1
|
Sass P. Antibiotics: Precious Goods in Changing Times. Methods Mol Biol 2023; 2601:3-26. [PMID: 36445576 DOI: 10.1007/978-1-0716-2855-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of antibiotic modes of action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow to appropriately react to the presence of antimicrobial agents, thereby ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, new resistance-breaking strategies to counteract bacterial infections are desperately needed. This chapter is an update to Chapter 1 of the first edition of this book and intends to give an overview of common antibiotics and their target pathways. It will also present examples for new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Yu D, Fan H, Sun J, Xue L, Wang L, Jia Y, Tian J, Sun H. Phenyl Selenide-Based Precursors as Hydrogen Peroxide Inducible DNA Interstrand Cross-Linkers. Chembiochem 2022; 23:e202200086. [PMID: 35224848 DOI: 10.1002/cbic.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Indexed: 11/10/2022]
Abstract
DNA interstrand crosslinks (ICLs) are highly toxic DNA lesions, and induce cell death by blocking DNA strands separation. Most developed ICL agents, aiming to kill cancer cells, also generate adverse side effects to normal cells. H2O2-inducible DNA ICL agents are highly selective to target cancer cells, as the concentration of H2O2 is higher in cancer cells than normal cells. Previous studies focus on arylboronate-based precursors, reacting with H2O2 to generate reactive quinone methides (QMs) crosslinking DNA. Here we explore phenyl selenide-based precursors 1-3 as H2O2-inducible DNA ICL agents. The precursors 1-3 can be activated by H2O2 to generate the good benzylic leaving group and promote production of reactive QMs to crosslink DNA. Moreover, the DNA cross-linking ability is enhanced by the introduction of substituents in the para position of the phenolic hydroxyl group. From the substituents explored (H, OMe, F), the introduction of electron donating group (OMe) shows a pronounced elevating effect. Further mechanistic studies at the molecular and DNA levels confirm alkylation sites located mainly at dAs, dCs and dGs in DNA. Additionally, cellular experiments reveal that agents 1-3 exhibit higher cytotoxicity toward H1299 human lung cancer cells compared to clinically used drugs, by inducing cellular DNA damage, apoptosis and G0/G1 cell cycle arrest. This study provides a strategy to develop H2O2-inducible DNA interstrand cross-linkers.
Collapse
Affiliation(s)
- Dehao Yu
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Heli Fan
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Jing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Li Xue
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Luo Wang
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Yuanyuan Jia
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Junyu Tian
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Huabing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, 300070, Tianjin, CHINA
| |
Collapse
|
3
|
Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol 2020; 46:750-758. [PMID: 33044894 DOI: 10.1080/1040841x.2020.1828816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The strains of actinobacteria are unique as they lie between true fungi and bacteria and several of them were reported as endophytic actinobacteria as they were isolated from the inner regions of various plant parts and will enhance uptake of nutrients and improve defense against pathogens. Literature and scientific communications reported the relationship between the endophytes and plants, most of them concluded the association as commensalism. Remarkably, bioactive compounds from endophytic Streptomyces sp. were confirmed with various applications. A retrospective consolidation on the endophytic Streptomyces sp. and their metabolite application in day to day life is presented here. It was deduced that this group of the organism are a source for a wide range of bioactive compounds including anticancer agents, immune suppressor, plant growth promoters, anti-inflammatory agents, anti-tumor agents, enzymes and antimicrobial substances. These antimicrobial metabolites show broad-spectrum activity and are effective against bacteria and fungi. The mechanism of action of secondary metabolites from endophytes and its positive influence on the host plants are noted as involvement in deterrence, antifeedant activity, toxicity against common pests, and as enhancers for physical mechanisms such as water uptake and sunlight absorption, thus supporting the growth of host plants.
Collapse
Affiliation(s)
- Reshma Ayswaria
- Microboilte Research Development Private Limited, Manipal-Gok Bioincubator, MAHE Advanced Research Center, Manipal, Karnataka, India
| | - Vineeth Vasu
- Microboilte Research Development Private Limited, Manipal-Gok Bioincubator, MAHE Advanced Research Center, Manipal, Karnataka, India
| | | |
Collapse
|
4
|
Şen B, Sevincek R, Beksultanova N, Dogan Ö. Synthesis, structural characterization, DFT calculations and Hirshfeld surface analysis of (R)-2-((S)-2((S)-hydroxy(ferrocenyl)methyl)aziridin-1yl)butan-1-ol. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Tenconi E, Rigali S. Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria. Curr Opin Microbiol 2018; 45:100-108. [PMID: 29642052 DOI: 10.1016/j.mib.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Streptomyces and few other Actinobacteria naturally produce compounds currently used in chemotherapy for being cytotoxic against various types of tumor cells by damaging the DNA structure and/or inhibiting DNA functions. DNA-damaging antitumor antibiotics belong to different classes of natural compounds that are structurally unrelated such as anthracyclines, bleomycins, enediynes, mitomycins, and prodiginines. By targeting a ubiquitous molecule and housekeeping functions, these compounds are also cytotoxic to their producer. How DNA-damaging antitumor antibiotics producing actinobacteria avoid suicide is the theme of the current review which illustrates the different strategies developed for self-resistance such as toxin sequestration, efflux, modification, destruction, target repair/protection, or stochastic activity. Finally, the observed spatio-temporal correlation between cell death, morphogenesis, and prodiginine production in S. coelicolor suggests a new physiological role for these molecules, that, together with their self-resistance mechanisms, would function as new types of toxin-antitoxin systems recruited in programmed cell death processes of the producer.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Center for Protein Engineering, Université de liège, Institut de Chimie B64, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, Université de liège, Institut de Chimie B64, B-4000 Liège, Belgium.
| |
Collapse
|
6
|
Zhang X, Chen Y, Dong L, Shi B. Effect of selective inhibition of aquaporin 1 on chemotherapy sensitivity of J82 human bladder cancer cells. Oncol Lett 2018; 15:3864-3869. [PMID: 29467903 DOI: 10.3892/ol.2018.7727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/03/2017] [Indexed: 01/13/2023] Open
Abstract
The occurrence of resistance to mitomycin C (MMC) often limits its clinical effectiveness. Combination therapy thus is employed to overcome this treatment resistance. The present study aimed to establish a novel J82 bladder cancer cell line so as to study the effect of inhibition of aquaporin 1 (AQP-1) on chemotherapy sensitivity of J82 bladder cancer cells. A novel J82 bladder cancer cell line whose expression of AQP-1 is inhibited was established through transfection of J82 cells with newly constructed recombinant plasmid. The resulting cell line was designated J82-short hairpin (sh)AQP1 and was subjected to further analyses together with J82 cell line. Reverse transcription-polymerase chain reaction was used to quantify the expression of AQP-1mRNA in the cells; cell viability was analyzed with MTT assay and apoptosis was measured by flow cytometry. The expression of cell proliferation and cell apoptosis-associated proteins, proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3, were detected by Western blot. A statistically significant decrease in the transcription and expression of AQP1 was observed in the J82-shAQP1 cells as compared with J82 cells. J82-shAQP1 cells treated by MMC, also had a lower cell viability than J82 cells treated by MMC and showed enhanced apoptosis. Western blot analysis revealed J82-shAQP1 cells treated by MMC had less expression of PCNA, lower bcl-2/Bax ratio and more expression of caspase-3 as compared with the J82 cells treated by MMC. Selective inhibition of AQP-1 enhanced MMC chemotherapy sensitivity of J82 bladder cancer cells, suggesting combination of AQP-1 inhibition with MMC treatment as a promising treatment strategy to overcome bladder cancer treatment resistance.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Urology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Yun Chen
- Department of Urology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Liming Dong
- Department of Urology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
7
|
Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 2017; 7:315. [PMID: 28955612 DOI: 10.1007/s13205-017-0942-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
In recent years, bioactive compounds are in high demand in the pharmaceuticals and naturopathy, due to their health benefits to human and plants. Microorganisms synthesize these compounds and some enzymes either alone or in association with plants. Microbes residing inside the plant tissues, known as endophytes, also produce an array of these compounds. Endophytic actinomycetes act as a promising resource of biotechnologically valuable bioactive compounds and secondary metabolites. Endophytic Streptomyces sp. produced some novel antibiotics which are effective against multi-drug-resistant bacteria Antimicrobial agents produced by endophytes are eco-friendly, toxic to pathogens and do not harm the human. Endophytic inoculation of the plants modulates the synthesis of bioactive compounds with high pharmaceutical properties besides promoting growth of the plants. Hydrolases, the extracellular enzymes, produced by endophytic bacteria, help the plants to establish systemic resistance against pathogens invasion. Phytohormones produced by endophytes play an essential role in plant development and drought resistance management. The high diversity of endophytes and their adaptation to various environmental stresses seem to be an untapped source of new secondary metabolites. The present review summarizes the role of endophytic bacteria in synthesis and modulation of bioactive compounds.
Collapse
|
8
|
Natural abenquines and synthetic analogues: Preliminary exploration of their cytotoxic activity. Bioorg Med Chem Lett 2017; 27:1141-1144. [DOI: 10.1016/j.bmcl.2017.01.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/23/2022]
|
9
|
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of mechanisms of antibiotic action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow appropriately reacting to the presence of antimicrobial agents, ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, we need to explore new, resistance-breaking strategies to counteract bacterial infections. This chapter intends to give an overview of common antibiotics and their target pathways. It will also discuss recent advances in finding new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
10
|
Abzianidze VV, Bolshakova KP, Prokofieva DS, Berestetskiy AO, Kuznetsov VA, Trishin YG. Synthesis of 7-(4-methylphenyl)thiomethyl and 7-morpholylmethyl derivatives of natural phaeosphaeride A and their cytotoxic activity. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
Abzianidze VV, Prokofieva DS, Chisty LA, Bolshakova KP, Berestetskiy AO, Panikorovskii TL, Bogachenkov AS, Holder AA. Synthesis of natural phaeosphaeride A derivatives and an in vitro evaluation of their anti-cancer potential. Bioorg Med Chem Lett 2015; 25:5566-9. [DOI: 10.1016/j.bmcl.2015.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
|
13
|
Lopes-Kulishev CO, Alves IR, Valencia EY, Pidhirnyj MI, Fernández-Silva FS, Rodrigues TR, Guzzo CR, Galhardo RS. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus. DNA Repair (Amst) 2015; 33:78-89. [DOI: 10.1016/j.dnarep.2015.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
14
|
Monakhova N, Ryabova S, Makarov V. Synthesis and Some Biological Properties of Pyrrolo[1,2-a]indoles. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Natalia Monakhova
- Bach Institute of Biochemistry; Russian Academy of Science; 119071 Moscow Russia
| | - Svetlana Ryabova
- Bach Institute of Biochemistry; Russian Academy of Science; 119071 Moscow Russia
| | - Vadim Makarov
- Bach Institute of Biochemistry; Russian Academy of Science; 119071 Moscow Russia
| |
Collapse
|
15
|
Sugiyama M. Structural biological study of self-resistance determinants in antibiotic-producing actinomycetes. J Antibiot (Tokyo) 2015; 68:543-50. [PMID: 25873321 DOI: 10.1038/ja.2015.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 11/09/2022]
Abstract
As antibiotics act to inhibit the growth of bacteria, the drugs are useful for treating bacterial infectious diseases. However, microorganisms that produce antibiotics must be protected from the lethal effect of their own antibiotic product. In this review, the fruit of our group's current research on self-protection mechanisms of Streptomyces producing antibiotics that inhibit DNA, protein and bacterial cell wall syntheses will be described.
Collapse
Affiliation(s)
- Masanori Sugiyama
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
B'Hymer C, Connor T, Stinson D, Pretty J. Validation of an HPLC-MS/MS and wipe procedure for mitomycin C contamination. J Chromatogr Sci 2014; 53:619-24. [PMID: 25129062 DOI: 10.1093/chromsci/bmu095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method was developed for the determination of mitomycin C, an anticancer drug, from contamination on various surfaces. Mitomycin C is often used in various forms of intraperitoneal chemotherapy, and operating room healthcare worker exposure to this drug is possible. The surface testing method consisted of a wiping procedure utilizing a solution of 20/45/35 (v/v/v) of acetonitrile-isopropanol-water made 0.01 M in ammonium citrate (apparent pH 7.0). The wipe solutions were analyzed by means of HPLC-MS/MS using a reversed-phase gradient system and electrospray ionization in positive ion mode with a triple-quadrupole MS detector. Accuracy and precision of this method were demonstrated by a series of recovery studies of both spiked solutions and extracted wipes from various surfaces (stainless steel, vinyl and Formica(®)) spiked with known levels of mitomycin C. Recoveries of spiked solutions containing the analyte demonstrate mean recoveries (accuracy) ranged from 93 to 105%. Precision as measured by the relative standard deviation (% RSD) of multiple samples (n= 10) at each concentration level demonstrated values of 7.5% or less. The recoveries from spiked surfaces varied from 30 to 99%. The limit of detection for this methodology is ∼2 ng/100 cm(2) equivalent surface area, and the limit of quantitation is ∼6 ng/100 cm(2).
Collapse
Affiliation(s)
- Clayton B'Hymer
- U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Taft Laboratory C-23, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Thomas Connor
- U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Taft Laboratory C-23, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Derek Stinson
- U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Taft Laboratory C-23, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| | - Jack Pretty
- U.S. Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Taft Laboratory C-23, 4676 Columbia Parkway, Cincinnati, OH 45226, USA
| |
Collapse
|
17
|
Gaumet V, Denis C, Leal F, Madesclaire M, Zaitsev V. [(2 R,3 R)-3-(4-Nitrophenyl)aziridin-2-yl]methanol monohydrate. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o927. [PMID: 23795095 PMCID: PMC3685076 DOI: 10.1107/s1600536813013391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022]
Abstract
The title monohydrate, C9H10N2O3·H2O, contains an aziridine ring including two contiguous stereocenters, both of which exhibit an R configuration. The methylhydroxy and nitrophenyl groups are cis-disposed about the aziridine ring. The mean plane of the benzene ring is tilted to the aziridine ring by 66.65 (8)°. The nitro group is nearly coplanar with the benzene ring [dihedral angle = 2.5 (2)°]. In the crystal, the components are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, generating supramolecular layers parallel to (001).
Collapse
|
18
|
Hume PA, Brimble MA, Reynisson J. DNA adduct formation of mitomycin C. A test case for DFT calculations on model systems. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Suttisansanee U, Lau K, Lagishetty S, Rao KN, Swaminathan S, Sauder JM, Burley SK, Honek JF. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum. J Biol Chem 2011; 286:38367-38374. [PMID: 21914803 PMCID: PMC3207458 DOI: 10.1074/jbc.m111.251603] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/08/2011] [Indexed: 11/06/2022] Open
Abstract
The glyoxalase system catalyzes the conversion of toxic, metabolically produced α-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn(2+) and non-Zn(2+) activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni(2+)/Co(2+)-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn(2+)-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.
Collapse
Affiliation(s)
| | - Kelvin Lau
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
20
|
Yu S, Vit A, Devenish S, Mahanty HK, Itzen A, Goody RS, Blankenfeldt W. Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin C resistance in other bacteria. BMC STRUCTURAL BIOLOGY 2011; 11:33. [PMID: 21849072 PMCID: PMC3175449 DOI: 10.1186/1472-6807-11-33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/17/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The phenazines are redox-active secondary metabolites that a large number of bacterial strains produce and excrete into the environment. They possess antibiotic activity owing to the fact that they can reduce molecular oxygen to toxic reactive oxygen species. In order to take advantage of this activity, phenazine producers need to protect themselves against phenazine toxicity. Whereas it is believed that phenazine-producing pseudomonads possess highly active superoxide dismutases and catalases, it has recently been found that the plant-colonizing bacterium Enterobacter agglomerans expresses a small gene ehpR to render itself resistant towards D-alanyl-griseoluteic acid, the phenazine antibiotic produced by this strain. RESULTS To understand the resistance mechanism installed by EhpR we have determined its crystal structure in the apo form at 2.15 Å resolution and in complex with griseoluteic acid at 1.01 Å, respectively. While EhpR shares a common fold with glyoxalase-I/bleomycin resistance proteins, the ligand binding site does not contain residues that some related proteins employ to chemically alter their substrates. Binding of the antibiotic is mediated by π-stacking interactions of the aromatic moiety with the side chains of aromatic amino acids and by a few polar interactions. The dissociation constant KD between EhpR and griseoluteic acid was quantified as 244 ± 45 μM by microscale thermophoresis measurements. CONCLUSIONS The data accumulated here suggest that EhpR confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. It is tempting to speculate that EhpR acts in concert with EhpJ, a transport protein of the major facilitator superfamily that is also encoded in the phenazine biosynthesis operon of E. agglomerans. The low affinity of EhpR for griseoluteic acid may be required for its physiological function.
Collapse
Affiliation(s)
- Shen Yu
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
von Kieseritzky F, Lindström J. Aziridines in one step from hydantoins via Red-Al mediated ring-contraction. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.06.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Lee HJ, Choi S, Cheong Y, Jung GB, Jin KH, Park HK, Lee SJ. Effects of Mitomycin C on Scleral Collagen Fibrils According to Atomic Force Microscopy. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2011. [DOI: 10.3341/jkos.2011.52.6.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hui-Jae Lee
- Department of Ophthalmology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Youjin Cheong
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Gyeong Bok Jung
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kyung-Hyun Jin
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
- Program of Medical Engineering, Kyung Hee University, Seoul, Korea
| | - Seung Jun Lee
- Department of Ophthalmology, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
23
|
Haifler M, Lang E, Sabler I, Gutman Y, Lindner A, Zisman A. Increasing medical staff safety by using a closed system for intravesical instillation of mitomycin C. Urology 2010; 76:649-51. [PMID: 20493518 DOI: 10.1016/j.urology.2010.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/18/2009] [Accepted: 02/23/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Intravesical treatment with mitomycin C (MMC) after trans-urethral resection of bladder tumor is indicated by the guidelines of the European Association of Urology and the American Urology Association. MMC solution is highly irritative to skin and mucous membranes and may be of potential harm to staff handling it. We describe a closed-system device that we have developed for MMC intravesical instillation immediately after transurethral resection of bladder tumor (TURBT) for bladder cancer. MATERIAL AND METHODS A design was developed based on three requirements of a closed system for intravesical instillation of cytotoxic drug: (1) the connection of the system with the MMC administration device (e.g., syringe) must prevent any spillage or spraying of the drug solution. (2) the system should automatically close in the absence of a syringe at the connecting hub.(3) the system should have a draining mode to enable rapid drug and urine drainage into a commercially available urine bag using conventional attachments. RESULTS In the system developed, MMC syringe is screwed to the connector. The valve is directed to the urinary bladder, and the MMC is injected. At the end of the therapy, the valve is directed to the collecting bag and the MMC and connector are disposed according to the guidelines for hazardous material disposal. CONCLUSIONS To our knowledge, this is the first report of a closed system specifically designed to reduce staff exposure during instillation of MMC. No single case of MMC spill or occupational exposure has been reported since the closed system was introduced.
Collapse
Affiliation(s)
- Miki Haifler
- Department of Urology, Assaf-Harofe MC, Zerifin, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Biswas T, Zolova OE, Lombó F, de la Calle F, Salas JA, Tsodikov OV, Garneau-Tsodikova S. A new scaffold of an old protein fold ensures binding to the bisintercalator thiocoraline. J Mol Biol 2010; 397:495-507. [PMID: 20122935 DOI: 10.1016/j.jmb.2010.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/24/2010] [Accepted: 01/26/2010] [Indexed: 11/28/2022]
Abstract
Thiocoraline is a thiodepsipeptide with potent antitumor activity. TioX, a protein with an unidentified function, is encoded by a gene of the thiocoraline biosynthetic gene cluster. The crystal structure of the full-length TioX protein at 2.15 A resolution reveals that TioX protomer shares an ancient betaalphabetabetabeta fold motif with glyoxalase I and bleomycin resistance protein families, despite a very low sequence homology. Intriguingly, four TioX monomers form a unique 2-fold symmetric tetrameric assembly that is stabilized by four intermolecular disulfide bonds formed cyclically between Cys60 and Cys66 of adjacent monomers. The arrangement of two of the four monomers in the TioX tetramer is analogous to that in dimeric bleomycin resistance proteins. This analogy indicates that this novel higher-order structural scaffold of TioX may have evolved to bind thiocoraline. Our equilibrium titration studies demonstrate the binding of a thiocoraline chromophore analog, quinaldic acid, to TioX, thereby substantiating this model. Furthermore, a strain of Streptomyces albus containing an exogenous thiocoraline gene cluster devoid of functional tioX maintains thiocoraline production, albeit with a lower yield. Taken together, these observations rule out a direct enzymatic function of TioX and suggest that TioX is involved in thiocoraline resistance or secretion.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pitié M, Pratviel G. Activation of DNA Carbon−Hydrogen Bonds by Metal Complexes. Chem Rev 2010; 110:1018-59. [DOI: 10.1021/cr900247m] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marguerite Pitié
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| | - Geneviève Pratviel
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and Université de Toulouse, Toulouse, France
| |
Collapse
|