1
|
Sharma A, Shah OP, Sharma L, Gulati M, Behl T, Khalid A, Mohan S, Najmi A, Zoghebi K. Molecular Chaperones as Therapeutic Target: Hallmark of Neurodegenerative Disorders. Mol Neurobiol 2024; 61:4750-4767. [PMID: 38127187 DOI: 10.1007/s12035-023-03846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India, Amity University, Mohali, India.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box 2424, 11111, Khartoum, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia.
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Chaari A, Saikia N, Paul P, Yousef M, Ding F, Ladjimi M. Experimental and computational investigation of the effect of Hsc70 structural variants on inhibiting amylin aggregation. Biophys Chem 2024; 309:107235. [PMID: 38608617 DOI: 10.1016/j.bpc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the β-sheet edges of the Hsc70-β-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the β-sandwich, particularly at the β5-β8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.
Collapse
Affiliation(s)
- Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar.
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Mohammad Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Moncef Ladjimi
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
3
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Fodder K, Murthy M, Rizzu P, Toomey CE, Hasan R, Humphrey J, Raj T, Lunnon K, Mill J, Heutink P, Lashley T, Bettencourt C. Brain DNA methylomic analysis of frontotemporal lobar degeneration reveals OTUD4 in shared dysregulated signatures across pathological subtypes. Acta Neuropathol 2023; 146:77-95. [PMID: 37149835 PMCID: PMC10261190 DOI: 10.1007/s00401-023-02583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and FTLD with tau-positive inclusions (FTLD-tau) are the most common, representing about 90% of the cases. Although alterations in DNA methylation have been consistently associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, little is known for FTLD and its heterogeneous subgroups and subtypes. The main goal of this study was to investigate DNA methylation variation in FTLD-TDP and FTLD-tau. We used frontal cortex genome-wide DNA methylation profiles from three FTLD cohorts (142 FTLD cases and 92 controls), generated using the Illumina 450K or EPIC microarrays. We performed epigenome-wide association studies (EWAS) for each cohort followed by meta-analysis to identify shared differentially methylated loci across FTLD subgroups/subtypes. In addition, we used weighted gene correlation network analysis to identify co-methylation signatures associated with FTLD and other disease-related traits. Wherever possible, we also incorporated relevant gene/protein expression data. After accounting for a conservative Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially methylated loci in FTLD, one annotated to OTUD4 (5'UTR-shore) and the other to NFATC1 (gene body-island). Of these loci, OTUD4 showed consistent upregulation of mRNA and protein expression in FTLD. In addition, in the three independent co-methylation networks, OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were strongly associated with the FTLD status. These co-methylation modules were enriched for genes implicated in the ubiquitin system, RNA/stress granule formation and glutamatergic synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and support a role for DNA methylation as a mechanism involved in the dysregulation of biological processes relevant to FTLD, highlighting novel potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Rahat Hasan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Alector, Inc., South San Francisco, CA, USA
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
5
|
Yamamoto N, Inoue R, Makino Y, Sekiguchi H, Shibayama N, Naito A, Sugiyama M, Chatani E. Tracking the Structural Development of Amyloid Precursors in the Insulin B Chain and the Inhibition Effect by Fibrinogen. J Phys Chem B 2022; 126:10797-10812. [PMID: 36534755 DOI: 10.1021/acs.jpcb.2c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibrils are abnormal protein aggregates associated with several amyloidoses and neurodegenerative diseases. Prefibrillar intermediates, which emerge before amyloid fibril formation, play an important role in structure formation. Therefore, to prevent fibril formation, the mechanisms underpinning the structural development of prefibrillar intermediates must be elucidated. An insulin-derived peptide, the insulin B chain, is known for its stable accumulation of prefibrillar intermediates. In this study, the structural development of B chain prefibrillar intermediates and their inhibition by fibrinogen (Fg) were monitored by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) combined with solid-state nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. TEM images obtained in a time-lapse manner demonstrated that prefibrillar intermediates were wavy rod-like structures emerging from initial non-rod-like aggregates, and their bundling was responsible for protofilament formation. Time-resolved SAXS revealed that the prefibrillar intermediates became thicker and longer as a function of time. Solid-state NMR measurement suggested a β-sheet formation around Ala14 residue was crucial for the structural conversion from prefibrillar intermediates to amyloid fibril. These observations suggested that prefibrillar intermediates serve as reaction fields for amyloid nucleation and its structural propagation. Time-resolved SAXS also demonstrated that Fg prevented elongation of the prefibrillar intermediates by forming specific complexes together, which implied that regulation of the length of prefibrillar intermediates upon Fg binding was the factor suppressing the prefibrillar intermediate elongation. The fibril formation mechanism and the inhibition strategy found in this study will be helpful in seeking appropriate methods against amyloid-related diseases.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Division of Biophysics, Physiology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi329-0498, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka590-0494, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hotogaya-ku, Yokohama240-8501, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo679-5148, Japan
| | - Naoya Shibayama
- Division of Biophysics, Physiology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi329-0498, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hotogaya-ku, Yokohama240-8501, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka590-0494, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| |
Collapse
|
6
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
8
|
Rutledge BS, Choy WY, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem 2022; 298:101905. [PMID: 35398094 PMCID: PMC9079180 DOI: 10.1016/j.jbc.2022.101905] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.
Collapse
Affiliation(s)
| | - Wing-Yiu Choy
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.
| |
Collapse
|
9
|
Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Behl T, Abdellatif AAH, Bhaskaran PM, Dachani SR, Sehgal A, Singh S, Sharma N, Makeen HA, Albratty M, Dailah HG, Bhatia S, Al-Harrasi A, Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147:112647. [PMID: 35149361 DOI: 10.1016/j.biopha.2022.112647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Sudarshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University (Al-Dawadmi Campus), Al-Dawadmi, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan university, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
10
|
Najarzadeh Z, Nielsen J, Farzadfard A, Sereikaite V, Strømgaard K, Meyer RL, Otzen DE. Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from Staphylococcus aureus. ACS OMEGA 2021; 6:21960-21970. [PMID: 34497891 PMCID: PMC8412925 DOI: 10.1021/acsomega.1c02333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Functional amyloids are highly organized protein/peptide structures that inter alia promote biofilm formation in different bacteria. One such example is provided by a family of 20-45 residue-long peptides called phenol-soluble modulins (PSMs) from Staphylococcus aureus. External components such as eukaryotic host proteins, which alter self-assembly of bacterial amyloids, can affect the biofilm matrix. Here, we studied the effect of the highly prevalent human plasma protein fibrinogen (Fg) on fibrillation of PSMs. Fg inhibits or suppresses fibrillation of most PSMs tested (PSMα1, PSMβ1, and PSMβ2) except for PSMα3, whose already rapid aggregation is accelerated even further by Fg but leads to amorphous β-rich aggregates rather than fibrils. Fg also induces PSMβ2 to form amorphous aggregates and diverts PSMα1 into off-pathway oligomers which consist of both Fg and PSMα1 and cannot seed fibrillation. Peptide arrays showed that Fg bound to the N-terminus of PSMα1, while it bound to the entire length of PSMα3 (except the C terminus) and to the C-termini of PSMβ1 and PSMβ2. The latter peptides are all positively charged, while Fg is negatively charged at physiological pH. The positive charges complement Fg's net negative charge of -7.6 at pH 7.4. Fg's ability to inhibit PSM fibrillation reveals a potential host-defense mechanism to prevent bacterial biofilm growth and infections in the human body.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Azad Farzadfard
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Vita Sereikaite
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary
Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
De Mattos EP, Wentink A, Nussbaum-Krammer C, Hansen C, Bergink S, Melki R, Kampinga HH. Protein Quality Control Pathways at the Crossroad of Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 10:369-382. [PMID: 31985474 PMCID: PMC7242842 DOI: 10.3233/jpd-191790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and many others converge at alpha-synuclein (α-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating α-Syn aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and degradation, ultimately regulating α-Syn levels. Here, we review the main aspects of α-Syn biology, focusing on the cellular PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone α-Syn assemblies: molecular chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning the prevention and/or enhanced degradation of α-Syn aggregates.
Collapse
Affiliation(s)
- Eduardo P De Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Hansen
- Molecular Neurobiology, Department of Experimental Medical Science, Lund, Sweden
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald Melki
- Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Sandoval IM, Marmion DJ, Meyers KT, Manfredsson FP. Gene Therapy to Modulate Alpha-Synuclein in Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 11:S189-S197. [PMID: 34092656 PMCID: PMC8543271 DOI: 10.3233/jpd-212679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein alpha-Synuclein (α-Syn) is a key contributor to the etiology of Parkinson’s disease (PD) with aggregation, trans-neuronal spread, and/or depletion of α-Syn being viewed as crucial events in the molecular processes that result in neurodegeneration. The exact succession of pathological occurrences that lead to neuronal death are still largely unknown and are likely to be multifactorial in nature. Despite this unknown, α-Syn dose and stability, autophagy-lysosomal dysfunction, and inflammation, amongst other cellular impairments, have all been described as participatory events in the neurodegenerative process. To that end, in this review we discuss the logical points for gene therapy to intervene in α-Syn-mediated disease and review the preclinical body of work where gene therapy has been used, or could conceptually be used, to ameliorate α-Syn induced neurotoxicity. We discuss gene therapy in the traditional sense of modulating gene expression, as well as the use of viral vectors and nanoparticles as methods to deliver other therapeutic modalities.
Collapse
Affiliation(s)
- Ivette M Sandoval
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David J Marmion
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kimberly T Meyers
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | |
Collapse
|
13
|
Tao J, Berthet A, Citron YR, Tsiolaki PL, Stanley R, Gestwicki JE, Agard DA, McConlogue L. Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. J Biol Chem 2021; 296:100613. [PMID: 33798554 PMCID: PMC8102405 DOI: 10.1016/j.jbc.2021.100613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Overexpression and aggregation of α-synuclein (ASyn) are linked to the onset and pathology of Parkinson's disease and related synucleinopathies. Elevated levels of the stress-induced chaperone Hsp70 protect against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations, and inhibitors, we confirm that Hsp70 interacts with ASyn via an as yet unidentified, noncanonical interaction site in the C-terminal domain. Finally, we report a biological role for a similar mode of action in H4 neuroglioma cells. Together, these findings suggest that new chemical approaches will be required to target the Hsp70-ASyn interaction in synucleinopathies. Such approaches are likely to be more specific than targeting Hsp70's canonical action. Additionally, these results raise the question of whether other misfolded proteins might also engage Hsp70 via the same noncanonical mechanism.
Collapse
Affiliation(s)
- Jiahui Tao
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Y Rose Citron
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Paraskevi L Tsiolaki
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Robert Stanley
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases and UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| | - Lisa McConlogue
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
14
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
16
|
Pandey M, Nabi J, Tabassum N, Pottoo FH, Khatik R, Ahmad N. Molecular Chaperones in Neurodegeneration. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular chaperones are essential players to this protein quality control network that functions to prevent protein misfolding, refold misfolded proteins, or degrade them, thereby maintaining neuronal proteostasis. Moreover, overexpression of cellular chaperones is considered to inhibit protein aggregation and apoptosis in various experimental models of neurodegeneration. Alterations or downregulation of chaperone machinery by age-related decline, molecular crowding, or genetic mutations are regarded as key pathological hallmarks of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Prion diseases. Therefore, chaperones may serve as potential therapeutic targets in these diseases. This chapter presents a generalized view of misfolding and aggregation of proteins in neurodegeneration and then critically analyses some of the known cellular chaperones and their role in several neurodegenerative disorders.
Collapse
Affiliation(s)
- Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
17
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
18
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
19
|
Yamamoto N, Akai T, Inoue R, Sugiyama M, Tamura A, Chatani E. Structural Insights into the Inhibition of Amyloid Fibril Formation by Fibrinogen via Interaction with Prefibrillar Intermediates. Biochemistry 2019; 58:2769-2781. [DOI: 10.1021/acs.biochem.9b00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taiki Akai
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Atsuo Tamura
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Falke M, Victor J, Wördehoff MM, Peduzzo A, Zhang T, Schröder GF, Buell AK, Hoyer W, Etzkorn M. α-Synuclein-derived lipoparticles in the study of α-Synuclein amyloid fibril formation. Chem Phys Lipids 2019; 220:57-65. [PMID: 30826264 PMCID: PMC6451039 DOI: 10.1016/j.chemphyslip.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022]
Abstract
Aggregation of the protein α-Synuclein (αSyn) is of great interest due to its involvement in the pathology of Parkinson’s disease. However, under in vitro conditions αSyn is very soluble and kinetically stable for extended time periods. As a result, most αSyn aggregation assays rely on conditions that artificially induce or enhance aggregation, often by introducing rather non-native conditions. It has been shown that αSyn interacts with membranes and conditions have been identified in which membranes can promote as well as inhibit αSyn aggregation. It has also been shown that αSyn has the intrinsic capability to assemble lipid-protein-particles, in a similar way as apolipoproteins can form lipid-bilayer nanodiscs. Here we show that these αSyn-lipid particles (αSyn-LiPs) can also effectively induce, accelerate or inhibit αSyn aggregation, depending on the applied conditions. αSyn-LiPs therefore provide a general platform and additional tool, complementary to other setups, to study various aspects of αSyn amyloid fibril formation.
Collapse
Affiliation(s)
- Marcel Falke
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Michael M Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Alessia Peduzzo
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany; Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany.
| |
Collapse
|
21
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
22
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
23
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|
24
|
Gong W, Hu W, Xu L, Wu H, Wu S, Zhang H, Wang J, Jones GW, Perrett S. The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. J Biol Chem 2018; 293:17663-17675. [PMID: 30228181 DOI: 10.1074/jbc.ra118.002691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/30/2018] [Indexed: 01/16/2023] Open
Abstract
The allosteric coupling of the highly conserved nucleotide- and substrate-binding domains of Hsp70 has been studied intensively. In contrast, the role of the disordered, highly variable C-terminal region of Hsp70 remains unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD motif binds to the tetratricopeptide-repeat domains of Hsp70 co-chaperones. Here, we discovered that the TVEEVD sequence of Saccharomyces cerevisiae cytoplasmic Hsp70 (Ssa1) functions as a SUMO-interacting motif. A second C-terminal motif of ∼15 amino acids between the α-helical lid and the extreme C terminus, previously identified in bacterial and eukaryotic organellar Hsp70s, is known to enhance chaperone function by transiently interacting with folding clients. Using structural analysis, interaction studies, fibril formation assays, and in vivo functional assays, we investigated the individual contributions of the α-helical bundle and the C-terminal disordered region of Ssa1 in the inhibition of fibril formation of the prion protein Ure2. Our results revealed that although the α-helical bundle of the Ssa1 substrate-binding domain (SBDα) does not directly bind to Ure2, the SBDα enhances the ability of Hsp70 to inhibit fibril formation. We found that a 20-residue C-terminal motif in Ssa1, containing GGAP and GGAP-like tetrapeptide repeats, can directly bind to Ure2, the Hsp40 co-chaperone Ydj1, and α-synuclein, but not to the SUMO-like protein SMT3 or BSA. Deletion or substitution of the Ssa1 GGAP motif impaired yeast cell tolerance to temperature and cell-wall damage stress. This study highlights that the C-terminal GGAP motif of Hsp70 is important for substrate recognition and mediation of the heat shock response.
Collapse
Affiliation(s)
- Weibin Gong
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanhui Hu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland
| | - Huiwen Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, W23 W6R7, Kildare, Ireland.
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Chartier S, Duyckaerts C. Is Lewy pathology in the human nervous system chiefly an indicator of neuronal protection or of toxicity? Cell Tissue Res 2018; 373:149-160. [PMID: 29869713 DOI: 10.1007/s00441-018-2854-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022]
Abstract
Misfolded α-synuclein accumulates in histological inclusions constituting "Lewy pathology" found in idiopathic Parkinson disease, Parkinson disease dementia and dementia with Lewy body. The mechanism inducing α-synuclein misfolding is still unknown. The misfolded molecules form oligomers that organize into fibrils. α-Synuclein fibrils, in vitro, are capable of initiating an auto-replicating process, transforming normal molecules into misfolded molecules that aggregate. Fibrils can cross the neuronal membrane and recruit α-synuclein molecules in connected neurons. Such properties of seeding and propagation, shared with prion proteins, belong to "tissular propagons". Lewy bodies isolate harmful species from the cytoplasm and have been thought to be protective. In PRKN gene mutations, however, the absence of Lewy bodies is not associated with a more aggressive course. In idiopathic Parkinson disease, the proportion of neurons with Lewy bodies in the substantia nigra remains stable despite the progression of neuronal loss. This stable proportion suggests that Lewy bodies are eliminated at the rate at which neurons are lost because Lewy bodies cause, or invariably accompany, neuronal loss. Experimentally, cellular death selectively occurs in inclusion-bearing neurons. This set of data indicates that α-synuclein misfolding is the essential mechanism causing the lesions of Parkinson disease and dementia with Lewy body. Lewy pathology is a direct and visible evidence of α-synuclein misfolding and, as such, is an accurate marker for assessing the presence of α-synuclein misfolding even if the inclusions themselves may not be as directly causative as the molecules they accumulate.
Collapse
Affiliation(s)
- Suzanne Chartier
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France
| | - Charles Duyckaerts
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France.
- Alzheimer-Prions Team, Brain and Spinal Cord Institute (ICM), Paris, France.
| |
Collapse
|
26
|
Wright MA, Aprile FA, Bellaiche MMJ, Michaels TCT, Müller T, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry 2018; 57:3641-3649. [PMID: 29763298 PMCID: PMC6202011 DOI: 10.1021/acs.biochem.8b00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.
Collapse
Affiliation(s)
- Maya A Wright
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Francesco A Aprile
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Mathias M J Bellaiche
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Thomas C T Michaels
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Thomas Müller
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Fluidic Analytics Ltd. , Cambridge , U.K
| | - Paolo Arosio
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1, ETH Hönggerberg, HCI F 105 , 8093 Zurich , Switzerland
| | - Michele Vendruscolo
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
27
|
Lassen LB, Reimer L, Ferreira N, Betzer C, Jensen PH. Protein Partners of α-Synuclein in Health and Disease. Brain Pathol 2018; 26:389-97. [PMID: 26940507 DOI: 10.1111/bpa.12374] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
α-synuclein is normally situated in the nerve terminal but it accumulates and aggregates in axons and cell bodies in synucleinopathies such as Parkinson's disease. The conformational changes occurring during α-synucleins aggregation process affects its interactions with other proteins and its subcellular localization. This review focuses on interaction partners of α-synuclein within different compartments of the cell with a focus on those preferentially binding aggregated α-synuclein. The aggregation state of α-synuclein also affects its catabolism and we hypothesize impaired macroautophagy is involved neuronal excretion of α-synuclein species responsible for the prion-like spreading of α-synuclein pathology.
Collapse
Affiliation(s)
- Louise Berkhoudt Lassen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lasse Reimer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Cristine Betzer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
28
|
Aprile FA, Arosio P, Fusco G, Chen SW, Kumita JR, Dhulesia A, Tortora P, Knowles TPJ, Vendruscolo M, Dobson CM, Cremades N. Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry 2017; 56:1177-1180. [PMID: 28230968 DOI: 10.1021/acs.biochem.6b01178] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Hsp70 family of chaperones plays an essential role in suppressing protein aggregation in the cell. Here we investigate the factors controlling the intrinsic ability of human Hsp70 to inhibit the elongation of amyloid fibrils formed by the Parkinson's disease-related protein α-synuclein. Using kinetic analysis, we show that Hsp70 binds preferentially to α-synuclein fibrils as a consequence of variations in the association and dissociation rate constants of binding to the different aggregated states of the protein. Our findings illustrate the importance of the kinetics of binding of molecular chaperones, and also of potential therapeutic molecules, in the efficient suppression of specific pathogenic events linked to neurodegeneration.
Collapse
Affiliation(s)
- Francesco A Aprile
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Giuliana Fusco
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Serene W Chen
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paolo Tortora
- Department of Biotechnology and Bioscience, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), University of Zaragoza , 50018 Zaragoza, Spain
| |
Collapse
|
29
|
The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep 2017; 7:40859. [PMID: 28102321 PMCID: PMC5244355 DOI: 10.1038/srep40859] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism.
Collapse
|
30
|
Hsp90 directly interacts, in vitro, with amyloid structures and modulates their assembly and disassembly. Biochim Biophys Acta Gen Subj 2016; 1860:2598-2609. [DOI: 10.1016/j.bbagen.2016.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
|
31
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
32
|
The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proc Natl Acad Sci U S A 2016; 113:E4708-15. [PMID: 27457957 DOI: 10.1073/pnas.1601091113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence strongly suggests that chaperone proteins are cytoprotective in neurodegenerative proteinopathies involving protein aggregation; for example, in the accumulation of aggregated α-synuclein into the Lewy bodies present in Parkinson's disease. Of the various chaperones known to be associated with neurodegenerative disease, the small secretory chaperone known as proSAAS (named after four residues in the amino terminal region) has many attractive properties. We show here that proSAAS, widely expressed in neurons throughout the brain, is associated with aggregated synuclein deposits in the substantia nigra of patients with Parkinson's disease. Recombinant proSAAS potently inhibits the fibrillation of α-synuclein in an in vitro assay; residues 158-180, containing a largely conserved element, are critical to this bioactivity. ProSAAS also exhibits a neuroprotective function; proSAAS-encoding lentivirus blocks α-synuclein-induced cytotoxicity in primary cultures of nigral dopaminergic neurons, and recombinant proSAAS blocks α-synuclein-induced cytotoxicity in SH-SY5Y cells. Four independent proteomics studies have previously identified proSAAS as a potential cerebrospinal fluid biomarker in various neurodegenerative diseases. Coupled with prior work showing that proSAAS blocks β-amyloid aggregation into fibrils, this study supports the idea that neuronal proSAAS plays an important role in proteostatic processes. ProSAAS thus represents a possible therapeutic target in neurodegenerative disease.
Collapse
|
33
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|
34
|
Peelaerts W, Baekelandt V. ɑ-Synuclein strains and the variable pathologies of synucleinopathies. J Neurochem 2016; 139 Suppl 1:256-274. [PMID: 26924014 DOI: 10.1111/jnc.13595] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/29/2022]
Abstract
Several decades ago, a mysterious transmissible agent was found responsible for a group of progressive and lethal encephalopathies affecting the nervous system of both animals and humans. This infectious agent showed a strain-encoded manner of inheritance even though it lacked nucleic acids. The identification of infectious proteins resolved this apparent conundrum. Misfolded infectious protein particles, or prions, were found to exist as conformational isomers with a unique fingerprint that can be faithfully passaged to next generations. Protein-based strain-encoded inheritance is characterized by strain-specific infectivity and symptomatology. It is found in diverse organisms, such as yeast, fungi, and mammals. Now, this concept is revisited to examine the pathological role of amyloid proteins involved in neurodegenerative diseases where it might underlie certain types of dementia and motor-related neurodegenerative disorders. Given the discovery of the SNCA gene and the identification of its gene product, ɑ-synuclein (ɑ-SYN), as the main histopathological component of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, the scientific community was left puzzled by the fact that a single protein appeared to be involved in different diseases with diverging clinical phenotypes. Recent studies are now indicating that ɑ-SYN may act in a way similar to prions and that ɑ-SYN misfolded structural variants may behave as strains with distinct biochemical and functional properties inducing specific phenotypic traits, which might finally provide an explanation for the clinical heterogeneity observed between Parkinson's disease, MSA, and dementia with Lewy bodies patients. These crucial new findings may pave the way for unexplored therapeutic avenues and identification of new potential biomarkers. Parkinson's disease and other synucleinopathies share ɑ-synuclein deposits as a common histopathological hallmark. New and ongoing developments are now showing that variations in the aggregation process and the formation of ɑ-synuclein strains may be paralleled by the development of distinct synucleinopathies. Here, we review the recent developments and the role of strains in synucleinopathies. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
The C-terminal α-helices of mammalian Hsc70 play a critical role in the stabilization of α-synuclein binding and inhibition of aggregation. Int J Biol Macromol 2015; 83:433-41. [PMID: 26601760 DOI: 10.1016/j.ijbiomac.2015.10.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/23/2022]
Abstract
Protein misfolding, followed by aggregation and amyloid formation is an underlying pathological hallmark in a number of prevalent diseases, including Parkinson's (PD), Alzheimer's (AD) and Type 2 diabetes (T2D). In the case of PD, the aggregation of α-synuclein protein (α-syn) has been shown to be highly cytotoxic and to play a key role in the death of dopaminergic cells. Thus, inhibition of the aggregation process may be considered as an attractive avenue for therapeutic intervention. In this respect, molecular chaperones, known to promote proper folding of proteins, are able to inhibit protein aggregation thus preventing amyloid formation. In this work, the effect of the constitutively expressed chaperone Hsc70 and its various domains on α-syn aggregation have been investigated using different approaches. The results show that the C-terminal domain alone (residues 386-646) is as efficient in inhibiting α-syn aggregation as the entire Hsc70 protein, by increasing the lag phase for α-syn oligomeric nucleus formation, suggesting that the chaperone interacts with and stabilizes α-syn monomers and/or small aggregates. Deletion of the C-terminal helices (residues 510-646), which are known to play the role of a lid locking target peptide ligands in the peptide-binding site of the chaperone, strongly reduced the efficiency of inhibition of α-syn aggregation indicating that these helices play an essential in stabilizing the interaction between Hsc70 and α-syn. Furthermore, the effects of Hsc70 and its structural domains on aggregation appear to correlate with those on cytotoxicity, by reducing the fraction of α-syn toxic species to various degrees. Together these results suggest a mechanism in which inhibition of synuclein aggregation is the result of monomeric synuclein binding to the chaperone as any monomeric target unfolded protein or peptide binding to the chaperone.
Collapse
|
36
|
Tipping KW, van Oosten-Hawle P, Hewitt EW, Radford SE. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem Sci 2015; 40:719-727. [PMID: 26541462 DOI: 10.1016/j.tibs.2015.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
The formation of amyloid fibres is a hallmark of amyloid disorders. Nevertheless, the lack of correlation between fibre load and disease as observed, for example, in Alzheimer's disease, means that fibres are considered secondary contributors to the onset of cellular dysfunction. Instead, soluble intermediates of amyloid assembly are often described as the agents of toxicity. Here, we discuss recent experimental discoveries which suggest that amyloid fibres should be considered as disease-relevant species that can mediate a range of pathological processes. These include disruption of biological membranes, secondary nucleation, amyloid aggregate transmission, and the disruption of protein homeostasis (proteostasis). Thus, a greater understanding of amyloid fibre biology could enhance prospects of developing therapeutic interventions against this devastating class of protein-misfolding disorders.
Collapse
Affiliation(s)
- Kevin W Tipping
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
37
|
Wright MA, Aprile FA, Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ. Biophysical approaches for the study of interactions between molecular chaperones and protein aggregates. Chem Commun (Camb) 2015; 51:14425-34. [PMID: 26328629 PMCID: PMC8597951 DOI: 10.1039/c5cc03689e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Molecular chaperones are key components of the arsenal of cellular defence mechanisms active against protein aggregation. In addition to their established role in assisting protein folding, increasing evidence indicates that molecular chaperones are able to protect against a range of potentially damaging aspects of protein behaviour, including misfolding and aggregation events that can result in the generation of aberrant protein assemblies whose formation is implicated in the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The interactions between molecular chaperones and different amyloidogenic protein species are difficult to study owing to the inherent heterogeneity of the aggregation process as well as the dynamic nature of molecular chaperones under physiological conditions. As a consequence, understanding the detailed microscopic mechanisms underlying the nature and means of inhibition of aggregate formation remains challenging yet is a key objective for protein biophysics. In this review, we discuss recent results from biophysical studies on the interactions between molecular chaperones and protein aggregates. In particular, we focus on the insights gained from current experimental techniques into the dynamics of the oligomerisation process of molecular chaperones, and highlight the opportunities that future biophysical approaches have in advancing our understanding of the great variety of biological functions of this important class of proteins.
Collapse
Affiliation(s)
- Maya A. Wright
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Francesco A. Aprile
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Paolo Arosio
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Michele Vendruscolo
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Christopher M. Dobson
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of CambridgeLensfield RoadCambridge CB2 1EWUK+44 (0)1223 336300
| |
Collapse
|
38
|
Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 2015; 40:142-52. [PMID: 25770416 PMCID: PMC4471145 DOI: 10.1016/j.semcdb.2015.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms.
Collapse
Affiliation(s)
- Heather L Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
39
|
Narkiewicz J, Giachin G, Legname G. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 2015; 8:19-32. [PMID: 24552879 PMCID: PMC4116381 DOI: 10.4161/pri.28125] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.
Collapse
|
40
|
Huang L, Liu X, Cheng B, Huang K. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 2015; 568:46-55. [PMID: 25615529 DOI: 10.1016/j.abb.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
The process of protein aggregation from soluble amyloidogenic proteins to insoluble amyloid fibrils plays significant roles in the onset of over 30 human amyloidogenic diseases, such as Prion disease, Alzheimer's disease and type 2 diabetes mellitus. Amyloid deposits are commonly found in patients suffered from amyloidosis; however, such deposits are rarely seen in healthy individuals, which may be largely attributed to the self-regulation in vivo. A vast number of physiological factors have been demonstrated to directly affect the process of amyloid formation in vivo. In this review, physiological factors that influence amyloidosis, including biological factors (chaperones, natural antibodies, enzymes, lipids and saccharides) and physicochemical factors (metal ions, pH environment, crowding and pressure, etc.), together with the mechanisms underlying these proteostasis effects, are summarized.
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Biao Cheng
- Department of Pharmacy, Central Hospital of Wuhan, Wuhan, Hubei 430014, PR China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, PR China.
| |
Collapse
|
41
|
Batelli S, Invernizzi RW, Negro A, Calcagno E, Rodilossi S, Forloni G, Albani D. The Parkinson's Disease-Related Protein DJ-1 Protects Dopaminergic Neurons in vivo and Cultured Cells from Alpha-Synuclein and 6-Hydroxydopamine Toxicity. NEURODEGENER DIS 2014; 15:13-23. [DOI: 10.1159/000367993] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
|
42
|
Labrador-Garrido A, Cejudo-Guillén M, Klippstein R, De Genst EJ, Tomas-Gallardo L, Leal MM, Villadiego J, Toledo-Aral JJ, Dobson CM, Pozo D, Roodveldt C. Chaperoned amyloid proteins for immune manipulation: α-Synuclein/Hsp70 shifts immunity toward a modulatory phenotype. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:226-38. [PMID: 25866630 PMCID: PMC4386917 DOI: 10.1002/iid3.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 01/02/2023]
Abstract
α-Synuclein (αSyn) is a 140-residue amyloid-forming protein whose aggregation is linked to Parkinson's disease (PD). It has also been found to play a critical role in the immune imbalance that accompanies disease progression, a characteristic that has prompted the search for an effective αSyn-based immunotherapy. In this study, we have simultaneously exploited two important features of certain heat-shock proteins (HSPs): their classical “chaperone” activities and their recently discovered and diverse “immunoactive” properties. In particular, we have explored the immune response elicited by immunization of C57BL/6 mice with an αSyn/Hsp70 protein combination in the absence of added adjuvant. Our results show differential effects for mice immunized with the αSyn/Hsp70 complex, including a restrained αSyn-specific (IgM and IgG) humoral response as well as minimized alterations in the Treg (CD4+CD25+Foxp3+) and Teff (CD4+Foxp3−) cell populations, as opposed to significant changes in mice immunized with αSyn and Hsp70 alone. Furthermore, in vitro-stimulated splenocytes from immunized mice showed the lowest relative response against αSyn challenge for the “αSyn/Hsp70” experimental group as measured by IFN-γ and IL-17 secretion, and higher IL-10 levels when stimulated with LPS. Finally, serum levels of Th1-cytokine IFN-γ and immunomodulatory IL-10 indicated a unique shift toward an immunomodulatory/immunoprotective phenotype in mice immunized with the αSyn/Hsp70 complex. Overall, we propose the use of functional “HSP-chaperoned amyloid/aggregating proteins” generated with appropriate HSP-substrate protein combinations, such as the αSyn/Hsp70 complex, as a novel strategy for immune-based intervention against synucleinopathies and other amyloid or “misfolding” neurodegenerative disorders.
Collapse
Affiliation(s)
- Adahir Labrador-Garrido
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Marta Cejudo-Guillén
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Rebecca Klippstein
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | | | | | - María M Leal
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| | - Javier Villadiego
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville Spain ; Department of Medical Physiology and Biophysics School of Medicine, University of Seville Spain ; CIBERNED, Centers for Networked Biomedical Research in Neurodegenerative Diseases Spain
| | - Juan J Toledo-Aral
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville Spain ; Department of Medical Physiology and Biophysics School of Medicine, University of Seville Spain ; CIBERNED, Centers for Networked Biomedical Research in Neurodegenerative Diseases Spain
| | | | - David Pozo
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Cintia Roodveldt
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| |
Collapse
|
43
|
Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495091. [PMID: 25386560 PMCID: PMC4217372 DOI: 10.1155/2014/495091] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/23/2014] [Indexed: 01/26/2023]
Abstract
The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.
Collapse
|
44
|
Mahalka AK, Kirkegaard T, Jukola LT, Jäättelä M, Kinnunen PK. Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1344-61. [DOI: 10.1016/j.bbamem.2014.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/28/2022]
|
45
|
Ebrahimi-Fakhari D, Saidi LJ, Wahlster L. Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies. Acta Neuropathol Commun 2013; 1:79. [PMID: 24314025 PMCID: PMC4046681 DOI: 10.1186/2051-5960-1-79] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Changes in protein metabolism are key to disease onset and progression in many neurodegenerative diseases. As a prime example, in Parkinson's disease, folding, post-translational modification and recycling of the synaptic protein α-synuclein are clearly altered, leading to a progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. Altered protein folding is one of the first steps of an increasingly understood cascade in which α-synuclein forms complex oligomers and finally distinct protein aggregates, termed Lewy bodies and Lewy neurites. In neurons, an elaborated network of chaperone and co-chaperone proteins is instrumental in mediating protein folding and re-folding. In addition to their direct influence on client proteins, chaperones interact with protein degradation pathways such as the ubiquitin-proteasome-system or autophagy in order to ensure the effective removal of irreversibly misfolded and potentially pathogenic proteins. Because of the vital role of proper protein folding for protein homeostasis, a growing number of studies have evaluated the contribution of chaperone proteins to neurodegeneration. We herein review our current understanding of the involvement of chaperones, co-chaperones and chaperone-mediated autophagy in synucleinopathies with a focus on the Hsp90 and Hsp70 chaperone system. We discuss genetic and pathological studies in Parkinson's disease as well as experimental studies in models of synucleinopathies that explore molecular chaperones and protein degradation pathways as a novel therapeutic target. To this end, we examine the capacity of chaperones to prevent or modulate neurodegeneration and summarize the current progress in models of Parkinson's disease and related neurodegenerative disorders.
Collapse
|
46
|
Moloney TC, Hyland R, O'Toole D, Paucard A, Kirik D, O'Doherty A, Gorman AM, Dowd E. Heat shock protein 70 reduces α-synuclein-induced predegenerative neuronal dystrophy in the α-synuclein viral gene transfer rat model of Parkinson's disease. CNS Neurosci Ther 2013; 20:50-8. [PMID: 24279716 DOI: 10.1111/cns.12200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/20/2023] Open
Abstract
AIMS It has become increasingly evident that the nigrostriatal degeneration associated with Parkinson's disease initiates at the level of the axonal terminals in the putamen, and this nigrostriatal terminal dystrophy is either caused or exacerbated by the presence of α-synuclein immunopositive neuronal inclusions. Therefore, strategies aimed at reducing α-synuclein-induced early neuronal dystrophy may slow or halt the progression to overt nigrostriatal neurodegeneration. Thus, this study sought to determine if adeno-associated virus (AAV) mediated overexpression of two molecular chaperone heat shock proteins, namely Hsp27 or Hsp70, in the AAV-α-synuclein viral gene transfer rat model of Parkinson's disease could prevent α-synuclein-induced early neuronal pathology. METHODS Male Sprague-Dawley rats were intranigrally coinjected with pathogenic (AAV-α-synuclein) and putative therapeutic (AAV-Hsp27 or AAV-Hsp70) viral vectors and were sacrificed 18 weeks postviral injection. RESULTS Intranigral injection of AAV-α-synuclein resulted in significant α-synuclein accumulation in the substantia nigra and striatal terminals which led to significant dystrophy of nigrostriatal dopaminergic neurons without overt nigrostriatal neurodegeneration. Coinjection of AAV-Hsp70, but not AAV-Hsp27, significantly reduced AAV-α-synuclein-induced neuronal dystrophy. CONCLUSIONS These data confirm that overexpression of Hsp70 holds significant potential as a disease-modulating therapeutic approach for Parkinson's disease, with protective effects against early-onset α-synuclein-induced pathology demonstrated in the AAV-α-synuclein model.
Collapse
Affiliation(s)
- Teresa C Moloney
- Department of Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
48
|
Kurouski D, Luo H, Sereda V, Robb FT, Lednev IK. Deconstruction of stable cross-Beta fibrillar structures into toxic and nontoxic products using a mutated archaeal chaperonin. ACS Chem Biol 2013; 8:2095-101. [PMID: 23875676 DOI: 10.1021/cb400238a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our group recently determined that a mutant archaeal chaperonin (Hsp 60) exhibited substantially enhanced protein folding activity at low temperatures and was able to deconstruct refractory protein aggregates. ATP dependent conversion of fibril structures into amorphous aggregates was observed in insulin amyloid preparations (Kurouski et al. Biochem. Biophys. Res. Commun. 2012). In the current study, mechanistic insights into insulin fibril deconstruction were obtained by examination of early stage complexes between Hsp60 and fibrils in the absence of ATP. Activity of the Hsp60 was significantly curtailed without ATP; however, some fibril deconstruction occurred, which is consistent with some models of the folding cycle that predict initial removal of unproductive protein folds. Chaperonin molecules adsorbed on the fibril surface and formed chaperonin clusters with no ATP present. We propose that there are specific locations on the fibril surface where chaperonin can unravel the fibril to release short fragments. Spontaneous coagulation of these fibril fragments resulted in the formation of amorphous aggregates without the release of insulin into solution. The addition of ATP significantly increased the toxicity of the insulin fibril-chaperonin reaction products toward mammalian cells.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Haibin Luo
- Department of Microbiology and
Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, Maryland 21201, United States
| | - Valentin Sereda
- Department of Chemistry, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Frank T. Robb
- Department of Microbiology and
Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, Maryland 21201, United States
| | - Igor K. Lednev
- Department of Chemistry, University
at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
49
|
Daturpalli S, Waudby CA, Meehan S, Jackson SE. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 2013; 425:4614-28. [PMID: 23948507 DOI: 10.1016/j.jmb.2013.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 01/14/2023]
Abstract
Aggregated α-synuclein is one of the main components of the pathological Lewy bodies associated with Parkinson's disease (PD). Many other proteins, including chaperones such as Hsp90 and Hsp70, have been found co-localized with Lewy bodies and the expression levels of Hsp90 have been found to be increased in brains of PD patients. Although the role of Hsp70 in the aggregation of α-synuclein has been extensively studied, relatively little is known about the effect of Hsp90 on this process. Here, we have investigated if Hsp90 can prevent the aggregation of the A53T pathological mutant of α-synuclein in vitro. A detailed study using many biophysical methods has revealed that Hsp90 prevents α-synuclein from aggregating in an ATP-independent manner and that it forms a strong complex with the transiently populated toxic oligomeric α-synuclein species formed along the aggregation pathway. We have also shown that, upon forming a complex with Hsp90, the oligomers are rendered harmless and nontoxic to cells. Thus, we have clear evidence that Hsp90 is likely to play an important role on these processes in vivo.
Collapse
Affiliation(s)
- Soumya Daturpalli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
50
|
Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L. Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells. ACS Chem Biol 2013; 8:1460-8. [PMID: 23594135 DOI: 10.1021/cb400017h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Misfolding and aggregation of α-synuclein (α-syn) is associated with the development of a number of neurodegenerative diseases including Parkinson's disease (PD). Analyses of post mortem tissues revealed the presence of molecular chaperones within α-syn aggregates, suggesting that chaperones play a role in α-syn misfolding and aggregation. In fact, inhibition of chaperone activity aggravates α-syn toxicity, and the overexpression of chaperones, particularly 70-kDa heat shock protein (Hsp70), protects against α-syn-induced toxicity. In this study, we investigated the effect of carbenoxolone (CBX), a glycyrrhizic acid derivative previously reported to upregulate Hsp70, in human neuroglioma cells overexpressing α-syn. We report that CBX treatment lowers α-syn aggregation and prevents α-syn-induced cytotoxicity. We demonstrate further that Hsp70 induction by CBX arises from activation of heat shock factor 1 (HSF1). The Hsp70 inhibitor MAL3-101 and the Hsp70 enhancer 115-7c led to an increase or decrease in α-syn aggregation, respectively, in agreement with these findings. In summary, this study provides a proof-of-principle demonstration that chemical modulation of the Hsp70 machine is a promising strategy to prevent α-syn aggregation.
Collapse
Affiliation(s)
- Kiri Kilpatrick
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Jose Andres Novoa
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Tommy Hancock
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Christopher J. Guerriero
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Peter Wipf
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Jeffrey L. Brodsky
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Laura Segatori
- Departments of †Chemical
and Biomolecular Engineering, ∥Bioengineering, and ⊥Biochemistry and Cell Biology, Rice University, Houston, Texas 77005,
United States
- Departments of §Chemistry and ‡Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| |
Collapse
|