1
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
2
|
Liao W, Waisayanand N, Fanhchaksai K, Visser WE, Meima ME, Wejaphikul K. Resistance to Thyroid Hormone Beta Due to THRB Mutation in a Patient Misdiagnosed With TSH-Secreting Pituitary Adenoma. JCEM CASE REPORTS 2024; 2:luae140. [PMID: 39091608 PMCID: PMC11291949 DOI: 10.1210/jcemcr/luae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 08/04/2024]
Abstract
Elevated concentrations of T3 and T4 concomitant with nonsuppressed TSH are found in both TSH-producing tumors and resistance to thyroid hormone beta (RTHβ), posing a diagnostic challenge. We demonstrate here a 54-year-old female who presented with palpitations, goiter, and elevated free T4 with nonsuppressed TSH concentrations (TSH 2.2 mIU/L [normal range, NR 0.27-4.2 mIU/L] and FT4 59.08 pmol/L [NR 12.0-22.0 pmol/L]). Because magnetic resonance imaging revealed a pituitary microadenoma (4 mm), she was diagnosed with TSH-secreting pituitary adenoma and underwent transsphenoidal surgery. Pathological reports showed no tumor cells. Subsequent genetic testing revealed a pathogenic variant in the THRB gene resulting in a His435Arg amino acid substitution in the T3 receptor isoform beta 1 (TRβ1), suggestive of RTHβ. In vitro and ex vivo studies revealed that the His435Arg mutated TRβ1 (TRβ1-H435R) completely abolishes the T3-induced transcriptional activation, nuclear receptor corepressor 1 release, steroid receptor coactivator 1 recruitment, and T3-induced thyroid hormone target gene expression, confirming the pathogenicity of this variant. The identification of a pituitary microadenoma in a patient with RTHβ led to a misdiagnosis of a TSH-producing tumor and unnecessary surgery. Genetic testing proved pivotal for an accurate diagnosis, suggesting earlier consideration in similar clinical scenarios.
Collapse
Affiliation(s)
- Wenjun Liao
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, 3015 CN, Rotterdam, the Netherlands
| | - Nipawan Waisayanand
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanda Fanhchaksai
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - W Edward Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, 3015 CN, Rotterdam, the Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, 3015 CN, Rotterdam, the Netherlands
| | - Karn Wejaphikul
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
3
|
Lu Y, Chen C, Zhuang D, Qian L. Molecular Dynamic Simulation To Reveal the Mechanism Underlying MGL-3196 Resistance to Thyroxine Receptor Beta. ACS OMEGA 2024; 9:20957-20965. [PMID: 38764645 PMCID: PMC11097192 DOI: 10.1021/acsomega.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Thyroxine receptor beta (TRβ) is a ligand-dependent nuclear receptor that participates in regulating multiple biological processes, particularly playing an important role in lipid metabolism regulation. TRβ is currently a popular therapeutic target for nonalcoholic steatohepatitis (NASH), while no drugs have been approved to treat this disease. MGL-3196 (Resmetirom) is the first TRβ agonist that has succeeded in phase III clinical trials for the treatment of NASH; therefore, studying its molecular mechanism of action is of great significance. In this study, we employed molecular dynamic simulation to investigate the interaction mode between MGL-3196 and TRβ at the all-atom level. More importantly, by comparing the binding patterns of MGL-3196 in several prevalent TRβ mutants, it was identified that the mutations R243Q and H435R located, respectively, around and within the ligand-binding pocket of TRβ cause TRβ to be insensitive to MGL-3196. This indicates that patients with NASH carrying these two mutations may exhibit resistance to the medication of MGL-3196, thereby highlighting the potential impact of TRβ mutations on TRβ-targeted treatment of NASH and beyond.
Collapse
Affiliation(s)
- Yi Lu
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Department
of Pediatrics, Chidren’s Hospital
of Fudan University, Shanghai 201102, China
| | - Chun Chen
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Deyi Zhuang
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Liling Qian
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Division
of Pulmonary Medicine, Shanghai Children’s Hospital, School
of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
4
|
Ligand binding free energy evaluation by Monte Carlo Recursion. Comput Biol Chem 2023; 103:107830. [PMID: 36812825 DOI: 10.1016/j.compbiolchem.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The correct evaluation of ligand binding free energies by computational methods is still a very challenging active area of research. The most employed methods for these calculations can be roughly classified into four groups: (i) the fastest and less accurate methods, such as molecular docking, designed to sample a large number of molecules and rapidly rank them according to the potential binding energy; (ii) the second class of methods use a thermodynamic ensemble, typically generated by molecular dynamics, to analyze the endpoints of the thermodynamic cycle for binding and extract differences, in the so-called 'end-point' methods; (iii) the third class of methods is based on the Zwanzig relationship and computes the free energy difference after a chemical change of the system (alchemical methods); and (iv) methods based on biased simulations, such as metadynamics, for example. These methods require increased computational power and as expected, result in increased accuracy for the determination of the strength of binding. Here, we describe an intermediate approach, based on the Monte Carlo Recursion (MCR) method first developed by Harold Scheraga. In this method, the system is sampled at increasing effective temperatures, and the free energy of the system is assessed from a series of terms W(b,T), computed from Monte Carlo (MC) averages at each iteration. We show the application of the MCR for ligand binding with datasets of guest-hosts systems (N = 75) and we observed that a good correlation is obtained between experimental data and the binding energies computed with MCR. We also compared the experimental data with an end-point calculation from equilibrium Monte Carlo calculations that allowed us to conclude that the lower-energy (lower-temperature) terms in the calculation are the most relevant to the estimation of the binding energies, resulting in similar correlations between MCR and MC data and the experimental values. On the other hand, the MCR method provides a reasonable view of the binding energy funnel, with possible connections with the ligand binding kinetics, as well. The codes developed for this analysis are publicly available on GitHub as a part of the LiBELa/MCLiBELa project (https://github.com/alessandronascimento/LiBELa).
Collapse
|
5
|
Hu L, Gu Y, Liang J, Ning M, Yang J, Zhang Y, Qu H, Yang Y, Leng Y, Zhou B. Discovery of Highly Potent and Selective Thyroid Hormone Receptor β Agonists for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2023; 66:3284-3300. [PMID: 36799411 DOI: 10.1021/acs.jmedchem.2c01669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive stage of nonalcoholic fatty liver disease (NAFLD) and is characterized by steatosis, inflammation, hepatocyte ballooning, and fibrosis. While there are currently no approved therapies for NASH, the thyroid hormone receptor β (THR-β), primarily expressed in the liver, is emerging as an effective molecular target for the treatment of NASH. However, the adverse cardiac and bone effects mediated by thyroid hormone receptor α (THR-α) need to be minimized. Herein, we reported the discovery of a series of novel THR-β agonists featuring pyrrolo[3,2-b]pyridin-5-one skeletons based on structure-based drug design. Further optimization led to compound 15, which exhibited higher potency and selectivity for THR-β over THR-α compared to clinical drug MGL-3196. More significantly, an excellent liver-to-serum ratio of 93:1 was observed for compound 15. We believe that the high hepatic concentration of compound 15 may result in no cardiotoxicity.
Collapse
Affiliation(s)
- Liuyu Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ju Liang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junli Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Gheshlaghi SZ, Ebrahimi A, Faghih Z. A detailed theoretical exploration on the THR-β binding affinities and antioxidant activity of some halogenated bisphenols. J Biomol Struct Dyn 2022; 40:10835-10851. [PMID: 34278964 DOI: 10.1080/07391102.2021.1950568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Natural halogenated phenolic compounds are unique bioactive structures which share features and physicochemical properties with thyroid hormones, who are essential regulators of neurological development and metabolism processes. Also, these structures can be used as natural antioxidants to minimize the diseases related to oxidative stress. In this work, the binding affinity of 32 natural and synthetic halogenated bisphenols were investigated on thyroid hormone receptor-β (THR-β) using the molecular docking, MM/GBSA, molecular dynamics, and a rigorous three-layer ONIOM ((M06-2X/6-31G*:PM6:AMBER) calculation. The desirable potency is observed for binding of selected compounds to THR-β. The Met313, Asn331, and His435 are the main interacting residues in the binding cavity which involved in the hydrogen and halogen bond interactions with the ligands. The most potent candidate on binding to the active site of THR-β is presented with respect to the results of mentioned calculations. Moreover, the antioxidant activity of compounds has been investigated using the quantum mechanical calculations. The electrostatic potential surfaces illustrate well the antioxidant capacity of compounds. The halogen substituents increase the antioxidant activity of the most stable conformers. The position and number of OH groups are crucial factors which affect the activity, whereas two adjacent hydroxyl groups enhance the antioxidant activity of selected compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: Mechanisms and therapeutic development. Mol Cell Endocrinol 2022; 553:111679. [PMID: 35738449 DOI: 10.1016/j.mce.2022.111679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
As an essential primary hormone, thyroid hormone (TH) is indispensable for human growth, development and metabolism. Impairment of TH function in several aspects, including TH synthesis, activation, transportation and receptor-dependent transactivation, can eventually lead to thyroid hormone resistance syndrome (RTH). RTH is a rare syndrome that manifests as a reduced target cell response to TH signaling. The majority of RTH cases are related to thyroid hormone receptor β (TRβ) mutations, and only a few RTH cases are associated with thyroid hormone receptor α (TRα) mutations or other causes. Patients with RTH suffer from goiter, mental retardation, short stature and bradycardia or tachycardia. To date, approximately 170 mutated TRβ variants and more than 20 mutated TRα variants at the amino acid level have been reported in RTH patients. In addition to these mutated proteins, some TR isoforms can also reduce TH function by competing with primary TRs for TRE and RXR binding. Fortunately, different treatments for RTH have been explored with structure-activity relationship (SAR) studies and drug design, and among these treatments. With thyromimetic potency but biochemical properties that differ from those of primary TH (T3 and T4), these TH analogs can bypass specific defective transporters or reactive mutant TRs. However, these compounds must be carefully applied to avoid over activating TRα, which is associated with more severe heart impairment. The structural mechanisms of mutation-induced RTH in the TR ligand-binding domain are summarized in this review. Furthermore, strategies to overcome this resistance for therapeutic development are also discussed.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Chunyan Yang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| | - Chengxi Pan
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
8
|
Main Factors Involved in Thyroid Hormone Action. Molecules 2021; 26:molecules26237337. [PMID: 34885918 PMCID: PMC8658769 DOI: 10.3390/molecules26237337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
The thyroid hormone receptors are the mediators of a multitude of actions by the thyroid hormones in cells. Most thyroid hormone activities require interaction with nuclear receptors to bind DNA and regulate the expression of target genes. In addition to genomic regulation, thyroid hormones function via activation of specific cytosolic pathways, bypassing interaction with nuclear DNA. In the present work, we reviewed the most recent literature on the characteristics and roles of different factors involved in thyroid hormone function in particular, we discuss the genomic activity of thyroid hormone receptors in the nucleus and the functions of different thyroid hormone receptor isoforms in the cytosol. Furthermore, we describe the integrin αvβ3-mediated thyroid hormone signaling pathway and its rapid nongenomic action in the cell. We furthermore reviewed the thyroid hormone transporters enabling the uptake of thyroid hormones in the cell, and we also include a paragraph on the proteins that mediate thyroid receptors’ shuttling from the nucleus to the cytosol.
Collapse
|
9
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Mukherjee S, Dasgupta S, Adhikari U, Panja SS. Molecular modeling and molecular dynamics simulation studies on thyroid hormone receptor from Rattus norvegicus: role of conserved water molecules. J Mol Model 2021; 27:126. [PMID: 33834296 DOI: 10.1007/s00894-021-04740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormone receptor (THR) belongs to the nuclear receptor (NR) superfamily that is activated by binding of appropriate ligand molecules (thyroid hormones). These receptors directly bind to specific DNA sequences for gene expression, which is essential for metabolism, homeostasis, and the development of organisms, making it an important drug target. Extensive MD-simulation studies of triiodothyronine (T3) docked modeled rnTHRβ1 structures have indicated the presence of twelve conserved water molecules at the DNA-DBD (DNA binding domain) interface. The W1-W5 water centers have been involved in the recognition between the A-chain of DBD to C-chain of DNA, W6 and W7 mediated the interaction between A-chain of DBD and D-chain of DNA, W8 and W9 recognized the B-chain of DBD and C-chain of DNA, and W9-W12 centers conjugated the residues of B-chain of DBD to D-chain of DNA through hydrogen bonds. The conformation flexibility of Phe272 and Met313 residues in the absence of T3 at the LBD (ligand-binding domain) region have been observed and reported.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
11
|
Nogueira TR, de Oliveira VA, Pereira IC, de Carvalho CMRG, Péres-Rodrigues G, do Carmo de Carvalho e Martins M, de Macedo G. Frota K, de Azevedo Paiva A, de Jesus e Silva de Almendra Freitas B. Vitamin A: Modulating Effect on Breast Carcinogenesis. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200706011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer has a multifactorial etiology and, among the main causal factors, the dietary
profile stands out, mainly the components of the pro-inflammatory diet and their interaction with genetic
characteristics. In this sense, deciphering the molecular networks involved in the proliferation
of cancer cells in breast tissue can determine ways of action of organic compounds that modulate the
pathogenesis of cancer, such as vitamin A and analogs, as well as their possible mechanisms of modulation
of breast tumorigenesis. This is a review study conducted according to the guidelines of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and by consulting
the PubMed and Web of Science databases including articles, published in Portuguese, English and
Spanish, in the last five years. 126 articles were obtained, of which 13 were selected for full analysis
and only 6 were included in the study for meeting the eligibility criteria. The results of the compiled
studies demonstrate the role of some retinol-binding proteins in metabolism, as well as in differentiation,
cell proliferation and inflammation. Although controversial, the results point to the use of these
proteins as possible prognostic markers. The need for further studies in humans is also emphasized in
order to assess the main effects of vitamin isoforms on tumor activity.
Collapse
Affiliation(s)
- Thaís R. Nogueira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Victor A. de Oliveira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Irislene C. Pereira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Finan B, Parlee SD, Yang B. Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH. Mol Metab 2020; 46:101153. [PMID: 33359400 PMCID: PMC8085542 DOI: 10.1016/j.molmet.2020.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a spectrum of histological liver pathologies ranging from hepatocyte fat accumulation, hepatocellular ballooning, lobular inflammation, and pericellular fibrosis. Based on early investigations, it was discovered that visceral fat accumulation, hepatic insulin resistance, and atherogenic dyslipidemia are pathological triggers for NASH progression. As these pathogenic features are common with obesity, type 2 diabetes (T2D), and atherosclerosis, therapies that target dysregulated core metabolic pathways may hold promise for treating NASH, particularly as first-line treatments. Scope of Review In this review, the latest clinical data on nuclear hormone- and peptide hormone-based drug candidates for NASH are reviewed and contextualized, culminating with a discovery research perspective on emerging combinatorial therapeutic approaches that merge nuclear and peptide strategies. Major Conclusion Several drug candidates targeting the metabolic complications of NASH have shown promise in early clinical trials, albeit with unique benefits and challenges, but questions remain regarding their translation to larger and longer clinical trials, as well as their utility in a more diseased patient population. Promising polypharmacological approaches can potentially overcome some of these perceived challenges, as has been suggested in preclinical models, but deeper characterizations are required to fully evaluate these opportunities. Despite no approved treatments for NASH, several drug candidates have shown promise in early clinical trials. Therapies targeting metabolic pathologies of NASH have shown efficacy to reduce hepatic fat content and improve fibrosis. Many of these therapies have been rationally designed to mimic nuclear hormone or peptide hormone action. Despite provocative preclinical findings of nuclear and peptide hormone combination, clinical translation remains unproven.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., United States.
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Inc., United States
| |
Collapse
|
13
|
Abstract
Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.
Collapse
|
14
|
Nakaya H, Tatematsu KI, Sezutsu H, Kuwabara N, Koibuchi N, Takeda S. Secretory expression of thyroid hormone receptor using transgenic silkworms and its DNA binding activity. Protein Expr Purif 2020; 176:105723. [PMID: 32768455 DOI: 10.1016/j.pep.2020.105723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Silkworms are economically important insects that have the ability to produce large amounts of silk. They have mass breeding methods and silk glands, which are specialized tissues that secrete silk fibroin and sericin. Thus, the production of recombinant proteins in a transgenic silkworm system is a promising approach. We developed a silkworm, Bombyx mori, as a host expression insect for recombinant proteins and successfully produced different proteins including antibodies, glycoproteins, and membrane receptors. The thyroid hormone receptor (TR) is a regulatory factor for many physiological phenomena. It is a lipophilic protein that has DNA-binding and ligand-binding domains. Based on our previous experiences, it was inferred that the recombinant TR easily formed aggregates and precipitates which is potentially due to an unstructured hinge domain. We applied the silkworm expression system to produce mice TRβ1 that was fused with glutathione S-transferase. Using 160 larvae, the yield of the recombinant GST-TRβ was approximately 4 mg, and the purified GST-TRβ completely retained its physiological activity. Our results indicated that the recombinant TRβ was secreted extracellularly using the silk fibroin signal peptide sequence. Moreover, we found that the expression system of silkworms was applicable to nuclear proteins.
Collapse
Affiliation(s)
- Hirofumi Nakaya
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma, 371-8570, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
15
|
Kirschberg TA, Jones CT, Xu Y, Fenaux M, Halcomb RL, Wang Y, Klucher K. Selective thyroid hormone receptor β agonists with oxadiazolone acid isosteres. Bioorg Med Chem Lett 2020; 30:127465. [PMID: 32768645 DOI: 10.1016/j.bmcl.2020.127465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Use of the oxadiazolone acid isostere in triiodothyronine analogs yielded potent and selective agonists for the thyroid hormone receptor β. Selected examples showed good in-vivo efficacy in a rat hypercholesterolemic model. One compound was further profiled in a diet-induced mouse model of nonalcoholic steatohepatitis (NASH) and showed robust target engagement and significant histological improvements in both liver steatosis and fibrosis.
Collapse
Affiliation(s)
- Thorsten A Kirschberg
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA.
| | - Christopher T Jones
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| | - Yingzi Xu
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| | - Martijn Fenaux
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| | - Randall L Halcomb
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| | - Yujin Wang
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| | - Kevin Klucher
- Terns Pharmaceuticals Inc., 1065 E. Hillsdale Blvd., Suite 100, Foster City, CA 94404, USA
| |
Collapse
|
16
|
le Maire A, Bouhours-Nouet N, Soamalala J, Mirebeau-Prunier D, Paloni M, Guee L, Heron D, Mignot C, Illouz F, Joubert F, Briet C, Rodien P, Bourguet W, Flamant F, Guyot R. Two Novel Cases of Resistance to Thyroid Hormone Due to THRA Mutation. Thyroid 2020; 30:1217-1221. [PMID: 32204686 DOI: 10.1089/thy.2019.0602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Resistance to thyroid hormone alpha (RTHα) is a rare and under-recognized genetic disease caused by mutations of THRA, the gene encoding thyroid hormone receptor α1 (TRα1). We report here two novel THRA missense mutations (M259T, T273A) in patients with RTHα. We combined biochemical and cellular assays with in silico modeling to assess the capacity of mutant TRα1 to bind triiodothyronine (T3), to heterodimerize with RXR, to interact with transcriptional coregulators, and to transduce a T3 transcriptional response. M259T, and to a lower extent T273A, reduces the affinity of TRα1 for T3. Their negative influence is only reverted by large excess of T3. The severity of the two novel RTHα cases originates from a reduction in the binding affinity of TRα1 mutants to T3 and thus correlates with the incapacity of corepressors to dissociate from TRα1 mutants in the presence of T3.
Collapse
Affiliation(s)
- Albane le Maire
- Centre de Biochimie Structurale, CNRS, INSERM, Univ Montpellier, Montpellier, France
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Sao Paulo, Brazil
| | - Natacha Bouhours-Nouet
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie Diabétologie Nutrition et Endocrinologie Pédiatrique, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Jessica Soamalala
- Centre de Biochimie Structurale, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Delphine Mirebeau-Prunier
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie Diabétologie Nutrition et Endocrinologie Pédiatrique, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Matteo Paloni
- Centre de Biochimie Structurale, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Laura Guee
- Centre de Biochimie Structurale, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Delphine Heron
- APHP, Département de Génétique, GH Pitié Salpêtrière, CRMR Déficiences Intellectuelles de Causes Rares, Sorbonne Université GRC 9, Paris, France
| | - Cyril Mignot
- APHP, Département de Génétique, GH Pitié Salpêtrière, CRMR Déficiences Intellectuelles de Causes Rares, Sorbonne Université GRC 9, Paris, France
| | - Frédéric Illouz
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie Diabétologie Nutrition et Endocrinologie Pédiatrique, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Florence Joubert
- Service pédiatrie, Centre hospitalier d'Avignon, Avignon, France
| | - Claire Briet
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie Diabétologie Nutrition et Endocrinologie Pédiatrique, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Patrice Rodien
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie Diabétologie Nutrition et Endocrinologie Pédiatrique, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - William Bourguet
- Centre de Biochimie Structurale, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, INRA USC 1370, Université de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, INRA USC 1370, Université de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
17
|
A Novel Pathogenic Variant in the N-Terminal Domain of the Glucocorticoid Receptor, Causing Glucocorticoid Resistance. Mol Diagn Ther 2020; 24:473-485. [DOI: 10.1007/s40291-020-00480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
19
|
Reply to Comments: "Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis" Int. J. Mol. Sci., 2019, 20, 4986. Int J Mol Sci 2020; 21:ijms21103554. [PMID: 32438653 PMCID: PMC7279030 DOI: 10.3390/ijms21103554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
|
20
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
22
|
Ram Lamichhane T, Prasad Lamichhane H. Structural changes in thyroid hormone receptor-beta by T3 binding and L330S mutational interactions. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Halogen Bonding in the Molecular Recognition of Thyroid Hormones and Their Metabolites by Transport Proteins and Thyroid Hormone Receptors. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00153-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wejaphikul K, van Gucht ALM, Groeneweg S, Visser WE, Visser TJ, Peeters RP, Meima ME. The In Vitro Functional Impairment of Thyroid Hormone Receptor Alpha 1 Isoform Mutants Is Mainly Dictated by Reduced Ligand Sensitivity. Thyroid 2019; 29:1834-1842. [PMID: 31530256 DOI: 10.1089/thy.2019.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Thyroid hormone (TH) acts on TH receptors (TRs) and regulates gene transcription by binding of TRs to TH response elements (TREs) in target gene promoters. The transcriptional activity of TRs is modulated by interactions with TR-coregulatory proteins. Mutations in TRα cause resistance to thyroid hormone alpha (RTHα). In this study, we analyzed if, beyond reduced triiodothyronine (T3) affinity, altered interactions with cofactors or different TREs could account for the differential impaired transcriptional activity of different mutants. Methods: We evaluated four mutants derived from patients (D211G, M256T, A263S, and R384H) and three artificial mutants at equivalent positions in patients with RTHβ (T223A, L287V, and P398H). The in vitro transcriptional activity was evaluated on TRE-luciferase reporters (DR4, IR0, and ER6). The affinity for T3 and interaction with coregulatory proteins (nuclear receptor corepressor 1 [NCoR1] and steroid receptor coactivator 1 [SRC1]) were also determined. Results: We found that the affinity for T3 was significantly reduced for all mutants, except for TRα1-T223A. The reduction in the T3 sensitivity of the transcriptional activity on three TREs, the dissociation of the corepressor NCoR1, and the association of the coactivator SRC1 recruitment for each mutant correlated with the reduced affinity for T3. We did not observe mutation-specific alterations in interactions with cofactors or TREs. Conclusions: In summary, the degree of impaired transcriptional activity of mutants is mainly determined by their reduced affinity for T3.
Collapse
Affiliation(s)
- Karn Wejaphikul
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anja L M van Gucht
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Yao B, Wei Y, Zhang S, Tian S, Xu S, Wang R, Zheng W, Li Y. Revealing a Mutant-Induced Receptor Allosteric Mechanism for the Thyroid Hormone Resistance. iScience 2019; 20:489-496. [PMID: 31655060 PMCID: PMC6806671 DOI: 10.1016/j.isci.2019.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Resistance to thyroid hormone (RTH) is a clinical disorder without specific and effective therapeutic strategy, partly due to the lack of structural mechanisms for the defective ligand binding by mutated thyroid hormone receptors (THRs). We herein uncovered the prescription drug roxadustat as a novel THRβ-selective ligand with therapeutic potentials in treating RTH, thereby providing a small molecule tool enabling the first probe into the structural mechanisms of RTH. Despite a wide distribution of the receptor mutation sites, different THRβ mutants induce allosteric conformational modulation on the same His435 residue, which disrupts a critical hydrogen bond required for the binding of thyroid hormones. Interestingly, roxadustat retains hydrophobic interactions with THRβ via its unique phenyl extension, enabling the rescue of the activity of the THRβ mutants. Our study thus reveals a critical receptor allosterism mechanism for RTH by mutant THRβ, providing a new and viable therapeutic strategy for the treatment of RTH. We identified a novel THR ligand that effectively binds to THRβ mutants Structures revealed mechanisms for the RTH controlled by a key residue switch Roxadustat retains unique hydrophobic interactions with THRβ mutants We provide a promising approach to design THR ligands in treating RTH
Collapse
Affiliation(s)
- Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Shuchi Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Siyu Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Shuangshuang Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Weili Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China.
| |
Collapse
|
26
|
Anyetei-Anum CS, Evans RM, Back AM, Roggero VR, Allison LA. Acetylation modulates thyroid hormone receptor intracellular localization and intranuclear mobility. Mol Cell Endocrinol 2019; 495:110509. [PMID: 31319097 PMCID: PMC6708479 DOI: 10.1016/j.mce.2019.110509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/05/2019] [Accepted: 07/14/2019] [Indexed: 01/07/2023]
Abstract
The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling, but is primarily nuclear-localized and mediates expression of genes involved in development and homeostasis. Given the proximity of TR acetylation and sumoylation sites to nuclear localization (NLS) and nuclear export signals, we investigated their role in regulating intracellular localization. The nuclear/cytosolic fluorescence ratio (N/C) of fluorescent protein-tagged acetylation mimic, nonacetylation mimic, and sumoylation-deficient TR was quantified in transfected mammalian cells. While nonacetylation mimic and sumoylation-deficient TRs displayed wild-type N/C, the acetylation mimic's N/C was significantly lower. Importins that interact with wild-type TR also interact with acetylation and nonacetylation mimics, suggesting factors other than reduced importin binding alter nuclear localization. FRAP analysis showed wild-type intranuclear dynamics of acetylation mimic and sumoylation-deficient TRs, whereas the nonacetylation mimic had significantly reduced mobility and transcriptional activity. Acetyltransferase CBP/p300 inhibition enhanced TR's nuclear localization, further suggesting that nonacetylation correlates with nuclear retention, while acetylation promotes cytosolic localization.
Collapse
Affiliation(s)
- Cyril S Anyetei-Anum
- Department of Biology, College of William and Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23187, USA
| | - Rochelle M Evans
- Department of Biology, College of William and Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23187, USA
| | - Amanda M Back
- Department of Biology, College of William and Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23187, USA
| | - Vincent R Roggero
- Department of Biology, College of William and Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23187, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23187, USA.
| |
Collapse
|
27
|
Wejaphikul K, Groeneweg S, Hilhorst-Hofstee Y, Chatterjee VK, Peeters RP, Meima ME, Visser WE. Insight Into Molecular Determinants of T3 vs T4 Recognition From Mutations in Thyroid Hormone Receptor α and β. J Clin Endocrinol Metab 2019; 104:3491-3500. [PMID: 30817817 PMCID: PMC6599431 DOI: 10.1210/jc.2018-02794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
CONTEXT The two major forms of circulating thyroid hormones (THs) are T3 and T4. T3 is regarded as the biologically active hormone because it binds to TH receptors (TRs) with greater affinity than T4. However, it is currently unclear what structural mechanisms underlie this difference in affinity. OBJECTIVE Prompted by the identification of a novel M256T mutation in a resistance to TH (RTH)α patient, we investigated Met256 in TRα1 and the corresponding residue (Met310) in TRβ1, residues previously predicted by crystallographic studies in discrimination of T3 vs T4. METHODS Clinical characterization of the RTHα patient and molecular studies (in silico protein modeling, radioligand binding, transactivation, and receptor-cofactor studies) were performed. RESULTS Structural modeling of the TRα1-M256T mutant showed that distortion of the hydrophobic niche to accommodate the outer ring of ligand was more pronounced for T3 than T4, suggesting that this substitution has little impact on the affinity for T4. In agreement with the model, TRα1-M256T selectively reduced the affinity for T3. Also, unlike other naturally occurring TRα mutations, TRα1-M256T had a differential impact on T3- vs T4-dependent transcriptional activation. TRα1-M256A and TRβ1-M310T mutants exhibited similar discordance for T3 vs T4. CONCLUSIONS Met256-TRα1/Met310-TRβ1 strongly potentiates the affinity of TRs for T3, thereby largely determining that T3 is the bioactive hormone rather than T4. These observations provide insight into the molecular basis for underlying the different affinity of TRs for T3 vs T4, delineating a fundamental principle of TH signaling.
Collapse
Affiliation(s)
- Karn Wejaphikul
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | | | - V Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
- Correspondence and Reprint Requests: W. Edward Visser, MD, PhD, Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, 3015 CN Rotterdam, Netherlands. E-mail:
| |
Collapse
|
28
|
Wang Y, Fu Q, Zhou Y, Du Y, Huang N. Replacement of Protein Binding-Site Waters Contributes to Favorable Halogen Bond Interactions. J Chem Inf Model 2019; 59:3136-3143. [PMID: 31187992 DOI: 10.1021/acs.jcim.9b00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halogen bond interaction between a protein electronegative atom and a ligand halogen atom is increasingly attracting attention in the field of structure-based drug design. Nevertheless, gaps in understanding make it desirable to better examine the role of forces governing the formation of favorable halogen bond interactions, and the development of effective and efficient computational approaches to "design in" favorable halogen bond interactions in lead optimization process are warranted. Here, we analyzed the binding-site water properties of crystal structures with characterized halogen bond interactions between ligand halogen atoms and protein backbone carbonyl groups and, thus, found that halogen atoms involved in halogen bond interactions frequently replace calculated binding-site waters upon ligand binding. Moreover, we observed that the preferential directionality of halogen bond interactions aligns well with the orientations of these replaced waters, and these replaced waters exhibited differential energetic characteristics as compared to waters that are displaced by halogen atoms that do not form halogen bond interactions. Our discovery that replacement of calculated binding-site waters contributes to the formation of favorable halogen bond interactions suggests a practical approach for rational drug design utilizing halogen bond interactions with protein backbone carbonyl groups.
Collapse
Affiliation(s)
- Yuanxun Wang
- School of Pharmaceutical Science & Technology , Tianjin University , Tianjin 300072 , China.,National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Qiuyu Fu
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China.,College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Yu Zhou
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Yunfei Du
- School of Pharmaceutical Science & Technology , Tianjin University , Tianjin 300072 , China
| | - Niu Huang
- National Institute of Biological Sciences , Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China.,Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University , Beijing 102206 , China
| |
Collapse
|
29
|
Lamichhane TR, Paudel S, Yadav BK, Lamichhane HP. Echo dephasing and heat capacity from constrained and unconstrained dynamics of triiodothyronine nuclear receptor protein. J Biol Phys 2019; 45:107-125. [PMID: 30810960 PMCID: PMC6408566 DOI: 10.1007/s10867-018-9518-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
The objective of this study is to observe the echo feature curves, vibrational dephasing, and heat capacity of a protein-hormone system taking thyroid hormone receptor-beta (THR-β) as an example. Constrained and unconstrained molecular dynamics simulations are performed by implementing the theory of velocity reassignments to probe the phase coherent state in terms of echo pulses. The constrained vibrations are incorporated by adjusting rigid bonds to all hydrogen atoms with an integrator parameter of 2 fs/step in order to reduce the degrees of freedom whereas 1 fs/step is used in the free vibrations of the atomic cluster. The nature of temperature auto-correlation functions changes so that echo feature curves also show a distinct nature in the cases of constrained and unconstrained vibrations. There is a large variation in kinetic temperature and internal potential energy in the echo time zone. The temperature rate of change of internal potential energy is the main contributor to the heat capacity of the native state protein-hormone system. The heat capacity of proteins estimated from this technique is in good agreement with the values from experiments. This study shows that triiodothyronine (T3) hormone makes some differences in heat capacity upon binding to the THR-β ligand binding domain (LBD). The physical properties of unliganded THR-β and T3-bound THR-β LBD in the cases of constrained and unconstrained dynamics are observed distinctly under the effect of anharmonicity on the phase coherent state of normal modes and the dephasing time lies in a range of 0.6-0.8 ps when the systems are perturbed suddenly.
Collapse
Affiliation(s)
- Tika Ram Lamichhane
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sharma Paudel
- Institute of Medicine, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | - Binod Kumar Yadav
- Institute of Medicine, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| | | |
Collapse
|
30
|
Gramec Skledar D, Trontelj J, Troberg J, Tomašič T, Zega A, Finel M, Peterlin Mašič L. Data on biosynthesis of BPAF glucuronide, enzyme kinetics of BPAF glucuronidation, and molecular modeling. Data Brief 2019; 22:977-986. [PMID: 30740481 PMCID: PMC6356001 DOI: 10.1016/j.dib.2018.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
Bisphenol AF (BPAF) is in the body mainly metabolized to the corresponding bisphenol AF glucuronide (BPAF-G). While BPAF-G is not commercially available, enzyme-assisted synthesis of BPAF-G using the human recombinant enzyme UGT2A1, purification of BPAF-G by solid phase extraction and semi-preparative HPLC and chemical characterization of BPAF-G by NMR and LC-MS/MS were performed and are described here. Furthermore, BPAF glucuronidation kinetics with the UGT enzymes that showed the highest glucuronidation activity in previous studies (i.e hepatic UGTs 1A3, 2B7, and 2B17, intestinal UGT 1A10 and UGT 2A1 that is present in airways) was performed and data is presented. Hepatic enzymes exhibited high affinities toward BPAF, while extrahepatic UGTs 2A1 and 1A10 showed the high vmax values (3.3 and 3.0 nmol/min/mg, respectively). To understand molecular interactions of BPA, BPAF and BPAF-G with ligand biding sites of several nuclear receptors, molecular modeling was performed and data on the binding modes of BPAF, BPA, and BPAF-G in the ligand-binding sites of nuclear receptors are presented. This article is related to “Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite” (Skledar et al., 2019).
Collapse
Affiliation(s)
| | - Jurij Trontelj
- Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Anamarija Zega
- Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Moshe Finel
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
31
|
Harrus D, Déméné H, Vasquez E, Boulahtouf A, Germain P, Figueira AC, Privalsky ML, Bourguet W, le Maire A. Pathological Interactions Between Mutant Thyroid Hormone Receptors and Corepressors and Their Modulation by a Thyroid Hormone Analogue with Therapeutic Potential. Thyroid 2018; 28:1708-1722. [PMID: 30235988 DOI: 10.1089/thy.2017.0551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Thyroid hormone receptors (TRs) are tightly regulated by the corepressors nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptors. Three conserved corepressor/NR signature box motifs (CoRNR1-3) forming the nuclear receptor interaction domain have been identified in these corepressors. Whereas TRs regulate multiple normal physiological and developmental pathways, mutations in TRs can result in endocrine diseases and be associated with cancers due to impairment of corepressor release. Three mutants that are located in helix H11 of TRs are of special interest: TRα-M388I, a mutant associated with the development of renal clear cell carcinomas (RCCCs), and TRβ-Δ430 and TRβ-Δ432, two deletion mutants causing resistance to thyroid hormone syndrome. METHODS Several cell-based and biophysical methods were used to measure the affinity between wild-type and mutant TRα and TRβ and all the CoRNR motifs from corepressors to quantify the effects of different thyroid hormone analogues on these interactions. This study was coupled with the measurement of interactions between wild-type and mutant TRs in the context of a heterodimer with RXR to a NCoR fragment in the presence of the same ligands. Structural insights into the binding mode of corepressors to TRs were assessed in parallel by nuclear magnetic resonance spectroscopy. RESULTS The study shows that TRs interact more avidly with the silencing mediator of retinoic acid and thyroid hormone receptors than with NCoR peptides, and that TRα binds most avidly to S-CoRNR3, whereas TRβ binds preferentially to S-CoRNR2. In the studied TR mutants, a transfer of the CoRNR-specificity toward CoRNR1 was observed, coupled with a significant increase in the binding strength. In contrast to 3,5,3'-triiodothyronine (T3), the agonist TRIAC and the antagonist NH-3 were very efficient at dissociating the abnormally strong interactions between mutant TRβs and corepressors. A strong impairment of T3-binding for TRβ mutants was shown compared to TRIAC and NH-3 and could explain the different efficiencies of the different ligands in releasing corepressors from the studied TRβ mutants. Consequently, TRIAC was found to be more effective than T3 in facilitating coactivator recruitment and decreasing the dominant activity of TRβ-Δ430. CONCLUSION This study helps to clarify the specific interaction surfaces involved in the pathologic phenotype of TR mutants and demonstrates that TRIAC is a potential therapeutic agent for patients suffering from resistance to thyroid hormone syndromes.
Collapse
Affiliation(s)
- Déborah Harrus
- 1 CBS, CNRS, INSERM; INSERM, ICM; University of Montpellier, Montpellier, France
| | - Hélène Déméné
- 1 CBS, CNRS, INSERM; INSERM, ICM; University of Montpellier, Montpellier, France
| | - Edwin Vasquez
- 2 Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Pierre Germain
- 1 CBS, CNRS, INSERM; INSERM, ICM; University of Montpellier, Montpellier, France
| | - Ana Carolina Figueira
- 2 Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Martin L Privalsky
- 4 Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California
| | - William Bourguet
- 1 CBS, CNRS, INSERM; INSERM, ICM; University of Montpellier, Montpellier, France
| | - Albane le Maire
- 1 CBS, CNRS, INSERM; INSERM, ICM; University of Montpellier, Montpellier, France
- 2 Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
32
|
Wejaphikul K, Groeneweg S, Dejkhamron P, Unachak K, Visser WE, Chatterjee VK, Visser TJ, Meima ME, Peeters RP. Role of Leucine 341 in Thyroid Hormone Receptor Beta Revealed by a Novel Mutation Causing Thyroid Hormone Resistance. Thyroid 2018; 28:1723-1726. [PMID: 30362879 DOI: 10.1089/thy.2018.0146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Leucine 341 has been predicted from crystal structure as an important residue for thyroid hormone receptor beta (TRβ) function, but this has never been confirmed in functional studies. Here, a novel p.L341V mutation as a cause of resistance to TRβ is described, suggesting an important role for L341 in TRβ function. In silico and in vitro studies confirmed that substituting L341 with valine and other non-polar amino acids impairs sensitivity of TRβ for triiodothyronine to various degrees, depending on their side-chain size and orientation.
Collapse
Affiliation(s)
- Karn Wejaphikul
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
- 2 Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Stefan Groeneweg
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
| | - Prapai Dejkhamron
- 2 Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kevalee Unachak
- 2 Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - W Edward Visser
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
- 3 Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - V Krishna Chatterjee
- 3 Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Theo J Visser
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
| | - Marcel E Meima
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
| | - Robin P Peeters
- 1 Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kino T. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms. Endocrinology 2018; 159:2506-2519. [PMID: 29762667 DOI: 10.1210/en.2017-03254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
The human genome contains numerous single nucleotide variations, and the human glucocorticoid receptor (GR) gene harbors ∼450 of these genetic changes. Among them, extremely rare, nonsynonymous variants, known as pathologic GR gene mutations, develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others, known as pathologic polymorphisms, develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DNA-binding domain also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, I discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts, along with a brief explanation to recent research achievement on the GR polymorphisms.
Collapse
Affiliation(s)
- Tomoshige Kino
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
34
|
Kollitz EM, De Carbonnel L, Stapleton HM, Lee Ferguson P. The Affinity of Brominated Phenolic Compounds for Human and Zebrafish Thyroid Receptor β: Influence of Chemical Structure. Toxicol Sci 2018; 163:226-239. [PMID: 29409039 PMCID: PMC5920296 DOI: 10.1093/toxsci/kfy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brominated phenolic compounds (BPCs) are found in the environment, and in human and wildlife tissues, and some are considered to have endocrine disrupting activities. The goal of this study was to determine how structural differences of 3 BPC classes impact binding affinities for the thyroid receptor beta (TRβ) in humans and zebrafish. BPC classes included halogenated bisphenol A derivatives, halogenated oxidative transformation products of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and brominated phenols. Affinities were assessed using recombinant TRβ protein in competitive binding assays with 125I-triiodothyronine (125I-T3) as the radioligand. Zebrafish and human TRβ displayed similar binding affinities for T3 (Ki = 0.40 and 0.49 nM) and thyroxine (T4, Ki = 6.7 and 6.8 nM). TRβ affinity increased with increasing halogen mass and atomic radius for both species, with the iodinated compounds having the highest affinity within their compound classes. Increasing halogen mass and radius increases the molecular weight, volume, and hydrophobicity of a compound, which are all highly correlated with increasing affinity. TRβ affinity also increased with the degree of halogenation for both species. Human TRβ displayed higher binding affinities for the halogenate bisphenol A compounds, whereas zebrafish TRβ displayed higher affinities for 2,4,6-trichlorophenol and 2,4,6-trifluorophenol. Observed species differences may be related to amino acid differences within the ligand binding domains. Overall, structural variations impact TRβ affinities in a similar manner, supporting the use of zebrafish as a model for TRβ disruption. Further studies are necessary to investigate how the identified structural modifications impact downstream receptor activities and potential in vivo effects.
Collapse
Affiliation(s)
| | | | | | - Patrick Lee Ferguson
- Nicholas School of the Environment
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708
| |
Collapse
|
35
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
36
|
Ram Lamichhane T, Prasad Lamichhane H. Heat conduction by thyroid hormone receptors. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.4.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Campos JLO, Doratioto TR, Videira NB, Ribeiro Filho HV, Batista FAH, Fattori J, Indolfo NDC, Nakahira M, Bajgelman MC, Cvoro A, Laurindo FRM, Webb P, Figueira ACM. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front Endocrinol (Lausanne) 2018; 9:784. [PMID: 30671024 PMCID: PMC6331412 DOI: 10.3389/fendo.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1-TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity.
Collapse
Affiliation(s)
- Jessica L. O. Campos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Tabata R. Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Natalia B. Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Helder V. Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Fernanda A. H. Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Nathalia de C. Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcel Nakahira
- Institute of Chemistry (IQ), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paul Webb
- California Institute for Regenerative Medicine, Oakland, CA, United States
| | - Ana Carolina M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- *Correspondence: Ana Carolina M. Figueira
| |
Collapse
|
38
|
Mondal S, Mugesh G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol 2017; 458:91-104. [PMID: 28408161 DOI: 10.1016/j.mce.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (THs) play key roles in modulating the overall metabolism of the body, protein synthesis, fat metabolism, neuronal and bone growth, and cardiovascular as well as renal functions. In this review, we discuss on the thyroid hormone synthesis and activation, thyroid hormone receptors (TRs) and mechanism of action, applications of thyroid hormone analogues, particularly the compounds that are selective ligands for TRβ receptors, or enzyme inhibitors for the treatment of thyroidal disorders with a specific focus on thyroid peroxidase and iodothyronine deiodinases. We also discuss on the development of small-molecule deiodinase mimetics and their mechanism of deiodination, as these compounds have the potential to regulate the thyroid hormone levels.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
39
|
Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol 2017; 458:57-67. [PMID: 28131741 DOI: 10.1016/j.mce.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormones and their metabolites constitute a vast class of related iodothyronine compounds that contribute to the regulation of metabolic activity and cell differentiation. They are in turn transported, transformed and recognized as signaling molecules through binding to a variety of proteins from a wide range of evolutionary unrelated protein families, which renders these proteins and their iodothyronine binding sites an example for extensive convergent evolution. In this review, we will briefly summarize what is known about iodothyronine binding sites in proteins, the modes of protein/iodothyronine interaction, and the ligand conformations. We will then discuss physiological and synthetic compounds, including popular drugs and food components, that can interfere with iodothyronine binding and recognition by these proteins. The discussion also includes compounds persisting in the environment and acting as endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Holly Towell
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Allegra Vit
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | |
Collapse
|
40
|
Pinto VMS, Minakhina S, Qiu S, Sidhaye A, Brotherton MP, Suhotliv A, Wondisford FE. Naturally Occurring Amino Acids in Helix 10 of the Thyroid Hormone Receptor Mediate Isoform-Specific TH Gene Regulation. Endocrinology 2017; 158:3067-3078. [PMID: 28911178 PMCID: PMC5659674 DOI: 10.1210/en.2017-00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) action is mediated by the products of two genes, TH receptor (THR)α (THRA) and THRβ (THRB) that encode several closely related receptor isoforms with differing tissue distributions. The vast majority of THR isoform-specific effects are thought to be due to tissue-specific differences in THR isoform expression levels. We investigated the alternative hypothesis that intrinsic functional differences among THR isoforms mediate these tissue-specific effects. To achieve the same level of expression of each isoform, we created tagged THR isoforms and tested their DNA and functional properties in vitro. We found significant homodimerization and functional differences among the THR isoforms. THRA1 was unable to form homodimers on direct repeat separated by 4 bp DNA elements and was also defective in TH-dependent repression of Tshb and Rxrg in a thyrotroph cell line, TαT1.1. In contrast, THRB2 was both homodimer sufficient and fully functional on these negatively regulated genes. Using domain exchanges and individual amino acid switches between THRA1 and THRB2, we identified three amino acids in helix 10 of the THRB2 ligand-binding domain that are required for negative regulation and are absent in THRA1.
Collapse
Affiliation(s)
- Vitor M. S. Pinto
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04021-001 São Paulo, Brazil
| | - Svetlana Minakhina
- Department of Medicine, Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, Rutgers, The State University of New Jersey. New Brunswick, New Jersey 08901
| | - Shuiqing Qiu
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Aniket Sidhaye
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Michael P. Brotherton
- Department of Medicine, Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, Rutgers, The State University of New Jersey. New Brunswick, New Jersey 08901
| | - Amy Suhotliv
- Department of Medicine, Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, Rutgers, The State University of New Jersey. New Brunswick, New Jersey 08901
| | - Fredric E. Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital, Rutgers, The State University of New Jersey. New Brunswick, New Jersey 08901
| |
Collapse
|
41
|
Zhang J, Roggero VR, Allison LA. Nuclear Import and Export of the Thyroid Hormone Receptor. VITAMINS AND HORMONES 2017; 106:45-66. [PMID: 29407444 DOI: 10.1016/bs.vh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome.
Collapse
Affiliation(s)
- Jibo Zhang
- College of William and Mary, Williamsburg, VA, United States
| | | | | |
Collapse
|
42
|
Protze J, Braun D, Hinz KM, Bayer-Kusch D, Schweizer U, Krause G. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cell Mol Life Sci 2017; 74:2299-2318. [PMID: 28132097 PMCID: PMC11107705 DOI: 10.1007/s00018-017-2461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T3-docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.
Collapse
Affiliation(s)
- Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Katrin Manuela Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dorothea Bayer-Kusch
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany.
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
43
|
Moldogazieva NT, Shaitan KV, Antonov MY, Mokhosoev IM, Levtsova OV, Terentiev AA. Human EGF-derived direct and reverse short linear motifs: conformational dynamics insight into the receptor-binding residues. J Biomol Struct Dyn 2017; 36:1286-1305. [PMID: 28447543 DOI: 10.1080/07391102.2017.1321502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein-protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific β1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP14-20-like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure-function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| | - Konstantin V Shaitan
- b Faculty of Biology, Department of Bioengineering , M.V. Lomonosov Moscow State University , 1 Vorobyevy Gory, Moscow 119991 , Russian Federation
| | - Mikhail Yu Antonov
- c M.K. Ammosov North-Eastern Federal University , 58 Belinskiy str., Yakutsk 677980 , Republic of Sakha (Yakutia) , Russian Federation
| | - Innokenty M Mokhosoev
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| | - Olga V Levtsova
- b Faculty of Biology, Department of Bioengineering , M.V. Lomonosov Moscow State University , 1 Vorobyevy Gory, Moscow 119991 , Russian Federation
| | - Alexander A Terentiev
- a Department of Biochemistry and Molecular Biology , N.I. Pirogov Russian National Research Medical University , 1 Ostrovityanov str., Moscow 117997 , Russian Federation
| |
Collapse
|
44
|
Ren X, Cao L, Yang Y, Wan B, Wang S, Guo L. In vitro assessment of thyroid hormone receptor activity of four organophosphate esters. J Environ Sci (China) 2016; 45:185-190. [PMID: 27372132 DOI: 10.1016/j.jes.2015.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 06/06/2023]
Abstract
Previous animal experiments have implied that organophosphate esters (OPEs) have a disruption effect on the thyroid endocrine system. However, knowledge of the toxicological mechanism remains limited. In this study, the activities of four OPEs have been characterized against the thyroid hormone (TH) nuclear receptor (TR) using two in vitro models, with the aim of evaluating their toxicity mechanisms towards the TR. The results of a TH-dependent cell proliferation assay showed that tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCPP) could induce cell growth, while the other three OPEs had no effect. The results of a luciferase reporter gene assay revealed that all four of the OPEs tested in the current study showed agonistic activity towards TRβ, with TDCPP being the most potent one. Moreover, molecular docking revealed that all the tested OPEs could fit into the ligand binding pocket of TRβ, with TDCPP binding more effectively than the other three OPEs. Taken together, these data suggest that OPEs might disrupt the thyroid endocrine system via a mechanism involving the activation of TR.
Collapse
Affiliation(s)
- Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Linying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sufang Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianghong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
45
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemie und Biologie der Schilddrüsenhormon-Biosynthese und -Wirkung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Deutschland
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| |
Collapse
|
46
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Angew Chem Int Ed Engl 2016; 55:7606-30. [DOI: 10.1002/anie.201601116] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Germany
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| |
Collapse
|
47
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
48
|
Ito J, Narumi S, Nishizawa K, Kamimaki T, Hori N, Hasegawa T. A novel mutation of the THRB gene in a Japanese family with resistance to thyroid hormone. Clin Pediatr Endocrinol 2016; 25:19-22. [PMID: 26865751 PMCID: PMC4738189 DOI: 10.1297/cpe.25.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jumpei Ito
- Department of Pediatrics, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kazumichi Nishizawa
- Department of Pediatrics, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Kamimaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Department of Pediatrics, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Naoaki Hori
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Department of Pediatrics, Ota Memorial Hospital, Gunma, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Schweizer U, Steegborn C. New insights into the structure and mechanism of iodothyronine deiodinases. J Mol Endocrinol 2015; 55:R37-52. [PMID: 26390881 DOI: 10.1530/jme-15-0156] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino acid selenocysteine. The recent solution of the first experimental structure of a deiodinase catalytic domain allowed for a reappraisal of the many mechanistic and mutagenesis data that had been accumulated over more than 30 years. Hence, the structure generates new impetus for research directed at understanding catalytic mechanism, substrate specificity, and regulation of deiodinases. This review will focus on structural and mechanistic aspects of iodothyronine deiodinases and briefly compare these enzymes with dehalogenases, which catalyze related reactions. A general mechanism for the selenium-dependent deiodinase reaction will be described, which integrates the mouse deiodinase 3 crystal structure and biochemical studies. We will summarize further, sometimes isoform-specific molecular features of deiodinase catalysis and regulation, and we will then discuss available compounds for modulating deiodinase activity for therapeutic purposes.
Collapse
Affiliation(s)
| | - Clemens Steegborn
- Institut für Biochemie und MolekularbiologieRheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115 Bonn, GermanyLehrstuhl BiochemieUniversität Bayreuth, Universitätsstrasse 30, 95445 Bayreuth, Germany
| |
Collapse
|
50
|
Schweizer U, Steegborn C. Thyroid hormones—From Crystal Packing to Activity to Reactivity. Angew Chem Int Ed Engl 2015; 54:12856-8. [DOI: 10.1002/anie.201506919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Nussallee 11, 53115 Bonn (Germany)
| | - Clemens Steegborn
- Lehrstuhl für Biochemie und Institut für Biomakromoleküle, Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth (Germany)
| |
Collapse
|