1
|
Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022; 19:735-750. [PMID: 35638108 PMCID: PMC9176250 DOI: 10.1080/15476286.2022.2078094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universal dihydrouridine (D) epitranscriptomic mark results from a reduction of uridine by the Dus family of NADPH-dependent reductases and is typically found within the eponym D-loop of tRNAs. Despite its apparent simplicity, D is structurally unique, with the potential to deeply affect the RNA backbone and many, if not all, RNA-connected processes. The first landscape of its occupancy within the tRNAome was reported 20 years ago. Its potential biological significance was highlighted by observations ranging from a strong bias in its ecological distribution to the predictive nature of Dus enzymes overexpression for worse cancer patient outcomes. The exquisite specificity of the Dus enzymes revealed by a structure-function analyses and accumulating clues that the D distribution may expand beyond tRNAs recently led to the development of new high-resolution mapping methods, including Rho-seq that established the presence of D within mRNAs and led to the demonstration of its critical physiological relevance.
Collapse
Affiliation(s)
- Olivier Finet
- URPHYM-GEMO, The University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
2
|
Identification of D Modification Sites Using a Random Forest Model Based on Nucleotide Chemical Properties. Int J Mol Sci 2022; 23:ijms23063044. [PMID: 35328461 PMCID: PMC8950657 DOI: 10.3390/ijms23063044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Dihydrouridine (D) is an abundant post-transcriptional modification present in transfer RNA from eukaryotes, bacteria, and archaea. D has contributed to treatments for cancerous diseases. Therefore, the precise detection of D modification sites can enable further understanding of its functional roles. Traditional experimental techniques to identify D are laborious and time-consuming. In addition, there are few computational tools for such analysis. In this study, we utilized eleven sequence-derived feature extraction methods and implemented five popular machine algorithms to identify an optimal model. During data preprocessing, data were partitioned for training and testing. Oversampling was also adopted to reduce the effect of the imbalance between positive and negative samples. The best-performing model was obtained through a combination of random forest and nucleotide chemical property modeling. The optimized model presented high sensitivity and specificity values of 0.9688 and 0.9706 in independent tests, respectively. Our proposed model surpassed published tools in independent tests. Furthermore, a series of validations across several aspects was conducted in order to demonstrate the robustness and reliability of our model.
Collapse
|
3
|
Dou L, Zhou W, Zhang L, Xu L, Han K. Accurate identification of RNA D modification using multiple features. RNA Biol 2021; 18:2236-2246. [PMID: 33729104 PMCID: PMC8632091 DOI: 10.1080/15476286.2021.1898160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
As one of the common post-transcriptional modifications in tRNAs, dihydrouridine (D) has prominent effects on regulating the flexibility of tRNA as well as cancerous diseases. Facing with the expensive and time-consuming sequencing techniques to detect D modification, precise computational tools can largely promote the progress of molecular mechanisms and medical developments. We proposed a novel predictor, called iRNAD_XGBoost, to identify potential D sites using multiple RNA sequence representations. In this method, by considering the imbalance problem using hybrid sampling method SMOTEEEN, the XGBoost-selected top 30 features are applied to construct model. The optimized model showed high Sn and Sp values of 97.13% and 97.38% over jackknife test, respectively. For the independent experiment, these two metrics separately achieved 91.67% and 94.74%. Compared with iRNAD method, this model illustrated high generalizability and consistent prediction efficiencies for positive and negative samples, which yielded satisfactory MCC scores of 0.94 and 0.86, respectively. It is inferred that the chemical property and nucleotide density features (CPND), electron-ion interaction pseudopotential (EIIP and PseEIIP) as well as dinucleotide composition (DNC) are crucial to the recognition of D modification. The proposed predictor is a promising tool to help experimental biologists investigate molecular functions.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, SichuanChina
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, HeilongjiangChina
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, HeilongjiangChina
| |
Collapse
|
4
|
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J 2021; 288:7096-7122. [PMID: 33513290 PMCID: PMC9255597 DOI: 10.1111/febs.15736] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
5
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Identification of D Modification Sites by Integrating Heterogeneous Features in Saccharomyces cerevisiae. Molecules 2019; 24:molecules24030380. [PMID: 30678171 PMCID: PMC6384727 DOI: 10.3390/molecules24030380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
As an abundant post-transcriptional modification, dihydrouridine (D) has been found in transfer RNA (tRNA) from bacteria, eukaryotes, and archaea. Nonetheless, knowledge of the exact biochemical roles of dihydrouridine in mediating tRNA function is still limited. Accurate identification of the position of D sites is essential for understanding their functions. Therefore, it is desirable to develop novel methods to identify D sites. In this study, an ensemble classifier was proposed for the detection of D modification sites in the Saccharomyces cerevisiae transcriptome by using heterogeneous features. The jackknife test results demonstrate that the proposed predictor is promising for the identification of D modification sites. It is anticipated that the proposed method can be widely used for identifying D modification sites in tRNA.
Collapse
|
7
|
Bou-Nader C, Brégeon D, Pecqueur L, Fontecave M, Hamdane D. Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases. Biochemistry 2018; 57:5407-5414. [DOI: 10.1021/acs.biochem.8b00584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Damien Brégeon
- CNRS, IBPS, Biology of Aging and Adaptation, Sorbonne Université, 7 quai Saint Bernard, Paris 7525 Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, Paris 75231 Cedex 05, France
| |
Collapse
|
8
|
Airas RK. Kinetic analysis of the isoleucyl-tRNA synthetase mechanism: the next reaction cycle can start before the previous one ends. FEBS Open Bio 2018; 8:244-255. [PMID: 29435414 PMCID: PMC5794461 DOI: 10.1002/2211-5463.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases join correct amino acids to their cognate tRNA at the start of the protein synthesis. Through the kinetic analysis, it is possible to estimate how their functional details correspond to the known structural features. Kinetic analysis of the isoleucyl-tRNA synthetase (IleRS) from Escherichia coli was accomplished. Sixteen different steady-state two-ligand experiments were statistically analysed simultaneously so that the same rate equations and same rate and dissociation constants applied to all experiments. The so-called rapid equilibrium segments procedure was used to derive the rate equations. The final best-fit mechanism included the normal activation and transfer steps, and reorganization of the steps between them and after the transfer step. In addition, the analysis strongly suggested an additional activation step, formation of a new isoleucyl-AMP before the isoleucyl-tRNA was freed from the enzyme. The removal of Ile-tRNA was possible without the formation of Ile-AMP if both isoleucine and ATP were bound to the E-Ile-tRNA complex, but this route covered only 11% of the total formation of Ile-tRNA. In addition to the Mg2+ in MgATP or MgPPi, only two tRNA-bound Mg2+ were required to explain the magnesium dependence in the best-fit mechanism. The first Mg2+ could be present in all steps before the second activation and was obligatory in the first reorganizing step and transfer step. The second Mg2+ was present only at the transfer step, whereas elsewhere it prevented the reaction, including the activation reactions. Chloride inhibited the IleRS reaction, while 100 mm KCl caused 50% inhibition if the ionic strength was kept constant with K-acetate. The Kmapp (tRNA) value was increased from 0.057 to 1.37 μm when the KCl concentration was increased from 0 to 200 mm. The total rate equation helps to understand the reaction route and how the simultaneous presence of Ile-tRNA and Ile-AMP can cause new possibilities to proofreading mechanisms of this enzyme. Enzyme Isoleucyl-tRNA synthetase (EC 6.1.1.5).
Collapse
|
9
|
Lorenz C, Lünse CE, Mörl M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 2017; 7:E35. [PMID: 28375166 PMCID: PMC5485724 DOI: 10.3390/biom7020035] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Transfer RNAs (tRNAs) are central players in translation, functioning as adapter molecules between the informational level of nucleic acids and the functional level of proteins. They show a highly conserved secondary and tertiary structure and the highest density of post-transcriptional modifications among all RNAs. These modifications concentrate in two hotspots-the anticodon loop and the tRNA core region, where the D- and T-loop interact with each other, stabilizing the overall structure of the molecule. These modifications can cause large rearrangements as well as local fine-tuning in the 3D structure of a tRNA. The highly conserved tRNA shape is crucial for the interaction with a variety of proteins and other RNA molecules, but also needs a certain flexibility for a correct interplay. In this context, it was shown that tRNA modifications are important for temperature adaptation in thermophilic as well as psychrophilic organisms, as they modulate rigidity and flexibility of the transcripts, respectively. Here, we give an overview on the impact of modifications on tRNA structure and their importance in thermal adaptation.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Christina E Lünse
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Väre VYP, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules 2017; 7:E29. [PMID: 28300792 PMCID: PMC5372741 DOI: 10.3390/biom7010029] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
Collapse
Affiliation(s)
- Ville Y P Väre
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Emily R Eruysal
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Amithi Narendran
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
11
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
12
|
Dyubankova N, Sochacka E, Kraszewska K, Nawrot B, Herdewijn P, Lescrinier E. Contribution of dihydrouridine in folding of the D-arm in tRNA. Org Biomol Chem 2015; 13:4960-6. [PMID: 25815904 DOI: 10.1039/c5ob00164a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranscriptional modifications of transfer RNAs (tRNAs) are proven to be critical for all core aspects of tRNA function. While the majority of tRNA modifications were discovered in the 1970s, their contribution in tRNA folding, stability, and decoding often remains elusive. In this work an NMR study was performed to obtain more insight in the role of the dihydrouridine (D) modification in the D-arm of tRNAi(Met) from S. pombe. While the unmodified oligonucleotide adopted several undefined conformations that interconvert in solution, the presence of a D nucleoside triggered folding into a hairpin with a stable stem and flexible loop region. Apparently the D modification is required in the studied sequence to fold into a stable hairpin. Therefore we conclude that D contributes to the correct folding and stability of D-arm in tRNA. In contrast to what is generally assumed for nucleic acids, the sharp 'imino' signal for the D nucleobase at 10 ppm in 90% H2O is not indicative for the presence of a stable hydrogen bond. The strong increase in pKa upon loss of the aromatic character in the modified nucleobase slows down the exchange of its 'imino' proton significantly, allowing its observation even in an isolated D nucleoside in 90% H2O in acidic to neutral conditions.
Collapse
Affiliation(s)
- N Dyubankova
- Medicinal Chemistry, Department of Pharmaceutical Sciences, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Walker RC, Phizicky EM, Mathews DH. Influence of Sequence and Covalent Modifications on Yeast tRNA Dynamics. J Chem Theory Comput 2014; 10:3473-3483. [PMID: 25136272 PMCID: PMC4132867 DOI: 10.1021/ct500107y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Indexed: 12/25/2022]
Abstract
![]()
Modified nucleotides are prevalent
in tRNA. Experimental studies
reveal that these covalent modifications play an important role in
tuning tRNA function. In this study, molecular dynamics (MD) simulations
were used to investigate how modifications alter tRNA dynamics. The
X-ray crystal structures of tRNA(Asp), tRNA(Phe), and tRNA(iMet),
both with and without modifications, were used as initial structures
for 333 ns explicit solvent MD simulations with AMBER. For each tRNA
molecule, three independent trajectory calculations were performed,
giving an aggregate of 6 μs of total MD across six molecules.
The global root-mean-square deviations (RMSD) of atomic positions
show that modifications only introduce significant rigidity to the
global structure of tRNA(Phe). Interestingly, RMSDs of the anticodon
stem-loop (ASL) suggest that modified tRNA has a more rigid structure
compared to the unmodified tRNA in this domain. The anticodon RMSDs
of the modified tRNAs, however, are higher than those of corresponding
unmodified tRNAs. These findings suggest that the rigidity of the
anticodon stem-loop is finely tuned by modifications, where rigidity
in the anticodon arm is essential for tRNA translocation in the ribosome,
and flexibility of the anticodon is important for codon recognition.
Sugar pucker and water residence time of pseudouridines in modified
tRNAs and corresponding uridines in unmodified tRNAs were assessed,
and the results reinforce that pseudouridine favors the 3′-endo
conformation and has a higher tendency to interact with water. Principal
component analysis (PCA) was used to examine correlated motions in
tRNA. Additionally, covariance overlaps of PCAs were compared for
trajectories of the same molecule and between trajectories of modified
and unmodified tRNAs. The comparison suggests that modifications alter
the correlated motions. For the anticodon bases, the extent of stacking
was compared between modified and unmodified molecules, and only unmodified
tRNA(Asp) has significantly higher percentage of stacking time. Overall,
the simulations reveal that the effect of covalent modification on
tRNA dynamics is not simple, with modifications increasing flexibility
in some regions of the structure and increasing rigidity in other
regions.
Collapse
Affiliation(s)
- Xiaoju Zhang
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego , La Jolla, California 92093, United States ; Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center , Rochester, New York 14642, United States
| |
Collapse
|
14
|
Nallagatla SR, Jones CN, Ghosh SKB, Sharma SD, Cameron CE, Spremulli LL, Bevilacqua PC. Native tertiary structure and nucleoside modifications suppress tRNA's intrinsic ability to activate the innate immune sensor PKR. PLoS One 2013; 8:e57905. [PMID: 23483938 PMCID: PMC3587421 DOI: 10.1371/journal.pone.0057905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/28/2013] [Indexed: 11/17/2022] Open
Abstract
Interferon inducible protein kinase PKR is an essential component of innate immunity. It is activated by long stretches of dsRNA and provides the first line of host defense against pathogens by inhibiting translation initiation in the infected cell. Many cellular and viral transcripts contain nucleoside modifications and/or tertiary structure that could affect PKR activation. We have previously demonstrated that a 5'-end triphosphate-a signature of certain viral and bacterial transcripts-confers the ability of relatively unstructured model RNA transcripts to activate PKR to inhibit translation, and that this activation is abrogated by certain modifications present in cellular RNAs. In order to understand the biological implications of native RNA tertiary structure and nucleoside modifications on PKR activation, we study here the heavily modified cellular tRNAs and the unmodified or the lightly modified mitochondrial tRNAs (mt-tRNA). We find that both a T7 transcript of yeast tRNA(Phe) and natively extracted total bovine liver mt-tRNA activate PKR in vitro, whereas native E. coli, bovine liver, yeast, and wheat tRNA(Phe) do not, nor do a variety of base- or sugar-modified T7 transcripts. These results are further supported by activation of PKR by a natively folded T7 transcript of tRNA(Phe)in vivo supporting the importance of tRNA modification in suppressing PKR activation in cells. We also examine PKR activation by a T7 transcript of the A14G pathogenic mutant of mt-tRNA(Leu), which is known to dimerize, and find that the misfolded dimeric form activates PKR in vitro while the monomeric form does not. Overall, the in vitro and in vivo findings herein indicate that tRNAs have an intrinsic ability to activate PKR and that nucleoside modifications and native RNA tertiary folding may function, at least in part, to suppress such activation, thus serving to distinguish self and non-self tRNA in innate immunity.
Collapse
Affiliation(s)
- Subba Rao Nallagatla
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Daher M, Rueda D. Fluorescence characterization of the transfer RNA-like domain of transfer messenger RNA in complex with small binding protein B. Biochemistry 2012; 51:3531-8. [PMID: 22482838 DOI: 10.1021/bi201751k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer messenger RNA (tmRNA) and small binding protein B (SmpB) are the main components of the trans-translation rescue machinery that releases stalled ribosomes from defective mRNAs. Little is known about how SmpB binding affects the conformation of the tRNA-like domain (TLD) of tmRNA. It has been previously hypothesized that the absence of a D stem in the TLD provides flexibility in the elbow region of tmRNA, which can be stabilized by its interaction with SmpB. Here, we have used Förster resonance energy transfer to characterize the global structure of the tRNA-like domain of tmRNA in the presence and absence of SmpB and as a function of Mg(2+) concentration. Our results show tight and specific binding of SmpB to tmRNA. Surprisingly, our data show that the global conformation and flexibility of tmRNA do not change upon SmpB binding. However, Mg(2+) ions induce an 11 Å compaction in the tmRNA structure, suggesting that the flexibility in the H2a stem may allow different conformations of tmRNA as the TLD and mRNA-like domain need to be positioned differently while moving through the ribosome.
Collapse
Affiliation(s)
- May Daher
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
16
|
Abstract
Post-transcriptional ribonucleotide modification is a phenomenon best studied in tRNA, where it occurs most frequently and in great chemical diversity. This paper reviews the intrinsic network of modifications in the structural core of the tRNA, which governs structural flexibility and rigidity to fine-tune the molecule to peak performance and to regulate its steady-state level. Structural effects of RNA modifications range from nanometer-scale rearrangements to subtle restrictions of conformational space on the angstrom scale. Structural stabilization resulting from nucleotide modification results in increased thermal stability and translates into protection against unspecific degradation by bases and nucleases. Several mechanisms of specific degradation of hypomodified tRNA, which were only recently discovered, provide a link between structural and metabolic stability.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
17
|
Alexander RW, Eargle J, Luthey-Schulten Z. Experimental and computational determination of tRNA dynamics. FEBS Lett 2009; 584:376-86. [PMID: 19932098 DOI: 10.1016/j.febslet.2009.11.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
As the molecular representation of the genetic code, tRNA plays a central role in the translational machinery where it interacts with several proteins and other RNAs during the course of protein synthesis. These interactions exploit the dynamic flexibility of tRNA. In this minireview, we discuss the effects of modified bases, ions, and proteins on tRNA structure and dynamics and the challenges of observing its motions over the cycle of translation.
Collapse
Affiliation(s)
- Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109-7486, United States.
| | | | | |
Collapse
|
18
|
Messmer M, Pütz J, Suzuki T, Suzuki T, Sauter C, Sissler M, Catherine F. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Res 2009; 37:6881-95. [PMID: 19767615 PMCID: PMC2777451 DOI: 10.1093/nar/gkp697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria.
Collapse
Affiliation(s)
- Marie Messmer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Jones CN, Jones CI, Graham WD, Agris PF, Spremulli LL. A disease-causing point mutation in human mitochondrial tRNAMet rsults in tRNA misfolding leading to defects in translational initiation and elongation. J Biol Chem 2008; 283:34445-56. [PMID: 18835817 DOI: 10.1074/jbc.m806992200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial tRNA genes are hot spots for mutations that lead to human disease. A single point mutation (T4409C) in the gene for human mitochondrial tRNA(Met) (hmtRNA(Met)) has been found to cause mitochondrial myopathy. This mutation results in the replacement of U8 in hmtRNA(Met) with a C8. The hmtRNA(Met) serves both in translational initiation and elongation in human mitochondria making this tRNA of particular interest in mitochondrial protein synthesis. Here we show that the single 8U-->C mutation leads to a failure of the tRNA to respond conformationally to Mg(2+). This mutation results in a drastic disruption of the structure of the hmtRNA(Met), which significantly reduces its aminoacylation. The small fraction of hmtRNA(Met) that can be aminoacylated is not formylated by the mitochondrial Met-tRNA transformylase preventing its function in initiation, and it is unable to form a stable ternary complex with elongation factor EF-Tu preventing any participation in chain elongation. We have used structural probing and molecular reconstitution experiments to examine the structures formed by the normal and mutated tRNAs. In the presence of Mg(2+), the normal tRNA displays the structural features expected of a tRNA. However, even in the presence of Mg(2+), the mutated tRNA does not form the cloverleaf structure typical of tRNAs. Thus, we believe that this mutation has disrupted a critical Mg(2+)-binding site on the tRNA required for formation of the biologically active structure. This work establishes a foundation for understanding the physiological consequences of the numerous mitochondrial tRNA mutations that result in disease in humans.
Collapse
Affiliation(s)
- Christie N Jones
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
20
|
Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z. Dynamics of Recognition between tRNA and elongation factor Tu. J Mol Biol 2008; 377:1382-405. [PMID: 18336835 DOI: 10.1016/j.jmb.2008.01.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/08/2008] [Indexed: 11/17/2022]
Abstract
Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu.guanosine 5'-triphosphate.aa-tRNA(Cys) complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein.RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu.Cys-tRNA(Cys) interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3' CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu.Cys-tRNA(Cys) binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNA(Cys) with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein.tRNA interface and is the basis for the entropy calculations.
Collapse
Affiliation(s)
- John Eargle
- Center for Biophysics and Computational Biology, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
21
|
Airas RK. Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases. Biophys Chem 2007; 131:29-35. [PMID: 17889423 DOI: 10.1016/j.bpc.2007.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
Abstract
The apparent equilibrium constants (K') for six reactions catalyzed by aminoacyl-tRNA synthetases from Escherichia coli were measured, the equations for the magnesium dependence of the equilibrium constants were derived, and best-fit analyses between the measured and calculated values were used. The K' values at 1 mM Mg(2+) ranged from 0.49 to 1.13. The apparent equilibrium constants increased with increasing Mg(2+) concentrations. The values were 2-3 times higher at 20 mM Mg(2+) than at 1 mM Mg(2+), and the dependence was similar in the class I and class II synthetases. The main reason for the Mg(2+) dependence is the existence of PP(i) as two magnesium complexes, but only one of them is the real product. AMP exists either as free AMP or as MgAMP, and therefore also has some effect on the measured equilibrium constant. However, these dependences alone cannot explain the measured results. The measured dependence of the K' on the Mg(2+) concentration is weaker than that caused by PP(i) and AMP. Different bindings of the Mg(2+) ions to the substrate tRNA and product aminoacyl-tRNA can explain this observation. The best-fit analysis suggests that tRNA reacts as a magnesium complex in the forward aminoacylation direction but this given Mg(2+) ion is not bound to aminoacyl-tRNA at the start of the reverse reaction. Thus Mg(2+) ions seem to have an active catalytic role, not only in the activation of the amino acid, but in the posttransfer steps of the aminoacyl-tRNA synthetase reaction, too.
Collapse
Affiliation(s)
- R Kalervo Airas
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland.
| |
Collapse
|