1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Verschueren KHG, Dodson EJ, Wilkinson AJ. The Structure of the LysR-type Transcriptional Regulator, CysB, Bound to the Inducer, N-acetylserine. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:311-326. [PMID: 38976018 PMCID: PMC11329422 DOI: 10.1007/s00249-024-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD). The crystal structure of a dimeric EBD fragment of CysB from Klebsiella aerogenes revealed a protein fold similar to that seen in Lac repressor but with a different symmetry in the dimer so that the mode of DNA binding was not apparent. To elucidate the subunit arrangement in the tetramer, we determined the crystal structure of intact CysB in complex with N-acetylserine. The tetramer has two subunit types that differ in the juxtaposition of their winged helix-turn-helix DNA binding domains with respect to the effector binding domain. In the assembly, the four EBDs form a core with the DNA binding domains arranged in pairs on the surface. N-acetylserine makes extensive polar interactions in an enclosed binding site, and its binding is accompanied by substantial conformational rearrangements of surrounding residues that are propagated to the protein surface where they appear to alter the arrangement of the DNA binding domains. The results are (i) discussed in relation to the extensive mutational data available for CysB and (ii) used to propose a structural mechanism of N-acetylserine induced CysB activation.
Collapse
Affiliation(s)
- Koen H G Verschueren
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Eleanor J Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Wang Q, Wei Y, Huang Y, Qin J, Liu B, Liu R, Chen X, Li D, Wang Q, Li X, Yang X, Li Y, Sun H. Z3495, a LysR-Type Transcriptional Regulator Encoded in O Island 97, Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7. Microorganisms 2024; 12:140. [PMID: 38257967 PMCID: PMC10819331 DOI: 10.3390/microorganisms12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. The genome of EHEC O157:H7 contains 177 unique O islands (OIs). Certain OIs significantly contribute to the heightened virulence and pathogenicity exhibited by EHEC O157:H7. However, the function of most OI genes remains unknown. We demonstrated here that EHEC O157:H7 adherence to and colonization of the mouse large intestine are both dependent on OI-97. Z3495, which is annotated as a LysR-type transcriptional regulator and encoded in OI-97, contributes to this phenotype. Z3495 activated the locus of enterocyte effacement (LEE) gene expression, promoting bacterial adherence. Deletion of z3495 significantly decreased the transcription of ler and other LEE genes, the ability to adhere to the host cells, and colonization in the mouse large intestine. Furthermore, the ChIP-seq results confirmed that Z3495 can directly bind to the promoter region of rcsF, which is a well-known activator of Ler, and increase LEE gene expression. Finally, phylogenetic analysis revealed that Z3495 is a widespread transcriptional regulator in enterohemorrhagic and enteropathogenic Escherichia coli. As a result of this study, we have gained a deeper understanding of how bacteria control their virulence and provide another example of a laterally acquired regulator that regulates LEE gene expression in bacteria.
Collapse
Affiliation(s)
- Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yi Wei
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yu Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Shenzhen 518045, China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xintong Chen
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Dan Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qiushi Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xinyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
5
|
Salgado H, Gama-Castro S, Lara P, Mejia-Almonte C, Alarcón-Carranza G, López-Almazo AG, Betancourt-Figueroa F, Peña-Loredo P, Alquicira-Hernández S, Ledezma-Tejeida D, Arizmendi-Zagal L, Mendez-Hernandez F, Diaz-Gomez AK, Ochoa-Praxedis E, Muñiz-Rascado LJ, García-Sotelo JS, Flores-Gallegos FA, Gómez L, Bonavides-Martínez C, del Moral-Chávez VM, Hernández-Alvarez AJ, Santos-Zavaleta A, Capella-Gutierrez S, Gelpi JL, Collado-Vides J. RegulonDB v12.0: a comprehensive resource of transcriptional regulation in E. coli K-12. Nucleic Acids Res 2024; 52:D255-D264. [PMID: 37971353 PMCID: PMC10767902 DOI: 10.1093/nar/gkad1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.
Collapse
Affiliation(s)
- Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Citlalli Mejia-Almonte
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gabriel Alarcón-Carranza
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Andrés G López-Almazo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Felipe Betancourt-Figueroa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Daniela Ledezma-Tejeida
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Lizeth Arizmendi-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Francisco Mendez-Hernandez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ana K Diaz-Gomez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elizabeth Ochoa-Praxedis
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis J Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Jair S García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico
| | - Fanny A Flores-Gallegos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Laura Gómez
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Mexico
- Escuela de Medicina, Tecnológico de Monterrey, Campus Ciudad de México, CDMX 14380, Meéxico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor M del Moral-Chávez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Alberto Santos-Zavaleta
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, Meéxico
| | | | - Josep Lluis Gelpi
- Department of Biochemistry and Molecular Biomedicine. Univ. of Barcelona. Av. Diagonal 643, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall. Boston, MA 02215, USA
| |
Collapse
|
6
|
Tyagi E, Singhvi N, Keshavam CC, Sangwan N, Gupta V, Bhimwal T, Seth R, Seth RK, Singh Y. Phylogenetic analysis and interactomics study unveil gene co-optive evolution of LysR-type transcription regulators across non-pathogenic, opportunistic, and pathogenic mycobacteria. 3 Biotech 2023; 13:168. [PMID: 37188288 PMCID: PMC10167064 DOI: 10.1007/s13205-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Mycobacterial species is known for inhabiting various niches ranging from soil to harsh intracellular environment of animal hosts and their survival through constant changes. For survival and persistence, these organisms must quickly adapt by bringing shift in their metabolism. Metabolic shifts are brought by sensing the environmental cues usually by membrane localized sensor molecules. These signals are transmitted to regulators of various metabolic pathways leading to post-translational modifications of regulators ultimately resulting in altered metabolic state of the cell. Multiple regulatory mechanisms have been unearthed so far that play crucial role in adapting to these situations, and among them, the signal-dependent transcriptional regulators mediated responses are integral for the microbes to perceive environmental signals and generate appropriate adaptive responses. LysR-type transcriptional regulators (LTTRs) form the largest family of transcriptional regulators, which are present in all kingdoms of life. Their numbers vary among bacterial genera and even in different mycobacterial species. To understand the evolutionary aspect of pathogenicity based on LTTRs, we performed phylogenetic analysis of LTTRs encoded by several mycobacterial species representing non-pathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results showed that LTTRs of TP clustered separately from LTTRs of NP and OP mycobacteria. In addition, LTTRs frequency per Mb of genome was reduced in TP when compared with NP and OP. Further, the protein-protein interactions and degree-based network analysis showed concomitant increased interactions per LTTRs with increase in pathogenicity. These results suggested the increase in regulon of LTTRs during evolution of TP mycobacteria.
Collapse
Affiliation(s)
- Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248001 India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Ministry of Environment Forest & Climate Change, Integrated Regional Office, Dehradun, 248001 India
| | - Tanisha Bhimwal
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ranjana Seth
- Deshbandhu College, University of Delhi South Campus, New Delhi, 110019 India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
- Present Address: Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007 India
| |
Collapse
|
7
|
Nishikawa M, Noda S, Henmi K, Ogawa K. Sulphate repression of ssuD-dependent alkanesulphonate-sulphur assimilation in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35704379 DOI: 10.1099/mic.0.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli cells utilize alkanesulphonates including taurine as the sulphur source. We previously reported that when E. coli cells carrying a double deletion in tauD and cysN were inoculated into a taurine-containing minimal medium, they started to grow only after long-term incubation (Nishikawa et al. 2018, Microbiology 164: 1446-1456). We show here that cells that can induce ssuD-dependent alkanesulphonate-sulphur assimilation (SASSA) are essentially rare, but suppressors that can induce SASSA appear during long-term incubation. Mutant cells carrying ΔtauD and ΔcysN, ΔcysC or ΔcysH generated suppressor cells that can induce SASSA at a frequency of about 10-6 in a population. Whereas ΔtauD ΔcysN cells without prior SASSA did not express ssuD even when necessary, the cells with prior SASSA properly expressed ssuD. Whole-genome DNA sequencing of a clone isolated from ΔtauD ΔcysN cells with prior SASSA revealed that the influx of sulphate or thiosulphate may be related to the regulation of SASSA. To clarify whether sulphate or thiosulphate affects the induction of SASSA, the effect of mutations in sbp and cysP, which are responsible for sulphate and thiosulphate uptake with different preferences for substrates, was examined. Only the ΔtauD ΔcysN Δsbp mutant did not show repression of SASSA when no sulphate was added to the medium. When the concentration of the sulphate added was over 10 μM, the Δsbp mutant showed repression of SASSA. Therefore, it was considered that the influx of extracellular sulphate resulted in repression of SASSA.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Soichiro Noda
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Kenji Henmi
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| | - Ken'ichi Ogawa
- Research Institute for Biological Sciences Okayama (RIBS Okayama), Okayama, Japan
| |
Collapse
|
8
|
Kies PJ, Hammer ND. A Resourceful Race: Bacterial Scavenging of Host Sulfur Metabolism during Colonization. Infect Immun 2022; 90:e0057921. [PMID: 35315692 PMCID: PMC9119060 DOI: 10.1128/iai.00579-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur is a requirement for life. Therefore, both the host and colonizing bacteria must regulate sulfur metabolism in a coordinated fashion to meet cellular demands. The host environment is a rich source of organic and inorganic sulfur metabolites that are utilized in critical physiological processes such as redox homeostasis and cellular signaling. As such, modulating enzymes dedicated to sulfur metabolite biosynthesis plays a vital role in host fitness. This is exemplified from a molecular standpoint through layered regulation of this machinery at the transcriptional, translational, and posttranslational levels. With such a diverse metabolite pool available, pathogens and symbionts have evolved multiple mechanisms to exploit sulfur reservoirs to ensure propagation within the host. Indeed, characterization of sulfur transporters has revealed that bacteria employ multiple tactics to acquire ideal sulfur sources, such as cysteine and its derivatives. However, bacteria that employ acquisition strategies targeting multiple sulfur sources complicate in vivo studies that investigate how specific sulfur metabolites support proliferation. Furthermore, regulatory systems controlling the bacterial sulfur regulon are also multifaceted. This too creates an interesting challenge for in vivo work focused on bacterial regulation of sulfur metabolism in response to the host. This review examines the importance of sulfur at the host-bacterium interface and the elegant studies conducted to define this interaction.
Collapse
Affiliation(s)
- Paige J. Kies
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D. Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Chen M, Zhang W, Han L, Ru X, Cao Y, Hikichi Y, Ohnishi K, Pan G, Zhang Y. A CysB regulator positively regulates cysteine synthesis, expression of type III secretion system genes, and pathogenicity in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2022; 23:679-692. [PMID: 35122373 PMCID: PMC8995062 DOI: 10.1111/mpp.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in R. solanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of R. solanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for R. solanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of R. solanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Min Chen
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Weiqi Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Liangliang Han
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Xuejuan Ru
- Chongqing Academy of Agricultural SciencesChongqingChina
| | - Yuzhu Cao
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Guanghui Pan
- Chongqing Academy of Agricultural SciencesChongqingChina
| | - Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| |
Collapse
|
10
|
Martín-Cabello G, Terrón-González L, Santero E. Characterization of a dszEABC operon providing fast growth on dibenzothiophene and construction of broad-host-range biodesulfurization catalysts. Environ Microbiol 2022; 24:1946-1963. [PMID: 35233925 DOI: 10.1111/1462-2920.15951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023]
Abstract
A new operon for biodesulfurization (BDS) of dibenzothiophene and derivatives has been isolated from a metagenomic library made from oil-contaminated soil, by selecting growth of E. coli on DBT as the sulfur source. This operon is similar to a dszEABC operon also isolated by metagenomic functional screening but exhibited substantial differences: (i) the new fosmid provides much faster growth on DBT; (ii) associated dszEABC genes can be expressed without the need of heterologous expression from the vector promoter; and (iii) monooxygenases encoded in the fosmid cannot oxidize indole to produce indigo. We show how expression of the new dszEABC operon is regulated by the sulfur source, being induced under sulfur-limiting conditions. Its transcription is activated by DszR, a type IV activator οf σN -dependent promoters. DszR is coded in a dszHR operon, whose transcription is in turn regulated by sulfur and presumably activated by the global regulator of sulfur metabolism CysB. Expression of dszH is essential for production of active DszR, although it is not involved in sulfur sensing or regulation. Two broad-host-range DBT biodesulfurization catalysts have been constructed and shown to provide DBT biodesulfurization capability to three Pseudomonas strains, displaying desirable characteristics for biocatalysts to be used in BDS processes.
Collapse
Affiliation(s)
- Guadalupe Martín-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Laura Terrón-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| |
Collapse
|
11
|
Contributions of a LysR Transcriptional Regulator to Listeria monocytogenes Virulence and Identification of Its Regulons. J Bacteriol 2020; 202:JB.00087-20. [PMID: 32179628 DOI: 10.1128/jb.00087-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
The capacity of Listeria monocytogenes to adapt to environmental changes is facilitated by a large number of regulatory proteins encoded by its genome. Among these proteins are the uncharacterized LysR-type transcriptional regulators (LTTRs). LTTRs can work as positive and/or negative transcription regulators at both local and global genetic levels. Previously, our group determined by comparative genome analysis that one member of the LTTRs (NCBI accession no. WP_003734782) was present in pathogenic strains but absent from nonpathogenic strains. The goal of the present study was to assess the importance of this transcription factor in the virulence of L. monocytogenes strain F2365 and to identify its regulons. An L. monocytogenes strain lacking lysR (the F2365ΔlysR strain) displayed significant reductions in cell invasion of and adhesion to Caco-2 cells. In plaque assays, the deletion of lysR resulted in a 42.86% decrease in plaque number and a 13.48% decrease in average plaque size. Furthermore, the deletion of lysR also attenuated the virulence of L. monocytogenes in mice following oral and intraperitoneal inoculation. The analysis of transcriptomics revealed that the transcript levels of 139 genes were upregulated, while 113 genes were downregulated in the F2365ΔlysR strain compared to levels in the wild-type bacteria. lysR-repressed genes included ABC transporters, important for starch and sucrose metabolism as well as glycerolipid metabolism, flagellar assembly, quorum sensing, and glycolysis/gluconeogenesis. Conversely, lysR activated the expression of genes related to fructose and mannose metabolism, cationic antimicrobial peptide (CAMP) resistance, and beta-lactam resistance. These data suggested that lysR contributed to L. monocytogenes virulence by broad impact on multiple pathways of gene expression.IMPORTANCE Listeria monocytogenes is the causative agent of listeriosis, an infectious and fatal disease of animals and humans. In this study, we have shown that lysR contributes to Listeria pathogenesis and replication in cell lines. We also highlight the importance of lysR in regulating the transcription of genes involved in different pathways that might be essential for the growth and persistence of L. monocytogenes in the host or under nutrient limitation. Better understanding L. monocytogenes pathogenesis and the role of various virulence factors is necessary for further development of prevention and control strategies.
Collapse
|
12
|
Mahounga DM, Sun H, Jiang YL. Crystal structure of the effector-binding domain of Synechococcus elongatus CmpR in complex with ribulose 1,5-bisphosphate. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:506-511. [PMID: 30084400 DOI: 10.1107/s2053230x18008841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 11/10/2022]
Abstract
The CO2-concentrating mechanism (CCM) has evolved to improve the efficiency of photosynthesis in autotrophic cyanobacteria. CmpR, a LysR-type transcriptional regulator (LTTR) from Synechococcus elongatus PCC 7942, was found to regulate CCM-related genes under low-CO2 conditions. Here, the dimeric structure of the effector-binding domain of CmpR (CmpR-EBD) in complex with the co-activator ribulose 1,5-bisphosphate (RuBP) is reported at 2.15 Å resolution. One RuBP molecule binds to the inter-domain cleft between the two subunits of the CmpR-EBD dimer. Structural comparison combined with sequence analyses demonstrated that CmpR-EBD has an overall structure similar to those of LTTRs of known structure, but possesses a distinctly different effector-binding pattern.
Collapse
Affiliation(s)
- Didel M Mahounga
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Hui Sun
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yong Liang Jiang
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
13
|
Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochem Biophys Res Commun 2018; 502:9-14. [DOI: 10.1016/j.bbrc.2018.05.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/18/2022]
|
14
|
Mittal M, Singh AK, Kumaran S. Structural and biochemical characterization of ligand recognition by CysB, the master regulator of sulfate metabolism. Biochimie 2017; 142:112-124. [PMID: 28838607 DOI: 10.1016/j.biochi.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
CysB, a member of LysR-type transcriptional regulators, up-regulates the expression of genes associated with sulfate metabolism and cysteine biosynthesis. CysB is activated under sulfur limiting conditions by O-acetylserine (OAS) and N-acetylserine (NAS), but the activation mechanism of CysB remain unknown. Here, we report four crystal structures of ligand binding domains of CysB (CysB-LBD) in apo form and in complex with sulfate, OAS, and NAS. Our results show that CysB has two distinct allosteric ligand binding sites; a sulfate and NAS specific site-1 and a second, NAS and OAS specific site-2. All three ligands bind through the induced-fit mechanism. Surprisingly, OAS remodels the site-1 by binding to site-2, suggesting that site-1 and site-2 are coupled allosterically. Using DNA binding and site-directed mutagenesis approach, we show that OAS enhances NAS mediated activation and mutation at site-1 has no effect on site-2 mediated OAS activation. Results indicate that inducer binding triggered signals from OAS-Specific site-2 are relayed to DBD through site-1. Together, results presented here suggest that induced-fit binding and allosteric coupling between two ligand binding sites and DBD underlie the key feature of CysB activation. Further, this study provides first structural glimpse into recognition of inducer ligands by CysB and provides a general framework to understand how LTTR family regulators respond to dual activators.
Collapse
Affiliation(s)
- Monica Mittal
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India
| | - Appu Kumar Singh
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India
| | - S Kumaran
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH), G. N. Ramachandran Protein Center, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
15
|
Pereira CT, Roesler C, Faria JN, Fessel MR, Balan A. Sulfate-Binding Protein (Sbp) from Xanthomonas citri: Structure and Functional Insights. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:578-588. [PMID: 28562158 DOI: 10.1094/mpmi-02-17-0032-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and transport of sulfate in bacteria is mediated by an ATP-binding cassette transporter (ABC transporter) encoded by sbpcysUWA genes, whose importance has been widely demonstrated due to their relevance in cysteine synthesis and bacterial growth. In Xanthomonas citri, the causative agent of canker disease, the expression of components from this ABC transporter and others related to uptake of organic sulfur sources has been shown during in vitro growth cultures. In this work, based on gene reporter and proteomics analyses, we showed the activation of the promoter that controls the sbpcysUWA operon in vitro and in vivo and the expression of sulfate-binding protein (Sbp), a periplasmic-binding protein, indicating that this protein plays an important function during growth and that the transport system is active during Citrus sinensis infection. To characterize Sbp, we solved its three-dimensional structure bound to sulfate at 1.14 Å resolution and performed biochemical and functional characterization. The results revealed that Sbp interacts with sulfate without structural changes, but the interaction induces a significant increasing of protein thermal stability. Altogether, the results presented in this study show the evidence of the functionality of the ABC transporter for sulfate in X. citri and its relevance during infection.
Collapse
Affiliation(s)
- Cristiane Tambascia Pereira
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cássia Roesler
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Jéssica Nascimento Faria
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Melissa Regina Fessel
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Andrea Balan
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Casella LG, Weiss A, Pérez-Rueda E, Antonio Ibarra J, Shaw LN. Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microb Genom 2017; 3:mgen000107. [PMID: 28663824 PMCID: PMC5382811 DOI: 10.1099/mgen.0.000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so doing, 243 transcription factors, 14 two-component systems (TCSs), 2 orphan response regulators, 1 hybrid TCS and 5 σ factors were found. A comparison of these elements between AB5075 and other clinical isolates, as well as a laboratory strain, led to the identification of several conserved regulatory elements, whilst at the same time uncovering regulators unique to hypervirulent strains. Lastly, by comparing regulatory elements compiled in this study to genes shown to be essential for AB5075 infection, we were able to highlight elements with a specific importance for pathogenic behaviour. Collectively, our work offers a unique insight into the regulatory network of A. baumannii strains, and provides insight into the evolution of hypervirulent lineages.
Collapse
Affiliation(s)
- Leila G Casella
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Andy Weiss
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Ernesto Pérez-Rueda
- 2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mérida, Yucatán, Mexico.,3Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- 4Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Delegación Miguel Hidalgo, CP, 11340 Mexico, DF, Mexico
| | - Lindsey N Shaw
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| |
Collapse
|
17
|
Scheepers GH, Lycklama A Nijeholt JA, Poolman B. An updated structural classification of substrate-binding proteins. FEBS Lett 2016; 590:4393-4401. [PMID: 27714801 DOI: 10.1002/1873-3468.12445] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023]
Abstract
Substrate-binding proteins (SBPs) play an important role in solute uptake and signal transduction. In 2010, Berntsson et al. classified the 114 organism-specific SBP structures available at that time and defined six protein clusters, based on their structural similarity. Since then, the number of unique SBP structures has increased almost fivefold, whereas the number of protein entries in the Protein Data Bank (PDB) nearly doubled. On the basis of the much larger dataset, we now subclassify the SBPs within the original clusters. Moreover, we propose a 7th cluster based on a small group of SBPs with structural features significantly different from those observed in the other proteins.
Collapse
Affiliation(s)
- Giel H Scheepers
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Jelger A Lycklama A Nijeholt
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
18
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|
19
|
Bischof RH, Horejs J, Metz B, Gamauf C, Kubicek CP, Seiboth B. L-Methionine repressible promoters for tuneable gene expression in Trichoderma reesei. Microb Cell Fact 2015; 14:120. [PMID: 26271614 PMCID: PMC4536894 DOI: 10.1186/s12934-015-0308-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei is the main producer of lignocellulolytic enzymes that are required for plant biomass hydrolysis in the biorefinery industry. Although the molecular toolbox for T. reesei is already well developed, repressible promoters for strain engineering and functional genomics studies are still lacking. One such promoter that is widely employed for yeasts is that of the L-methionine repressible MET3 gene, encoding ATP sulphurylase. RESULTS We show that the MET3 system can only be applied for T. reesei when the cellulase inducing carbon source lactose is used but not when wheat straw, a relevant lignocellulosic substrate for enzyme production, is employed. We therefore performed a transcriptomic screen for genes that are L-methionine repressible in a wheat straw culture. This analysis retrieved 50 differentially regulated genes of which 33 were downregulated. Among these, genes encoding transport proteins as well as iron containing DszA like monooxygenases and TauD like dioxygenases were strongly overrepresented. We show that the promoter region of one of these dioxygenases can be used for the strongly repressible expression of the Aspergillus niger sucA encoded extracellular invertase in T. reesei wheat straw cultures. This system is also portable to other carbon sources including D-glucose and glycerol as demonstrated by the repressible expression of the Escherichia coli lacZ encoded ß-galactosidase in T. reesei. CONCLUSION We describe a novel, versatile set of promoters for T. reesei that can be used to drive recombinant gene expression in wheat straw cultures at different expression strengths and in an L-methionine repressible manner. The dioxygenase promoter that we studied in detail is furthermore compatible with different carbon sources and therefore applicable for manipulating protein production as well as functional genomics with T. reesei.
Collapse
Affiliation(s)
- Robert H Bischof
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Jennifer Horejs
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Benjamin Metz
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Vogelbusch Biocommodities GmbH, Blechturmgasse 11, 1051, Vienna, Austria.
| | - Christian Gamauf
- Biotech and Renewables Center, Clariant GmbH, 81477, Munich, Germany.
| | - Christian P Kubicek
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bernhard Seiboth
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| |
Collapse
|
20
|
Pereira CT, Moutran A, Fessel M, Balan A. The sulfur/sulfonates transport systems in Xanthomonas citri pv. citri. BMC Genomics 2015; 16:524. [PMID: 26169280 PMCID: PMC4501297 DOI: 10.1186/s12864-015-1736-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background The Xanthomonas citri pv. citri (X. citri) is a phytopathogenic bacterium that infects different species of citrus plants where it causes canker disease. The adaptation to different habitats is related to the ability of the cells to metabolize and to assimilate diverse compounds, including sulfur, an essential element for all organisms. In Escherichia coli, the necessary sulfur can be obtained by a set of proteins whose genes belong to the cys regulon. Although the cys regulon proteins and their importance have been described in many other bacteria, there are no data related to these proteins in X. citri or in the Xanthomonas genus. The study of the relevance of these systems in these phytopathogenic bacteria that have distinct mechanisms of infection is one essential step toward understanding their physiology. In this work, we used bioinformatics, molecular modeling and transcription analysis (RT-PCR) to identify and characterize the putative cys regulon genes in X. citri. Results We showed that the ATP Binding Cassette Transporter (ABC transporter) SbpCysUWA for sulfate uptake is conserved in X. citri and translated in presence of sulfate. On the other hand, differently from what is predicted in databases, according molecular modeling and phylogenetic analysis, X. citri does not show a proper taurine transporter, but two different ABC systems related to the alkanesulfonate/sulfonate transport that were recently acquired during evolution. RT-PCR analysis evidenced that these genes and their putative transcriptional regulator CysB are rather transcripted in XAM1, a medium with defined concentration of sulfate, than LB. Conclusions The presence of at least three distinct systems for sulfate and sulfonates assimilation in X. citri evidenced the importance of these compounds for the bacterium. The transcription of genes involved with alkanesulfonate/sulfur compounds in XAM1 along to CysB suggests that despite the differences in the transporters, the regulation of these systems might be similar to the described for E. coli. Altogether, these results will serve as a foundation for further studies aimed to understanding the relevance of sulfur in growth, virulence and pathogenesis of X. citri and related bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1736-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristiane Tambascia Pereira
- Laboratório de Biologia Estrutural Aplicada, Departamento de Microbiologia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil. .,Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083-970, Brazil.
| | - Alexandre Moutran
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083-970, Brazil.
| | - Melissa Fessel
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083-970, Brazil.
| | - Andrea Balan
- Laboratório de Biologia Estrutural Aplicada, Departamento de Microbiologia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
21
|
Dangel AW, Tabita FR. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation. MICROBIOLOGY-SGM 2015; 161:1816-1829. [PMID: 26296349 DOI: 10.1099/mic.0.000131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CbbR is a LysR-type transcriptional regulator that activates expression of the operons containing (cbb) genes that encode the CO2 fixation pathway enzymes in Ralstonia eutropha (Cupriavidus necator) under autotrophic growth conditions. The cbb operons are stringently downregulated during chemoheterotrophic growth on organic acids such as malate. CbbR constitutive proteins (CbbR*s), typically with single amino acid substitutions, were selected and isolated that activate expression of the cbb operons under chemoheterotrophic growth conditions. A large set of CbbR*s from all major domains of the CbbR molecule were identified, except for the DNA-binding domain. The level of gene expression conferred for many of these CbbR*s under autotrophic growth was greater than that conferred by wild-type CbbR. Several of these CbbR*s increase transcription two- to threefold more than wild-type CbbR. One particular CbbR*, a truncated protein, was useful in identifying the regions of CbbR that are necessary for transcriptional activation and, by logical extension, necessary for interaction with RNA polymerase. The reductive assimilation of carbon via CO2 fixation is an important step in the cost-effective production of useful biological compounds. Enhancing CO2 fixation in Ralstonia eutropha through greater transcriptional activation of the cbb operons could prove advantageous, and the use of CbbR*s is one way to enhance product formation.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
22
|
Santiago AS, Santos CA, Mendes JS, Toledo MAS, Beloti LL, Souza AA, Souza AP. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:72-8. [PMID: 25979465 DOI: 10.1016/j.pep.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.
Collapse
Affiliation(s)
- André S Santiago
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra A Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia (IB), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 2015; 7:664-76. [PMID: 25638258 PMCID: PMC5322559 DOI: 10.1093/gbe/evv022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an important micronutrient that mainly occurs in proteins in the form of selenocysteine and in tRNAs in the form of selenouridine. In the past 20 years, several genes involved in Se utilization have been characterized in both prokaryotes and eukaryotes. However, Se homeostasis and the associated regulatory network are not fully understood. In this study, we conducted comparative genomics and phylogenetic analyses to examine the occurrence of all known Se utilization traits in prokaryotes. Our results revealed a highly mosaic pattern of species that use Se (in different forms) in spite that most organisms do not use this element. Further investigation of genomic context of known Se-related genes in different organisms suggested novel candidate genes that may participate in Se metabolism in bacteria and/or archaea. Among them, a membrane protein, YedE, which contains ten transmembrane domains and shows distant similarity to a sulfur transporter, is exclusively found in Se-utilizing organisms, suggesting that it may be involved in Se transport. A LysR-like transcription factor subfamily might be important for the regulation of Sec biosynthesis and/or other Se-related genes. In addition, a small protein family DUF3343 is widespread in Se-utilizing organisms, which probably serves as an important chaperone for Se trafficking within the cells. Finally, we proposed a simple model of Se homeostasis based on our findings. Our study reveals new candidate genes involved in Se metabolism in prokaryotes and should be useful for a further understanding of the complex metabolism and the roles of Se in biology.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ting Peng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Jiang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences, Shenzhen University, Guangdong Province, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Alvarez-Vasquez FJ, Freyre-González JA, Balderas-Martínez YI, Delgado-Carrillo MI, Collado-Vides J. Mathematical modeling of the apo and holo transcriptional regulation in Escherichia coli. MOLECULAR BIOSYSTEMS 2015; 11:994-1003. [DOI: 10.1039/c4mb00561a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors can bind to DNA either with their effector bound (holo conformation), or as free proteins (apo conformation).
Collapse
Affiliation(s)
| | - Julio A. Freyre-González
- Evolutionary Genomics Program
- Center for Genomic Sciences
- Universidad Nacional Autónoma de México
- Cuernavaca
- Mexico
| | - Yalbi I. Balderas-Martínez
- Computational Genomics Program
- Center for Genomic Sciences
- Universidad Nacional Autónoma de México
- Cuernavaca
- Mexico
| | | | - Julio Collado-Vides
- Computational Genomics Program
- Center for Genomic Sciences
- Universidad Nacional Autónoma de México
- Cuernavaca
- Mexico
| |
Collapse
|
25
|
Azhar MA, Wright M, Kamal A, Nagy J, Miller AD. Biotin-c10-AppCH2ppA is an effective new chemical proteomics probe for diadenosine polyphosphate binding proteins. Bioorg Med Chem Lett 2014; 24:2928-33. [PMID: 24852122 DOI: 10.1016/j.bmcl.2014.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
Here we report on the synthesis of a synthetic, stable biotin-c10-AppCH2ppA conjugate involving an unusual Cannizzaro reaction step. This conjugate is used to bind prospective Ap4A binding proteins from Escherichia coli bacterial cell lyzates. Following binding, identities of these proteins are then determined smoothly by a process of magnetic bio-panning and electrospray mass spectrometry. Protein hits appear to be a definitive set of stress protein related targets. While this hit list may not be exclusive, and may vary with the nature of sampling conditions and organism status, nevertheless hits do appear to correspond with bona fide Ap4A-binding proteins. Therefore these hits represent a sound basis on which to construct new hypotheses concerning the cellular importance of Ap4A to bacterial cells and the potential biological significance of Ap4A-protein binding interactions.
Collapse
Affiliation(s)
- M Ameruddin Azhar
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad, India
| | - Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH,UK
| | - Ahmed Kamal
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad, India
| | - Judith Nagy
- Institute of Biomedical Engineering, Armstrong Road, Imperial College London, London SW7 2AZ,UK
| | - Andrew D Miller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ,UK; Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH,UK.
| |
Collapse
|
26
|
Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. J Bacteriol 2013; 195:3714-23. [PMID: 23772067 DOI: 10.1128/jb.00309-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.
Collapse
|
27
|
Balderas-Martínez YI, Savageau M, Salgado H, Pérez-Rueda E, Morett E, Collado-Vides J. Transcription factors in Escherichia coli prefer the holo conformation. PLoS One 2013; 8:e65723. [PMID: 23776535 PMCID: PMC3680503 DOI: 10.1371/journal.pone.0065723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
The transcriptional regulatory network of Escherichia coli K-12 is among the best studied gene networks of any living cell. Transcription factors bind to DNA either with their effector bound (holo conformation), or as a free protein (apo conformation) regulating transcription initiation. By using RegulonDB, the functional conformations (holo or apo) of transcription factors, and their mode of regulation (activator, repressor, or dual) were exhaustively analyzed. We report a striking discovery in the architecture of the regulatory network, finding a strong under-representation of the apo conformation (without allosteric metabolite) of transcription factors when binding to their DNA sites to activate transcription. This observation is supported at the level of individual regulatory interactions on promoters, even if we exclude the promoters regulated by global transcription factors, where three-quarters of the known promoters are regulated by a transcription factor in holo conformation. This genome-scale analysis enables us to ask what are the implications of these observations for the physiology and for our understanding of the ecology of E. coli. We discuss these ideas within the framework of the demand theory of gene regulation.
Collapse
Affiliation(s)
- Yalbi Itzel Balderas-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (YIB-M); (JC-V)
| | - Michael Savageau
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (YIB-M); (JC-V)
| |
Collapse
|
28
|
Toledo M, Santos C, Mendes J, Pelloso A, Beloti L, Crucello A, Favaro M, Santiago A, Schneider D, Saraiva A, Stach-Machado D, Souza A, Trivella D, Aparicio R, Tasic L, Azzoni A, Souza A. Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:697-707. [DOI: 10.1016/j.bbapap.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
|
29
|
Taylor JL, De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ. The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH. Mol Microbiol 2012; 83:457-70. [PMID: 22053934 DOI: 10.1111/j.1365-2958.2011.07919.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expression of the two critical virulence factors of Vibrio cholerae, toxin-coregulated pilus and cholera toxin, is initiated at the tcpPH promoter by the regulators AphA and AphB. AphA is a winged helix DNA-binding protein that enhances the ability of AphB, a LysR-type transcriptional regulator, to activate tcpPH expression. We present here the 2.2 Å X-ray crystal structure of full-length AphB. As reported for other LysR-type proteins, AphB is a tetramer with two distinct subunit conformations. Unlike other family members, AphB must undergo a significant conformational change in order to bind to DNA. We have found five independent mutations in the putative ligand-binding pocket region that allow AphB to constitutively activate tcpPH expression at the non-permissive pH of 8.5 and in the presence of oxygen. These findings indicate that AphB is responsive to intracellular pH as well as to anaerobiosis and that residues in the ligand-binding pocket of the protein influence its ability to respond to both of these signals. We have solved the structure of one of the constitutive mutants, and observe conformational changes that would allow DNA binding. Taken together, these results describe a pathway of conformational changes allowing communication between the ligand and DNA binding regions of AphB.
Collapse
|
30
|
The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol 2011; 194:1100-12. [PMID: 22178965 DOI: 10.1128/jb.06425-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms acetoin under anaerobic fermentative growth conditions and as a product of the aerobic carbon overflow metabolism. Acetoin formation from pyruvate requires α-acetolactate synthase and acetolactate decarboxylase, both encoded by the alsSD operon. The alsR gene, encoding the LysR-type transcriptional regulator AlsR, was found to be essential for the in vivo expression of alsSD in response to anaerobic acetate accumulation, the addition of acetate, low pH, and the aerobic stationary phase. The expressions of the alsSD operon and the alsR regulatory gene were independent of other regulators of the anaerobic regulatory network, including ResDE, Fnr, and ArfM. A negative autoregulation of alsR was observed. In vitro transcription from the alsSD promoter using purified B. subtilis RNA polymerase required AlsR. DNA binding studies with purified recombinant AlsR in combination with promoter mutagenesis experiments identified a 19-bp high-affinity palindromic binding site (TAAT-N(11)-ATTA) at positions -76 to -58 (regulatory binding site [RBS]) and a low-affinity site (AT-N(11)-AT) at positions -41 to -27 (activator binding site [ABS]) upstream of the transcriptional start site of alsSD. The RBS and ABS were found to be essential for in vivo alsSD transcription. AlsR binding to both sites induced the formation of higher-order, transcription-competent complexes. The AlsR protein carrying the S100A substitution at the potential coinducer binding site still bound to the RBS and ABS. However, AlsR(S100A) failed to form the higher-order complex and to initiate in vivo and in vitro transcription. A model for AlsR promoter binding and transcriptional activation was deduced.
Collapse
|
31
|
Abstract
Mycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells. The sulfate assimilation pathway of Mtb produces a number of sulfur-containing metabolites with important contributions to pathogenesis and survival. This pathway is regulated by diverse environmental cues and regulatory proteins that mediate sulfur transactions in the cell. Here, we discuss the transcriptional and biochemical mechanisms of sulfur metabolism regulation in Mtb and potential small molecule regulators of the sulfate assimilation pathway that are collectively poised to aid this intracellular pathogen in its expert manipulation of the host. From this global analysis, we have identified a subset of sulfur-metabolizing enzymes that are sensitive to multiple regulatory cues and may be strong candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Stavroula K. Hatzios
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Regulation of sulfur assimilation pathways in Burkholderia cenocepacia through control of genes by the SsuR transcription factor. J Bacteriol 2011; 193:1843-53. [PMID: 21317335 DOI: 10.1128/jb.00483-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ~44 bp of the DNA sequence preceding and/or overlapping the predicted -35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR "recognition motifs" at different responsive promoters appears to be limited.
Collapse
|
33
|
Specificity of the E. coli LysR-type transcriptional regulators. PLoS One 2010; 5:e15189. [PMID: 21187915 PMCID: PMC3004787 DOI: 10.1371/journal.pone.0015189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022] Open
Abstract
Background Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested. Methodology/Principal Findings A negative-dominant assay with λcI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx)-LTTR fusions were used to challenge the homooligomeric interactions of λcI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs. Conclusions/Significance Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known.
Collapse
|
34
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
35
|
Abstract
Deletion analysis and alanine-scanning based on a homology-based interaction model were used to identify determinants of oligomerization in the transcriptional regulator CynR, a member of the LysR-type transcriptional regulator (LTTR) family. Deletion analysis confirmed that the putative regulatory domain of CynR was essential for driving the oligomerization of lambda repressor-CynR fusion proteins. The interaction surface of a different LTTR and OxyR was mapped onto a multiple sequence alignment of the LTTR family. This mapping identified putative contacts in the CynR regulatory domain dimer interface, which were targeted for alanine-scanning mutagenesis. Oligomerization was assayed by the ability of mutant lambda repressor-CynR fusions to assemble in E. coli revealing interesting similarities and differences between OxyR and CynR.
Collapse
Affiliation(s)
- Gwendowlyn S Knapp
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|
36
|
Sainsbury S, Lane LA, Ren J, Gilbert RJ, Saunders NJ, Robinson CV, Stuart DI, Owens RJ. The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators. Nucleic Acids Res 2009; 37:4545-58. [PMID: 19474343 PMCID: PMC2724274 DOI: 10.1093/nar/gkp445] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) form the largest family of bacterial regulators acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes. The LTTR, CrgA, from the human pathogen Neisseria meningitidis, is upregulated during bacterial–host cell contact. Here, we report the crystal structures of both regulatory domain and full-length CrgA, the first of a novel subclass of LTTRs that form octameric rings. Non-denaturing mass spectrometry analysis and analytical ultracentrifugation established that the octameric form of CrgA is the predominant species in solution in both the presence and absence of an oligonucleotide encompassing the CrgA-binding sequence. Furthermore, analysis of the isolated CrgA–DNA complex by mass spectrometry showed stabilization of a double octamer species upon DNA binding. Based on the observed structure and the mass spectrometry findings, a model is proposed in which a hexadecameric array of two CrgA oligomers binds to its DNA target site.
Collapse
Affiliation(s)
- Sarah Sainsbury
- The Oxford Protein Production Facility and Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Craven SH, Ezezika OC, Haddad S, Hall RA, Momany C, Neidle EL. Inducer responses of BenM, a LysR-type transcriptional regulator fromAcinetobacter baylyiADP1. Mol Microbiol 2009; 72:881-94. [DOI: 10.1111/j.1365-2958.2009.06686.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 639] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|
39
|
Turnbull AL, Surette MG. l-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2008; 154:3410-3419. [DOI: 10.1099/mic.0.2008/020347-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Amy L. Turnbull
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Michael G. Surette
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
40
|
Lozada-Chávez I, Angarica VE, Collado-Vides J, Contreras-Moreira B. The role of DNA-binding specificity in the evolution of bacterial regulatory networks. J Mol Biol 2008; 379:627-43. [PMID: 18466918 DOI: 10.1016/j.jmb.2008.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
Abstract
Understanding the mechanisms by which transcriptional regulatory networks (TRNs) change through evolution is a fundamental problem.Here, we analyze this question using data from Escherichia coli and Bacillus subtilis, and find that paralogy relationships are insufficient to explain the global or local role observed for transcription factors (TFs) within regulatory networks. Our results provide a picture in which DNA-binding specificity, a molecular property that can be measured in different ways, is a predictor of the role of transcription factors. In particular, we observe that global regulators consistently display low levels of binding specificity, while displaying comparatively higher expression values in microarray experiments. In addition, we find a strong negative correlation between binding specificity and the number of co-regulators that help coordinate genetic expression on a genomic scale. A close look at several orthologous TFs,including FNR, a regulator found to be global in E. coli and local in B.subtilis, confirms the diagnostic value of specificity in order to understand their regulatory function, and highlights the importance of evaluating the metabolic and ecological relevance of effectors as another variable in the evolutionary equation of regulatory networks. Finally, a general model is presented that integrates some evolutionary forces and molecular properties,aiming to explain how regulons grow and shrink, as bacteria tune their regulation to increase adaptation.
Collapse
Affiliation(s)
- Irma Lozada-Chávez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, 62210 Morelos, México.
| | | | | | | |
Collapse
|
41
|
Lönneborg R, Smirnova I, Dian C, Leonard GA, Brzezinski P. In vivo and in vitro investigation of transcriptional regulation by DntR. J Mol Biol 2007; 372:571-82. [PMID: 17681542 DOI: 10.1016/j.jmb.2007.06.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 11/26/2022]
Abstract
DntR is a bacterial transcription factor that has been isolated from Burkholderia species that are able to degrade the nitro-aromatic compound 2,4-dinitrotoluene. We recently solved the X-ray crystal structure of DntR, which suggested a putative location of an inducer-binding cavity (IBC). In this study, we constructed mutants of DntR in which residues lining the proposed IBC were modified in order to identify the structural elements involved in inducer binding, to modulate the inducer binding specificity, and to investigate the mechanism of transcriptional regulation by DntR. The transcriptional activation of the reporter gene gfp induced by the wild-type and mutant DntRs was monitored by analysing whole-cell fluorescence using flow-cytometry after addition of a number of potential inducer compounds. Three of the mutant proteins (F111L; F111V/H169V and Y110S/F111V) were purified and the binding constants for several of the potential inducers to these mutants were estimated. Furthermore, crystal structures of the F111L and Y110S/F111V mutant proteins were solved and used to explain changes in the inducer binding specificity at an atomic level. A comparison of the inducing capability in the whole-cell system and binding constants for a number of potential inducers suggests a mechanism where binding of an inducer molecule is not the sole requirement for transcriptional activation. In addition, specific interactions between DntR and the inducer molecule resulting in a conformational change of the protein are needed.
Collapse
Affiliation(s)
- Rosa Lönneborg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Ezezika OC, Haddad S, Neidle EL, Momany C. Oligomerization of BenM, a LysR-type transcriptional regulator: structural basis for the aggregation of proteins in this family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:361-8. [PMID: 17565172 PMCID: PMC2334995 DOI: 10.1107/s1744309107019185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/17/2007] [Indexed: 11/10/2022]
Abstract
LysR-type transcriptional regulators comprise the largest family of homologous regulatory DNA-binding proteins in bacteria. A problematic challenge in the crystallization of LysR-type regulators stems from the insolubility and precipitation difficulties encountered with high concentrations of the full-length versions of these proteins. A general oligomerization scheme is proposed for this protein family based on the structures of the effector-binding domain of BenM in two different space groups, P4(3)22 and C222(1). These structures used the same oligomerization scheme of dimer-dimer interactions as another LysR-type regulator, CbnR, the full-length structure of which is available [Muraoka et al. (2003), J. Mol. Biol. 328, 555-566]. Evaluation of packing relationships and surface features suggests that BenM can form infinite oligomeric arrays in crystals through these dimer-dimer interactions. By extrapolation to the liquid phase, such dimer-dimer interactions may contribute to the significant difficulty in crystallizing full-length members of this family. The oligomerization of dimeric units to form biologically important tetramers appears to leave unsatisfied oligomerization sites. Under conditions that favor association, such as neutral pH and concentrations appropriate for crystallization, higher order oligomerization could cause solubility problems with purified proteins. A detailed model by which BenM and other LysR-type transcriptional regulators may form these arrays is proposed.
Collapse
Affiliation(s)
| | - Sandra Haddad
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Ellen L. Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|