1
|
Pacini L, Bourgeat L, Serghei A, Lesieur C. Analysis of Nanoconfined Protein Dielectric Signals Using Charged Amino Acid Network Models. Aust J Chem 2020. [DOI: 10.1071/ch19502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein slow motions involving collective molecular fluctuations on the timescale of microseconds to seconds are difficult to measure and not well understood despite being essential to sustain protein folding and protein function. Broadband dielectric spectroscopy (BDS) is one of the most powerful experimental techniques to monitor, over a broad frequency and temperature range, the molecular dynamics of soft matter through the orientational polarisation of permanent dipole moments that are generated by the chemical structure and morphological organisation of matter. Its typical frequency range goes from 107 Hz down to 10−3 Hz, being thus suitable for investigations on slow motions in proteins. Moreover, BDS has the advantage of providing direct experimental access to molecular fluctuations taking place on different length-scales, from local to cooperative dipolar motions. The unfolding of the cholera toxin B pentamer (CtxB5) after thermal treatment for 3h at 80°C is investigated by BDS under nanoconfined and dehydrated conditions. From the X-ray structure of the toxin pentamer, network-based models are used to infer the toxin dipoles present in the native state and to compute their stability and dielectric properties. Network analyses highlight three domains with distinct dielectric and stability properties that support a model where the toxin unfolds into three conformations after the treatment at 80°C. This novel integrative approach offers some perspective into the investigation of the relation between local perturbations (e.g. mutation, thermal treatment) and larger scale protein conformational changes. It might help ranking protein sequence variants according to their respective scale of dynamics perturbations.
Collapse
|
2
|
Alsultan AM, Chin DY, Howard CB, de Bakker CJ, Jones ML, Mahler SM. Beyond Antibodies: Development of a Novel Protein Scaffold Based on Human Chaperonin 10. Sci Rep 2016; 5:37348. [PMID: 27874025 PMCID: PMC5118791 DOI: 10.1038/srep37348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/26/2016] [Indexed: 01/10/2023] Open
Abstract
Human Chaperonin 10 (hCpn10) was utilised as a novel scaffold for presenting peptides of therapeutic and diagnostic significance. Molecular dynamic simulations and protein sizing analyses identified a peptide linker (P1) optimal for the formation of the quarternary hCpn10 heptamer structure. hCpn10 scaffold displaying peptides targeting Factor VIIa (CE76-P1) and CD44 (CP7) were expressed in E. coli. Functional studies of CE76-P1 indicated nanomolar affinity for Factor VIIa (3 nM) similar to the E-76 peptide (6 nM), with undetectable binding to Factor X. CE76-P1 was a potent inhibitor of FX activity (via inhibition of Factor VIIa) and prolonged clot formation 4 times longer than achieved by E-76 peptide as determined by prothrombin time (PT) assays. This improvement in clotting function by CE76-P1, highlights the advantages of a heptamer-based scaffold for improving avidity by multiple peptide presentation. In another example of hCPn10 utility as a scaffold, CP7 bound to native CD44 overexpressed on cancer cells and bound rCD44 with high affinity (KD 9.6 nM). The ability to present various peptides through substitution of the hCpn10 mobile loop demonstrates its utility as a novel protein scaffold.
Collapse
Affiliation(s)
- Abdulkarim M Alsultan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - David Y Chin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia.,Centre for Advanced Imaging, University of Queensland (UQ), Brisbane, QLD 4072, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Christopher J de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD 4072, Australia.,School of Chemical Engineering, University of Queensland (UQ), Brisbane, QLD 4072, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, University of Queensland (UQ), Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Aguilar X, F. Weise C, Sparrman T, Wolf-Watz M, Wittung-Stafshede P. Macromolecular Crowding Extended to a Heptameric System: The Co-chaperonin Protein 10. Biochemistry 2011; 50:3034-44. [DOI: 10.1021/bi2002086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ximena Aguilar
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Christoph F. Weise
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
4
|
Zrimi J, Ng Ling A, Giri-Rachman Arifin E, Feverati G, Lesieur C. Cholera toxin B subunits assemble into pentamers--proposition of a fly-casting mechanism. PLoS One 2010; 5:e15347. [PMID: 21203571 PMCID: PMC3006222 DOI: 10.1371/journal.pone.0015347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/11/2010] [Indexed: 11/18/2022] Open
Abstract
The cholera toxin B pentamer (CtxB5), which belongs to the AB5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i) acquisition of a fully assembly-competent fold by the CtxB monomer, (ii) association of CtxB monomer into oligomers, (iii) acquisition of the native fold by the CtxB pentamer. The results show that CtxB5 and the related heat labile enterotoxin LTB5 have distinct mechanisms of assembly despite sharing high sequence identity (84%) and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them.
Collapse
Affiliation(s)
- Jihad Zrimi
- LAPTH, Université de Savoie, CNRS, Annecy le Vieux, France
| | - Alicia Ng Ling
- National University of Singapore, Physics Department, Singapore, Singapore
| | | | | | - Claire Lesieur
- LAPTH, Université de Savoie, CNRS, Annecy le Vieux, France
- National University of Singapore, Physics Department, Singapore, Singapore
- CEA-CNRS-Université Joseph Fourier, IRTSV, LBBSI, Grenoble, France
- * E-mail:
| |
Collapse
|
5
|
Abstract
The assembly of subunits in protein oligomers is an important topic to study as a vast number of proteins exists as stable or transient oligomer and because it is a mechanism used by some protein oligomers for killing cells (e.g., perforin from the human immune system, pore-forming toxins from bacteria, phage, amoeba, protein misfolding diseases, etc.). Only a few of the amino acids that constitute a protein oligomer seem to regulate the capacity of the protein to assemble (to form interfaces), and some of these amino acids are localized at the interfaces that link the different chains. The identification of the residues of these interfaces is rather difficult. We have developed a series of programs, under the common name of Gemini, that can select the subset of the residues that is involved in the interfaces of a protein oligomer of known atomic structure, and generate a 2D interaction network (or graph) of the subset. The graphs generated for several oligomers demonstrate the accuracy of the selection of subsets that are involved in the geometrical and the chemical properties of interfaces. The results of the Gemini programs are in good agreement with those of similar programs with an advantage that Gemini programs can perform the residue selection much more rapidly. Moreover, Gemini programs can also perform on a single protein oligomer without the need of comparison partners. The graphs are extremely useful for comparative studies that would help in addressing questions not only on the sequence specificity of protein interfaces but also on the mechanism of the assembly of unrelated protein oligomers.
Collapse
Affiliation(s)
- Giovanni Feverati
- Laboratoire de physique théorique LAPTH, CNRS, UMR 5108 associé à l'Université de Savoie, BP 110, Annecy le Vieux, France
| | - Claire Lesieur
- Laboratoire de physique théorique LAPTH, CNRS, UMR 5108 associé à l'Université de Savoie, BP 110, Annecy le Vieux, France
- * E-mail:
| |
Collapse
|
6
|
Med8, Med18, and Med20 subunits of the Mediator head domain are interdependent upon each other for folding and complex formation. Proc Natl Acad Sci U S A 2009; 106:20728-33. [PMID: 19934057 PMCID: PMC2781058 DOI: 10.1073/pnas.0907645106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have studied folding and complex formation of the yeast Mediator head-module protein subunits Med8, Med18, and Med20. Using a combination of immunoprecipitation, far-UV circular dichroism, and fluorescence measurements on recombinantly expressed and denatured proteins that were allowed to renature separately or in different combinations, we found that Med8, Med18, and Med20 can fold in different ways to form both soluble monomeric proteins and different distinct subcomplexes. However, the concurrent presence of all three protein subunits during the renaturation process is required for proper folding and trimer complex formation.
Collapse
|
7
|
Stagg L, Samiotakis A, Homouz D, Cheung MS, Wittung-Stafshede P. Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J Mol Biol 2009; 396:75-89. [PMID: 19913555 DOI: 10.1016/j.jmb.2009.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Abstract
Flavodoxin adopts the common repeat beta/alpha topology and folds in a complex kinetic reaction with intermediates. To better understand this reaction, we analyzed a set of Desulfovibrio desulfuricans apoflavodoxin variants with point mutations in most secondary structure elements by in vitro and in silico methods. By equilibrium unfolding experiments, we first revealed how different secondary structure elements contribute to overall protein resistance to heat and urea. Next, using stopped-flow mixing coupled with far-UV circular dichroism, we probed how individual residues affect the amount of structure formed in the experimentally detected burst-phase intermediate. Together with in silico folding route analysis of the same point-mutated variants and computation of growth in nucleation size during early folding, computer simulations suggested the presence of two competing folding nuclei at opposite sides of the central beta-strand 3 (i.e., at beta-strands 1 and 4), which cause early topological frustration (i.e., misfolding) in the folding landscape. Particularly, the extent of heterogeneity in folding nuclei growth correlates with the in vitro burst-phase circular dichroism amplitude. In addition, phi-value analysis (in vitro and in silico) of the overall folding barrier to apoflavodoxin's native state revealed that native-like interactions in most of the beta-strands must form in transition state. Our study reveals that an imbalanced competition between the two sides of apoflavodoxin's central beta-sheet directs initial misfolding, while proper alignment on both sides of beta-strand 3 is necessary for productive folding.
Collapse
Affiliation(s)
- Loren Stagg
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | |
Collapse
|
8
|
Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJL, Cappello F, La Rocca G. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 2009; 86:145-52. [PMID: 19913561 DOI: 10.1016/j.lfs.2009.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023]
Abstract
This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases.
Collapse
Affiliation(s)
- Simona Corrao
- Dipartimento di Medicina Sperimentale, Università degli Studi di Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sakane I, Hongo K, Mizobata T, Kawata Y. Mechanical unfolding of covalently linked GroES: evidence of structural subunit intermediates. Protein Sci 2009; 18:252-7. [PMID: 19177369 DOI: 10.1002/pro.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is difficult to determine the structural stability of the individual subunits or protomers of many proteins in the cell that exist in an oligomeric or complexed state. In this study, we used single-molecule force spectroscopy on seven subunits of covalently linked cochaperonin GroES (ESC7) to evaluate the structural stability of the subunit. A modified form of ESC7 was immobilized on a mica surface. The force-extension profile obtained from the mechanical unfolding of this ESC7 showed a distinctive sawtooth pattern that is typical for multimodular proteins. When analyzed according to the worm-like chain model, the contour lengths calculated from the peaks in the profile suggested that linked-GroES subunits unfold in distinct steps after the oligomeric ring structure of ESC7 is disrupted. The evidence that structured subunits of ESC7 withstand external force to some extent even after the perturbation of the oligomeric ring structure suggests that a stable monomeric intermediate is an important component of the equilibrium unfolding reaction of GroES.
Collapse
Affiliation(s)
- Isao Sakane
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Japan
| | | | | | | |
Collapse
|
10
|
Geels RBJ, Calmat S, Heck AJR, van der Vies SM, Heeren RMA. Thermal activation of the co-chaperonins GroES and gp31 probed by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3633-3641. [PMID: 18972453 DOI: 10.1002/rcm.3782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many biological active proteins are assembled in protein complexes. Understanding the (dis)assembly of such complexes is therefore of major interest. Here we use mass spectrometry to monitor the disassembly induced by thermal activation of the heptameric co-chaperonins GroES and gp31. We use native electrospray ionization mass spectrometry (ESI-MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer to monitor the stoichiometry of the chaperonins. A thermally controlled electrospray setup was employed to analyze conformational and stoichiometric changes of the chaperonins at varying temperature. The native ESI-MS data agreed well with data obtained from fluorescence spectroscopy as the measured thermal dissociation temperatures of the complexes were in good agreement. Furthermore, we observed that thermal denaturing of GroES and gp31 proceeds via intermediate steps of all oligomeric forms, with no evidence of a transiently stable unfolded heptamer. We also evaluated the thermal dissociation of the chaperonins in the gas phase using infrared multiphoton dissociation (IRMPD) for thermal activation. Using gas-phase activation the smaller (2-4) oligomers were not detected, only down to the pentamer, whereafter the complex seemed to dissociate completely. These results demonstrate clearly that conformational changes of GroES and gp31 due to heating in solution and in the gas phase are significantly different.
Collapse
Affiliation(s)
- Rimco B J Geels
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Chen DH, Luke K, Zhang J, Chiu W, Wittung-Stafshede P. Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-electron microscopy and biophysical techniques. J Mol Biol 2008; 381:707-17. [PMID: 18588898 DOI: 10.1016/j.jmb.2008.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/04/2008] [Accepted: 06/09/2008] [Indexed: 11/25/2022]
Abstract
Co-chaperonin protein 10 (cpn10, GroES in Escherichia coli) is a ring-shaped heptameric protein that facilitates substrate folding when in complex with cpn60 (GroEL in E. coli). The cpn10 from the hyperthermophilic, ancient bacterium Aquifex aeolicus (Aacpn10) has a 25-residue C-terminal extension in each monomer not found in any other cpn10 protein. Earlier in vitro work has shown that this tail is not needed for heptamer assembly or protein function. Without the tail, however, the heptamers (Aacpn10del-25) readily aggregate into fibrillar stacked rings. To explain this phenomenon, we performed binding experiments with a peptide construct of the tail to establish its specificity for Aacpn10del-25 and used cryo-electron microscopy to determine the three-dimensional (3D) structure of the GroEL-Aacpn10-ADP complex at an 8-A resolution. We found that the GroEL-Aacpn10 structure is similar to the GroEL-GroES structure at this resolution, suggesting that Aacpn10 has molecular interactions with cpn60 similar to other cpn10s. The cryo-electron microscopy density map does not directly reveal the density of the Aacpn10 25-residue tail. However, the 3D statistical variance coefficient map computed from multiple 3D reconstructions with randomly selected particle images suggests that the tail is located at the Aacpn10 monomer-monomer interface and extends toward the cis-ring apical domain of GroEL. The tail at this location does not block the formation of a functional co-chaperonin/chaperonin complex but limits self-aggregation into linear fibrils at high temperatures. In addition, the 3D variance coefficient map identifies several regions inside the GroEL-Aacpn10 complex that have flexible conformations. This observation is in full agreement with the structural properties of an effective chaperonin.
Collapse
Affiliation(s)
- Dong-Hua Chen
- National Center for Macromolecular Imaging, Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM. Conformational stability and folding mechanisms of dimeric proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:61-84. [PMID: 18602415 DOI: 10.1016/j.pbiomolbio.2008.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.
Collapse
Affiliation(s)
- Jessica A O Rumfeldt
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
13
|
Luke KA, Higgins CL, Wittung-Stafshede P. Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 2007; 274:4023-33. [PMID: 17683332 DOI: 10.1111/j.1742-4658.2007.05955.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Life grows almost everywhere on earth, including in extreme environments and under harsh conditions. Organisms adapted to high temperatures are called thermophiles (growth temperature 45-75 degrees C) and hyperthermophiles (growth temperature >or= 80 degrees C). Proteins from such organisms usually show extreme thermal stability, despite having folded structures very similar to their mesostable counterparts. Here, we summarize the current data on thermodynamic and kinetic folding/unfolding behaviors of proteins from hyperthermophilic microorganisms. In contrast to thermostable proteins, rather few (i.e. less than 20) hyperthermostable proteins have been thoroughly characterized in terms of their in vitro folding processes and their thermodynamic stability profiles. Examples that will be discussed include co-chaperonin proteins, iron-sulfur-cluster proteins, and DNA-binding proteins from hyperthermophilic bacteria (i.e. Aquifex and Theromotoga) and archea (e.g. Pyrococcus, Thermococcus, Methanothermus and Sulfolobus). Despite the small set of studied systems, it is clear that super-slow protein unfolding is a dominant strategy to allow these proteins to function at extreme temperatures.
Collapse
Affiliation(s)
- Kathryn A Luke
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | |
Collapse
|
14
|
Watson E, Matousek WM, Irimies EL, Alexandrescu AT. Partially folded states of staphylococcal nuclease highlight the conserved structural hierarchy of OB-fold proteins. Biochemistry 2007; 46:9484-94. [PMID: 17661445 PMCID: PMC2128864 DOI: 10.1021/bi700532j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have been interested in whether three proteins that share a five-stranded beta-barrel "OB-fold" structural motif but no detectable sequence homology fold by similar mechanisms. Here we describe native-state hydrogen exchange experiments as a function of urea for SN (staphylococcal nuclease), a protein with an OB-fold motif and additional nonconserved elements of structure. The regions of structure with the largest stability and unfolding cooperativity are contained within the conserved OB-fold portion of SN, consistent with previous results for CspA (cold shock protein A) and LysN (anticodon binding domain of lysyl tRNA synthetase). The OB-fold also has the subset of residues with the slowest unfolding rates in the three proteins, as determined by hydrogen exchange experiments in the EX1 limit. Although the protein folding hierarchy is maintained at the level of supersecondary structure, it is not evident for individual residues as might be expected if folding depended on obligatory nucleation sites. Rather, the site-specific stability profiles appear to be linked to sequence hydrophobicity and to the density of long-range contacts at each site in the three-dimensional structures of the proteins. We discuss the implications of the correlation between stability to unfolding and conservation of structure for mechanisms of protein structure evolution.
Collapse
Affiliation(s)
| | | | | | - Andrei T. Alexandrescu
- * To whom correspondence should be addressed: Department of Molecular and Cell Biology, University of Connecticut, 91 N,. Eagleville Rd., U-3125, Storrs, CT 06269–3125., Telephone: (860) 486–4414., Fax: (860) 486–4331., E-mail:
| |
Collapse
|
15
|
Perham M, Wittung-Stafshede P. Folding and assembly of co-chaperonin heptamer probed by forster resonance energy transfer. Arch Biochem Biophys 2007; 464:306-13. [PMID: 17521602 DOI: 10.1016/j.abb.2007.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
The ring-shaped heptameric co-chaperonin protein 10 (cpn10) is one of few oligomeric beta-sheet proteins that unfold and disassemble reversibly in vitro. Here, we labeled human mitochondrial cpn10 with donor and acceptor dyes to obtain FRET signals. Cpn10 mixed in a 1:1:5 ratio of donor:acceptor:unlabeled monomers form heptamers that are active in an in vitro functional assay. Monomer-monomer affinity, as well as thermal and chemical stability, of the labeled cpn10 is similar to the unlabeled protein, demonstrating that the labels do not perturb the system. Using changes in FRET, we then probed for the first time cpn10 heptamer-monomer assembly/disassembly kinetics. Heptamer dissociation is very slow (1/k(diss) approximately 3h; 20 degrees C, pH 7) corresponding to an activation energy of approximately 50kJ/mol. Ring-ring mixing experiments reveal that cpn10 heptamer dissociation is rate limiting; subsequent associations events are faster. Kinetic inertness explains how cpn10 cycles on and off cpn60 as an intact heptamer in vivo.
Collapse
Affiliation(s)
- Michael Perham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77251, United States
| | | |
Collapse
|
16
|
Sakane I, Hongo K, Motojima F, Murayama S, Mizobata T, Kawata Y. Structural Stability of Covalently Linked GroES Heptamer: Advantages in the Formation of Oligomeric Structure. J Mol Biol 2007; 367:1171-85. [PMID: 17303164 DOI: 10.1016/j.jmb.2007.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/25/2006] [Accepted: 01/14/2007] [Indexed: 11/26/2022]
Abstract
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities.
Collapse
Affiliation(s)
- Isao Sakane
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-8552, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Luke K, Wittung-Stafshede P. Folding and assembly pathways of co-chaperonin proteins 10: Origin of bacterial thermostability. Arch Biochem Biophys 2006; 456:8-18. [PMID: 17084377 DOI: 10.1016/j.abb.2006.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 11/30/2022]
Abstract
To compare folding/assembly processes of heptameric co-chaperonin proteins 10 (cpn10) from different species and search for the origin of thermostability in hyper-thermostable Aquifex aeolicus cpn10 (Aacpn10), we have studied two bacterial variants-Aacpn10 and Escherichia coli cpn10 (GroES)-and compared the results to data on Homo sapiens cpn10 (hmcpn10). Equilibrium denaturation of GroES by urea, guanidine hydrochloride (GuHCl) and temperature results in coupled heptamer-to-monomer transitions in all cases. This is similar to the behavior of Aacpn10 but differs from hmcpn10 denaturation in urea. Time-resolved experiments reveal that GroES unfolds before heptamer dissociation, whereas refolding/reassembly begins with folding of individual monomers; these assemble in a slower step. The sequential folding/assembly mechanism for GroES is rather similar to that observed for Aacpn10 but contradicts the parallel paths of hmcpn10. We reveal that Aacpn10's stability profile is shifted upwards, broadened, and also moved horizontally to higher temperatures, as compared to that of GroES.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | |
Collapse
|