolated brown adipose tissue mitochondria, UCP1 is not essential for - nor involved in - the uncoupling effects of the classical uncouplers FCCP and DNP. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149516. [PMID: 39357779 DOI: 10.1016/j.bbabio.2024.149516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Recent patch-clamp studies of mitoplasts have challenged the traditional view that classical chemical uncoupling (by e.g. FCCP or DNP) is due to the protonophoric property of these substances themselves. These studies instead suggest that in brown-fat mitochondria, FCCP- and DNP-induced uncoupling is mediated through activation of UCP1 (and in other tissues by activation of the adenine nucleotide transporter). These studies thus advocate an entirely new paradigm for the interpretation of standard bioenergetic experiments. To examine whether these patch-clamp results obtained in brown-fat mitoplasts are directly transferable to classical isolated brown-fat mitochondria studies, we investigated the effects of FCCP and DNP in brown-fat mitochondria from wildtype and UCP1 KO mice, comparing the FCCP and DNP effects with those of a fatty acid (oleate), a bona fide activator of UCP1. Whereas the sensitivity of brown-fat mitochondria to oleate was much higher in UCP1-containing than in UCP1 KO mitochondria, there was no difference in sensitivity to FCCP and DNP between these mitochondria, neither in oxygen consumption rate nor in membrane potential studies. Correspondingly, the UCP1-dependent ability of GDP to competitively inhibit activation by oleate was not seen with FCCP and DNP. It would thus be premature to abandon the established bioenergetic interpretation of chemical uncoupler effects in classical isolated brown-fat mitochondria-and probably also generally in this type of mitochondrial study. Understanding the molecular and structural reasons for the different outcomes of mitoplast and mitochondrial studies is a challenging task.
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | - Beatriz Jiménez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Sweden
| |
Collapse
|
2
|
Keipert S, Gaudry MJ, Kutschke M, Keuper M, Dela Rosa MAS, Cheng Y, Monroy Kuhn JM, Laterveer R, Cotrim CA, Giere P, Perocchi F, Feederle R, Crichton PG, Lutter D, Jastroch M. Two-stage evolution of mammalian adipose tissue thermogenesis. Science 2024; 384:1111-1117. [PMID: 38843333 DOI: 10.1126/science.adg1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michaela Keuper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margeoux A S Dela Rosa
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yiming Cheng
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - José M Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter Giere
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology, 81377 Munich, Germany
- Institute for Diabetes and Obesity (IDO), Helmholtz Zentrum München, 85764 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Abstract
Uncoupling protein 1 (UCP1) is an integral protein of the inner mitochondrial membrane (IMM) that is expressed specifically in brown and beige fat depots. UCP1 is responsible for the production of heat to control core body temperature, the regulation of fat metabolism, and the energy balance. As an uncoupling protein, UCP1 transports H+ across the IMM in presence of long-chain fatty acids (FA), which makes brown fat mitochondria produce heat at the expense of ATP. However, the exact mechanism of UCP1 action has remained difficult to elucidate, because direct methods for studying currents generated by UCP1 were unavailable. Recently, the patch-clamp technique was successfully applied to brown and beige fat mitochondria to directly study H+ currents across the IMM and characterize UCP1 function. A new model of the UCP1 mechanism was proposed based on the patch-clamp analysis. In this model, both FA anions (FA-) and H+ are transport substrates of UCP1, and UCP1 operates as a non-canonical FA-/H+ symporter. Here, we summarize recent findings obtained with the patch-clamp technique that describe how UCP1 can transport not only H+ but also FA-.
Collapse
|
4
|
Zhao L, Wang S, Zhu Q, Wu B, Liu Z, OuYang B, Chou JJ. Specific Interaction of the Human Mitochondrial Uncoupling Protein 1 with Free Long-Chain Fatty Acid. Structure 2017; 25:1371-1379.e3. [PMID: 28781081 DOI: 10.1016/j.str.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
The mitochondrial uncoupling protein 1 (UCP1) generates heat by causing proton leak across the mitochondrial inner membrane that requires fatty acid (FA). The mechanism by which UCP1 uses FA to conduct proton remains unsolved, and it is also unclear whether a direct physical interaction between UCP1 and FA exists. Here, we have shown using nuclear magnetic resonance that FA can directly bind UCP1 at a helix-helix interface site composed of residues from the transmembrane helices H1 and H6. According to the paramagnetic relaxation enhancement data and molecular dynamics simulation, the FA acyl chain appears to fit into the groove between H1 and H6 while the FA carboxylate group interacts with the basic residues near the matrix side of UCP1. Functional mutagenesis showed that mutating the observed FA binding site severely reduced UCP1-mediated proton flux. Our study identifies a functionally important FA-UCP1 interaction that is potentially useful for mechanistic understanding of UCP1-mediated thermogenesis.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Qianli Zhu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Wu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijun Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - James J Chou
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Bertholet AM, Kirichok Y. UCP1: A transporter for H + and fatty acid anions. Biochimie 2016; 134:28-34. [PMID: 27984203 DOI: 10.1016/j.biochi.2016.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
Adaptive thermogenesis regulates core body temperature, controls fat deposition, and contributes strongly to the overall energy balance. This process occurs in brown fat and requires uncoupling protein 1 (UCP1), an integral protein of the inner mitochondrial membrane. Classic biochemical studies revealed the general principle of adaptive thermogenesis: in the presence of long-chain fatty acids (FA), UCP1 increases the permeability of the inner mitochondrial membrane for H+, which makes brown fat mitochondria produce heat rather than ATP. However, the exact mechanism by which UCP1 increases the membrane H+ conductance in a FA-dependent manner has remained a fundamental unresolved question. Recently, the patch-clamp technique was successfully applied to the inner mitochondrial membrane of brown fat to directly characterize the H+ currents carried by UCP1. Based on the patch-clamp data, a new model of UCP1 operation was proposed. In brief, FA anions are transport substrates of UCP1, and UCP1 operates as an unusual FA anion/H+ symporter. Interestingly, in contrast to short-chain FA anions, long-chain FA anions cannot easily dissociate from UCP1 due to strong hydrophobic interactions established by their carbon tails, and a single long-chain FA participates in many H+ transport cycles. Therefore, in the presence of long-chain FA, endogenous activators of brown fat thermogenesis, UCP1 effectively operates as an H+ uniport. In addition to their transport function, long-chain FA competitively remove tonic inhibition of UCP1 by cytosolic purine nucleotides, thus enabling activation of the thermogenic H+ leak through UCP1 under physiological conditions.
Collapse
Affiliation(s)
- Ambre M Bertholet
- Department of Physiology, University of California San Francisco, UCSF Mail Code 2140, Genentech Hall Room N272F, 600 16th Street, San Francisco, CA 94158, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California San Francisco, UCSF Mail Code 2140, Genentech Hall Room N272F, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Rodríguez-Sánchez L, Rial E. The distinct bioenergetic properties of the human UCP1. Biochimie 2016; 134:51-55. [PMID: 27750036 DOI: 10.1016/j.biochi.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022]
Abstract
The uncoupling protein UCP1 from brown adipose tissue is a mitochondrial carrier which allows dissipation of metabolic energy as heat. We have characterized the human UCP1 (HsUCP1) recombinantly expressed in Saccharomyces cerevisiae and we demonstrate that HsUCP1 is activated by fatty acids and retinoids in a nucleotide sensitive manner just as its rodent orthologs. However, in the absence of regulators, rodent UCP1 presents a high ohmic proton conductance that cannot be detected in HsUCP1. Since the human protein can be activated in a nucleotide sensitive manner, we conclude that it must have lost selectively the basal proton conductance.
Collapse
Affiliation(s)
- Leonor Rodríguez-Sánchez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas - CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas - CSIC, Madrid, Spain.
| |
Collapse
|
7
|
UCPs, at the interface between bioenergetics and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2443-56. [PMID: 27091404 DOI: 10.1016/j.bbamcr.2016.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
Abstract
The first member of the uncoupling protein (UCP) family, brown adipose tissue uncoupling protein 1 (UCP1), was identified in 1976. Twenty years later, two closely related proteins, UCP2 and UCP3, were described in mammals. Homologs of these proteins exist in other organisms, including plants. Uncoupling refers to a deterioration of energy conservation between substrate oxidation and ADP phosphorylation. Complete energy conservation loss would be fatal but fine-tuning can be beneficial for processes such as thermogenesis, redox control, and prevention of mitochondrial ROS release. The coupled/uncoupled state of mitochondria is related to the permeability of the inner membrane and the proton transport mediated by activated UCPs underlies the uncoupling activity of these proteins. Proton transport by UCP1 is activated by fatty acids and this ensures thermogenesis. In vivo in absence of this activation UCP1 remains inhibited with no transport activity. A similar situation now seems unlikely for UCP2 and UCP3 and while activation of their proton transport has been described its physiological relevance remains uncertain and their influence can be envisaged as a result of another transport pathway that takes place in the absence of activation. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
8
|
Shabalina IG, Kalinovich AV, Cannon B, Nedergaard J. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria. Arch Toxicol 2015; 90:1117-28. [PMID: 26041126 PMCID: PMC4830884 DOI: 10.1007/s00204-015-1535-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Abstract
The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
Tine M, Kuhl H, Jastroch M, Reinhardt R. Genomic characterization of the European sea bass Dicentrarchus labrax reveals the presence of a novel uncoupling protein (UCP) gene family member in the teleost fish lineage. BMC Evol Biol 2012; 12:62. [PMID: 22577775 PMCID: PMC3428666 DOI: 10.1186/1471-2148-12-62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Uncoupling proteins (UCP) are evolutionary conserved mitochondrial carriers that control energy metabolism and therefore play important roles in several physiological processes such as thermogenesis, regulation of reactive oxygen species (ROS), growth control, lipid metabolism and regulation of insulin secretion. Despite their importance in various physiological processes, their molecular function remains controversial. The evolution and phylogenetic distribution may assist to identify their general biological function and structure-function relationships. The exact number of uncoupling protein genes in the fish genome and their evolution is unresolved. Results Here we report the first characterisation of UCP gene family members in sea bass, Dicentrarchus labrax, and then retrace the evolution of the protein family in vertebrates. Four UCP genes that are shared by five other fish species were identified in sea bass genome. Phylogenetic reconstitution among vertebrate species and synteny analysis revealed that UCP1, UCP2 and UCP3 evolved from duplication events that occurred in the common ancestor of vertebrates, whereas the novel fourth UCP originated specifically in the teleost lineage. Functional divergence analysis among teleost species revealed specific amino acid positions that have been subjected to altered functional constraints after duplications. Conclusions This work provides the first unambiguous evidence for the presence of a fourth UCP gene in teleost fish genome and brings new insights into the evolutionary history of the gene family. Our results suggest functional divergence among paralogues which might result from long-term and differential selective pressures, and therefore, provide the indication that UCP genes may have diverse physiological functions in teleost fishes. Further experimental analysis of the critical amino acids identified here may provide valuable information on the physiological functions of UCP genes.
Collapse
Affiliation(s)
- Mbaye Tine
- Max Planck Institute for Molecular Genetics, Ihnestresse 63-73, 14195, Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier. Biochem J 2012; 443:317-25. [PMID: 22236206 DOI: 10.1042/bj20110992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.
Collapse
|
11
|
Development of Chromanes as Novel Inhibitors of the Uncoupling Proteins. ACTA ACUST UNITED AC 2011; 18:264-74. [DOI: 10.1016/j.chembiol.2010.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/15/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022]
|
12
|
Labruna G, Pasanisi F, Fortunato G, Nardelli C, Finelli C, Farinaro E, Contaldo F, Sacchetti L. Sequence Analysis of the UCP1 Gene in a Severe Obese Population from Southern Italy. J Obes 2011; 2011:269043. [PMID: 21773003 PMCID: PMC3136174 DOI: 10.1155/2011/269043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/08/2011] [Indexed: 02/07/2023] Open
Abstract
Brown adipose tissue, where Uncoupling Protein 1 (UCP1) activity uncouples mitochondrial respiration, is an important site of facultative energy expenditure. This tissue may normally function to prevent obesity. Our aim was to investigate by sequence analysis the presence of UCP1 gene variations that may be associated with obesity. We studied 100 severe obese adults (BMI > 40 kg/m(2)) and 100 normal-weight control subjects (BMI range = 19-24.9 kg/m(2)). We identified 7 variations in the promoter region, 4 in the intronic region and 4 in the exonic region. Globally, 72% of obese patients bore UCP1 polymorphisms. Among UCP1 variants, g.IVS4-208T>G SNP was associated with obesity (OR: 1.77; 95% CI = 1.26-2.50; P = .001). Further, obese patients bearing the g.-451C>T (CT+TT) or the g.940G>A (GA+AA) genotypes showed a higher BMI than not polymorphic obese patients (P = .008 and P = .043, resp.). In conclusion, UCP1 SNPs could represent "thrifty" factors that promote energy storage in prone subjects.
Collapse
Affiliation(s)
- Giuseppe Labruna
- Fondazione IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Via Gianturco 113, 80143 Naples, Italy
| | - Fabrizio Pasanisi
- Centro Interuniversitario di Studi e Ricerche sull'Obesità e Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Giuliana Fortunato
- CEINGE Biotecnologie Avanzate S.C. a R.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, Via Pansini 5, 80131 Naples, Italy
| | - Carmela Nardelli
- CEINGE Biotecnologie Avanzate S.C. a R.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, Via Pansini 5, 80131 Naples, Italy
| | - Carmine Finelli
- Fondazione Stella Maris Mediterraneo, Centro Disturbi del Comportamento Alimentare e del Peso “G. Gioia”, Chiaromonte, C/da S. Lucia, 85100, Chiaromonte, Potenza, Italy
| | - Eduardo Farinaro
- Dipartimento di Scienze Mediche Preventive, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Franco Contaldo
- Centro Interuniversitario di Studi e Ricerche sull'Obesità e Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Lucia Sacchetti
- CEINGE Biotecnologie Avanzate S.C. a R.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, Via Pansini 5, 80131 Naples, Italy
- *Lucia Sacchetti:
| |
Collapse
|
13
|
Luévano-Martínez LA, Moyano E, de Lacoba MG, Rial E, Uribe-Carvajal S. Identification of the mitochondrial carrier that provides Yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:81-8. [PMID: 19766093 DOI: 10.1016/j.bbabio.2009.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/02/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
Abstract
Uncoupling proteins (UCPs) are mitochondrial carriers distributed throughout the eukaryotic kingdoms. While genes coding for UCPs have been identified in plants and animals, evidences for the presence of UCPs in fungi and protozoa are only functional. Here, it is reported that in the yeast Yarrowia lipolytica there is a fatty acid-promoted and GDP-sensitive uncoupling activity indicating the presence of a UCP. The uncoupling activity is higher in the stationary phase than in the mid-log growth phase. The in silico search on the Y. lipolytica genome led to the selection of two genes with the highest homology to the UCP family, XM_503525 and XM_500457. By phylogenetic analysis, XP_503525 was predicted to be an oxaloacetate carrier while XP_500457 would be a dicarboxylate carrier. Each of these two genes was cloned and heterologously expressed in Saccharomyces cerevisiae and the resulting phenotype was analyzed. The transport activity of the two gene products confirmed the phylogenetic predictions. In addition, only mitochondria isolated from yeasts expressing XP_503525 showed bioenergetic properties characteristic of a UCP: the proton conductance was increased by linoleic acid and inhibited by GDP. It is concluded that the XM_503525 gene from Y. lipolytica encodes for an oxaloacetate carrier although, remarkably, it also displays an uncoupling activity stimulated by fatty acids and inhibited by nucleotides.
Collapse
Affiliation(s)
- Luis A Luévano-Martínez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
14
|
Abstract
The uncoupling protein UCP1 provides eutherian mammals with an efficient thermogenic mechanism. Recent work published in BMC Evolutionary Biology, following the identification of UCP1 orthologs in non-eutherians, concludes that this unique function appeared after sequence divergence and purifying selection that allowed functional co-option.
Collapse
Affiliation(s)
- Eduardo Rial
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | |
Collapse
|
15
|
Hughes J, Criscuolo F. Evolutionary history of the UCP gene family: gene duplication and selection. BMC Evol Biol 2008; 8:306. [PMID: 18980678 PMCID: PMC2584656 DOI: 10.1186/1471-2148-8-306] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 11/03/2008] [Indexed: 12/16/2022] Open
Abstract
Background The uncoupling protein (UCP) genes belong to the superfamily of electron transport carriers of the mitochondrial inner membrane. Members of the uncoupling protein family are involved in thermogenesis and determining the functional evolution of UCP genes is important to understand the evolution of thermo-regulation in vertebrates. Results Sequence similarity searches of genome and scaffold data identified homologues of UCP in eutherians, teleosts and the first squamates uncoupling proteins. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution and two losses in the avian lineage (excluding duplications within a species, excluding the losses due to incompletely sequenced taxa and excluding the losses and duplications inferred through mismatch of species and gene trees). Estimates of synonymous and nonsynonymous substitution rates (dN/dS) and more complex branch and site models suggest that the duplication events were not associated with positive Darwinian selection and that the UCP is constrained by strong purifying selection except for a single site which has undergone positive Darwinian selection, demonstrating that the UCP gene family must be highly conserved. Conclusion We present a phylogeny describing the evolutionary history of the UCP gene family and show that the genes have evolved through duplications followed by purifying selection except for a single site in the mitochondrial matrix between the 5th and 6th α-helices which has undergone positive selection.
Collapse
Affiliation(s)
- Joseph Hughes
- University of Glasgow, IBLS/DEEB, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
16
|
Klingenspor M, Fromme T, Hughes DA, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M. An ancient look at UCP1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:637-41. [DOI: 10.1016/j.bbabio.2008.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/12/2008] [Indexed: 02/07/2023]
|
17
|
Hernandez-Sanchez C, Mansilla A, de Pablo F, Zardoya R. Evolution of the Insulin Receptor Family and Receptor Isoform Expression in Vertebrates. Mol Biol Evol 2008; 25:1043-53. [DOI: 10.1093/molbev/msn036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, Hirschberg V, Heldmaier G, McAllan BM, Firth BT, Burmester T, Platzer M, Klingenspor M. Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genomics 2007; 32:161-9. [PMID: 17971503 DOI: 10.1152/physiolgenomics.00183.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue expressing uncoupling protein 1 (UCP1) is responsible for adaptive nonshivering thermogenesis giving eutherian mammals crucial advantage to survive the cold. The emergence of this thermogenic organ during mammalian evolution remained unknown as the identification of UCP1 in marsupials failed so far. Here, we unequivocally identify the marsupial UCP1 ortholog in a genomic library of Monodelphis domestica. In South American and Australian marsupials, UCP1 is exclusively expressed in distinct adipose tissue sites and appears to be recruited by cold exposure in the smallest species under investigation (Sminthopsis crassicaudata). Our data suggest that an archetypal brown adipose tissue was present at least 150 million yr ago allowing early mammals to produce endogenous heat in the cold, without dependence on shivering and locomotor activity.
Collapse
Affiliation(s)
- M Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals. Gene 2007; 408:37-44. [PMID: 18023297 DOI: 10.1016/j.gene.2007.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/09/2007] [Accepted: 10/12/2007] [Indexed: 01/09/2023]
Abstract
Homeotherms possess various physiological mechanisms to maintain their body temperature, thus allowing them to adapt to various environments. Under cold conditions, most eutherian mammals upregulate heat production in brown adipose tissue (BAT), and uncoupling protein (UCP) 1 is an essential factor in BAT thermogenesis. The evolutionary origin of UCP1 was believed to have been a specific event occurring in eutherian lineages. Recently, however, the UCP1 ortholog was found in fishes, which uncovers a more ancient origin of this gene than previously believed. Here we investigate the evolutionary process of UCP1 by comparative genomic approach. We found that UCP1 evolved rapidly by positive Darwinian selection in the common ancestor of eutherians, although this gene arose in the ancestral vertebrate, since the orthologous genes were shared among most of the vertebrate species. Adaptive evolution occurred after the divergence between eutherians and marsupials, which is consistent with the fact that BAT has been found only in eutherians. Our findings indicate that positive Darwinian selection acted on UCP1 contributed to the acquisition of an efficient mechanism for body temperature regulation in primitive eutherians. Phylogenetic reconstruction of UCP1 with two paralogs (UCP2 and UCP3) among vertebrate species revealed that the gene duplication events which produced these three genes occurred in the common ancestor of vertebrates much earlier than the emergence of eutherians. Thus, our data demonstrate that novel gene function can evolve without de novo gene duplication event.
Collapse
|
20
|
Mutational analysis of Arabidopsis thaliana plant uncoupling mitochondrial protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1412-7. [PMID: 17980348 DOI: 10.1016/j.bbabio.2007.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/05/2007] [Accepted: 09/20/2007] [Indexed: 11/20/2022]
Abstract
In this study, point mutations were introduced in plant uncoupling mitochondrial protein AtUCP1, a typical member of the plant uncoupling protein (UCP) gene subfamily, in amino acid residues Lys147, Arg155 and Tyr269, located inside the so-called UCP-signatures, and in two more residues, Cys28 and His83, specific for plant UCPs. The effects of amino acid replacements on AtUCP1 biochemical properties were examined using reconstituted proteoliposomes. Residue Arg155 appears to be crucial for AtUCP1 affinity to linoleic acid (LA) whereas His83 plays an important role in AtUCP1 transport activity. Residues Cys28, Lys147, and also Tyr269 are probably essential for correct protein function, as their substitutions affected either the AtUCP1 affinity to LA and its transport activity, or sensitivity to inhibitors (purine nucleotides). Interestingly, Cys28 substitution reduced ATP inhibitory effect on AtUCP1, while Tyr269Phe mutant exhibited 2.8-fold increase in sensitivity to ATP, in accordance with the reverse mutation Phe267Tyr of mammalian UCP1.
Collapse
|
21
|
Jiménez-Jiménez J, Ledesma A, Zaragoza P, González-Barroso MM, Rial E. Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1292-6. [PMID: 16814247 DOI: 10.1016/j.bbabio.2006.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/07/2006] [Accepted: 05/19/2006] [Indexed: 11/28/2022]
Abstract
Noradrenaline signals the initiation of brown fat thermogenesis and the fatty acids liberated by the hormone-stimulated lipolysis act as second messengers to activate the uncoupling protein UCP1. UCP1 is a mitochondrial transporter that catalyses the re-entry of protons to the mitochondrial matrix thus allowing a regulated discharge of the proton gradient. The high affinity of UCP1 for fatty acids is a distinct feature of this uncoupling protein. The uncoupling proteins belong to a protein superfamily formed by the mitochondrial metabolite carriers. Members of this family present a tripartite structure where a domain containing two transmembrane helices, linked by a long hydrophilic loop, is repeated three times. Using protein chimeras, where the repeats had been swapped between UCP1 and UCP3, it has been shown that the central third of UCP1 is necessary and sufficient for the response of the protein to fatty acids. We have extended those studies and in the present report we have generated protein chimeras where different regions of the second repeat of UCP1 have been sequentially replaced with their UCP2 counterparts. The resulting chimeras present a progressive degradation of the characteristic bioenergetic properties of UCP1. We demonstrate that the presence of the second matrix loop is necessary for the high affinity activation of UCP1 by fatty acids.
Collapse
|