1
|
Olenginski LT, Kasprzak WK, Bergonzo C, Shapiro BA, Dayie TK. Conformational Dynamics of the Hepatitis B Virus Pre-genomic RNA on Multiple Time Scales: Implications for Viral Replication. J Mol Biol 2022; 434:167633. [PMID: 35595167 DOI: 10.1016/j.jmb.2022.167633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Human hepatitis B virus (HBV) replication is initiated by the binding of the viral polymerase (P) to epsilon (ε), an ≈85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 5'-end of the pre-genomic RNA (pgRNA). This interaction triggers P and pgRNA packaging and protein-primed reverse transcription and is therefore an attractive therapeutic target. Our recent nuclear magnetic resonance (NMR) structure of ε provides a useful starting point toward a detailed understanding of HBV replication, and hints at the functional importance of ε dynamics. Here, we present a detailed description of ε motions on the ps to ns and μs to ms time scales by NMR spin relaxation and relaxation dispersion, respectively. We also carried out molecular dynamics simulations to provide additional insight into ε conformational dynamics. These data outline a series of complex motions on multiple time scales within ε. Moreover, these motions occur in mostly conserved nucleotides from structural regions (i.e., priming loop, pseudo-triloop, and U43 bulge) that biochemical and mutational studies have shown to be essential for P binding, P-pgRNA packaging, protein-priming, and DNA synthesis. Taken together, our work implicates RNA dynamics as an integral feature that governs HBV replication.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and University of Maryland, Rockville, MD 20850, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Nam H, Becette O, LeBlanc RM, Oh D, Case DA, Dayie TK. Deleterious effects of carbon-carbon dipolar coupling on RNA NMR dynamics. JOURNAL OF BIOMOLECULAR NMR 2020; 74:321-331. [PMID: 32363430 DOI: 10.1007/s10858-020-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Many regulatory RNAs undergo dynamic exchanges that are crucial for their biological functions and NMR spectroscopy is a versatile tool for monitoring dynamic motions of biomolecules. Meaningful information on biomolecular dynamics requires an accurate measurement of relaxation parameters such as longitudinal (R1) rates, transverse (R2) rates and heteronuclear Overhauser effect (hNOE). However, earlier studies have shown that the large 13C-13C interactions complicate analysis of the carbon relaxation parameters. To investigate the effect of 13C-13C interactions on RNA dynamic studies, we performed relaxation measurements on various RNA samples with different labeling patterns and compared these measurements with the computational simulations. For uniformly labeled samples, contributions of the neighboring carbon to R1 measurements were observed. These contributions increased with increasing magnetic field and overall correlation time ([Formula: see text]) for R1 rates, necessitating more careful analysis for uniformly labeled large RNAs. In addition, the hNOE measurements were also affected by the adjacent carbon nuclei. Unlike R1 rates, R1ρ rates showed relatively good agreement between uniformly- and site-selectively labeled samples, suggesting no dramatic effect from their attached carbon, in agreement with previous observations. Overall, having more accurate rate measurements avoids complex analysis and will be a key for interpreting 13C relaxation rates for molecular motion that can provide valuable insights into cellular molecular recognition events.
Collapse
Affiliation(s)
- Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Owen Becette
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Regan M LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Daniel Oh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Pechlaner M, Dominguez-Martin A, Sigel RKO. Influence of pH and Mg(ii) on the catalytic core domain 5 of a bacterial group II intron. Dalton Trans 2018; 46:3989-3995. [PMID: 28265619 DOI: 10.1039/c6dt04784j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA molecules fold into complex structures that allow them to perform specific functions. To compensate the relative lack of diversity of functional groups within nucleotides, metal ions work as crucial co-factors. In addition, shifted pKas are observed in RNA, enabling acid-base reactions at ambient pH. The central catalytic domain 5 (D5) hairpin of the Azotobacter vinelandii group II intron undergoes both metal ion binding and pH dependence, presumably playing an important functional role in the ribozyme's reaction. By NMR spectroscopy we have here characterized the metal ion binding sites and affinities for the hairpin's internal G-A mismatch, bulge, and pentaloop. The influence of Mg(ii) and pH on the local conformation of the catalytically crucial region is also explored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- M Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - A Dominguez-Martin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - R K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| |
Collapse
|
4
|
Abstract
Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520.,Department of Chemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520;
| |
Collapse
|
5
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Pechlaner M, Donghi D, Zelenay V, Sigel RKO. Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. Angew Chem Int Ed Engl 2015; 54:9687-90. [PMID: 26119804 DOI: 10.1002/anie.201504014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Indexed: 11/05/2022]
Abstract
NMR spectroscopy has revealed pH-dependent structural changes in the highly conserved catalytic domain 5 of a bacterial group II intron. Two adenines with pK(a) values close to neutral pH were identified in the catalytic triad and the bulge. Protonation of the adenine opposite to the catalytic triad is stabilized within a G(syn)-AH(+) (anti) base pair. The pH-dependent anti-to-syn flipping of this G in the catalytic triad modulates the known interaction with the linker region between domains 2 and 3 (J23) and simultaneously the binding of the catalytic Mg(2+) ion to its backbone. Hence, this here identified shifted pK(a) value controls the conformational change between the two steps of splicing.
Collapse
Affiliation(s)
- Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Veronika Zelenay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland) http://www.chem.uzh.ch/rna.
| |
Collapse
|
7
|
Zhao C, Devany M, Greenbaum NL. Measurement of chemical exchange between RNA conformers by 19F NMR. Biochem Biophys Res Commun 2014; 453:692-5. [PMID: 25301553 DOI: 10.1016/j.bbrc.2014.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/03/2023]
Abstract
Many noncoding RNA molecules adopt alternative secondary and tertiary conformations that are critical for their roles in gene expression. Although many of these rearrangements are mediated by other biomolecular components, it is important to evaluate the equilibrium relationship of the conformers. To measure the spontaneous interconversion in a bi-stable RNA stem loop sequence into which a single (19)F-uridine label was incorporated, a (19)F-(19)F EXSY experiment was employed. The kinetic exchange rate measured from EXSY experiments for this system was 37.3±2.8s(-1). The advantage of this approach is that exchange kinetics can be monitored in any RNA sequence into which a single (19)F nucleotide is incorporated by commercial synthesis. This method is therefore suitable for application to biologically significant systems in which dynamic conformational rearrangement is important for function and may therefore facilitate studies of RNA structure-function relationships.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Nancy L Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States.
| |
Collapse
|
8
|
Berlin K, Longhini A, Dayie TK, Fushman D. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface. JOURNAL OF BIOMOLECULAR NMR 2013; 57:333-352. [PMID: 24170368 PMCID: PMC3939081 DOI: 10.1007/s10858-013-9791-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 05/28/2023]
Abstract
To facilitate rigorous analysis of molecular motions in proteins, DNA, and RNA, we present a new version of ROTDIF, a program for determining the overall rotational diffusion tensor from single- or multiple-field nuclear magnetic resonance relaxation data. We introduce four major features that expand the program's versatility and usability. The first feature is the ability to analyze, separately or together, (13)C and/or (15)N relaxation data collected at a single or multiple fields. A significant improvement in the accuracy compared to direct analysis of R2/R1 ratios, especially critical for analysis of (13)C relaxation data, is achieved by subtracting high-frequency contributions to relaxation rates. The second new feature is an improved method for computing the rotational diffusion tensor in the presence of biased errors, such as large conformational exchange contributions, that significantly enhances the accuracy of the computation. The third new feature is the integration of the domain alignment and docking module for relaxation-based structure determination of multi-domain systems. Finally, to improve accessibility to all the program features, we introduced a graphical user interface that simplifies and speeds up the analysis of the data. Written in Java, the new ROTDIF can run on virtually any computer platform. In addition, the new ROTDIF achieves an order of magnitude speedup over the previous version by implementing a more efficient deterministic minimization algorithm. We not only demonstrate the improvement in accuracy and speed of the new algorithm for synthetic and experimental (13)C and (15)N relaxation data for several proteins and nucleic acids, but also show that careful analysis required especially for characterizing RNA dynamics allowed us to uncover subtle conformational changes in RNA as a function of temperature that were opaque to previous analysis.
Collapse
Affiliation(s)
- Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
9
|
Pechlaner M, Sigel RKO, van Gunsteren WF, Dolenc J. Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013; 52:7099-113. [DOI: 10.1021/bi400784r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maria Pechlaner
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Jožica Dolenc
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| |
Collapse
|
10
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
11
|
Marcia M, Somarowthu S, Pyle AM. Now on display: a gallery of group II intron structures at different stages of catalysis. Mob DNA 2013; 4:14. [PMID: 23634971 PMCID: PMC3669008 DOI: 10.1186/1759-8753-4-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/08/2013] [Indexed: 11/10/2022] Open
Abstract
Group II introns are mobile genetic elements that self-splice and retrotranspose into DNA and RNA. They are considered evolutionary ancestors of the spliceosome, the ribonucleoprotein complex essential for pre-mRNA processing in higher eukaryotes. Over a 20-year period, group II introns have been characterized first genetically, then biochemically, and finally by means of X-ray crystallography. To date, 17 crystal structures of a group II intron are available, representing five different stages of the splicing cycle. This review provides a framework for classifying and understanding these new structures in the context of the splicing cycle. Structural and functional implications for the spliceosome are also discussed.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
12
|
Thakur CS, Luo Y, Chen B, Eldho NV, Dayie TK. Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 52:103-14. [PMID: 22124680 PMCID: PMC3277826 DOI: 10.1007/s10858-011-9586-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/25/2023]
Abstract
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1' and C5' with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg(2+) ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly (13)C/(15)N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive (13)C-(13)C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Nadukkudy V. Eldho
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
13
|
Thakur CS, Dayie TK. Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:65-77. [PMID: 22089526 PMCID: PMC3266500 DOI: 10.1007/s10858-011-9582-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 05/07/2023]
Abstract
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
14
|
Thakur CS, Dayie TK. Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2011; 51:505-17. [PMID: 22038649 PMCID: PMC3222825 DOI: 10.1007/s10858-011-9581-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/11/2011] [Indexed: 05/15/2023]
Abstract
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
15
|
Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 2011; 8:919-31. [PMID: 22036746 PMCID: PMC3320163 DOI: 10.1038/nmeth.1735] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many recently discovered noncoding RNAs do not fold into a single native conformation but sample many different conformations along their free-energy landscape to carry out their biological function. Here we review solution-state NMR techniques that measure the structural, kinetic and thermodynamic characteristics of RNA motions spanning picosecond to second timescales at atomic resolution, allowing unprecedented insights into the RNA dynamic structure landscape. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering.
Collapse
Affiliation(s)
- Jameson R. Bothe
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Evgenia N. Nikolova
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine D. Eichhorn
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jeetender Chugh
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandar L. Hansen
- Department of Chemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Hashim M. Al-Hashimi
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Thakur CS, Sama JN, Jackson ME, Chen B, Dayie TK. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle. JOURNAL OF BIOMOLECULAR NMR 2010; 48:179-92. [PMID: 21057854 PMCID: PMC2988204 DOI: 10.1007/s10858-010-9454-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/28/2010] [Indexed: 05/05/2023]
Abstract
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates this approach of using nucleotides obtained from DL323 E. coli will be applicable to high molecular weight RNA systems.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Jacob N. Sama
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Melantha E. Jackson
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - Bin Chen
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
17
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
18
|
Ampt KAM, van der Werf RM, Nelissen FHT, Tessari M, Wijmenga SS. The unstable part of the apical stem of duck hepatitis B virus epsilon shows enhanced base pair opening but not pico- to nanosecond dynamics and is essential for reverse transcriptase binding. Biochemistry 2009; 48:10499-508. [PMID: 19817488 DOI: 10.1021/bi9011385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus (HBV) replication starts with binding of reverse transcriptase (RT) to the apical stem-loop region of epsilon, a conserved element of the RNA pregenome. For duck HBV, an in vitro replication system has provided molecular details of this interaction. Further insights can be obtained from the structure and dynamics of the duck and human apical stem-loops. Previously, we reported these for the human apical stem-loop. Here, we present the same for the duck counterpart. Unlike its human counterpart, the duck apical stem is unstable in its middle/upper part and contains noncanonical base pairs. This dynamics study is the first of an unstable RNA-DNA stem. Similar to the human stem, the duck apical stem comprises two helical segments with a bend angle of ca. 10 degrees , separated by a nonpaired mobile U residue. It is capped by a well-structured conserved UGUU loop with two residues mobile on the pico- to nanosecond time scale, one of which is involved in RT binding. Remarkably, the unstable middle/upper part of the stem does not show enhanced pico- to nanosecond time scale dynamics. Instead, adenine dispersion relaxation studies indicate enhanced millisecond time scale dynamics involving base pair opening. It can then be concluded that base pair opening is essential for epsilon-RT binding, because stabilization of the stem abolishes binding. We hypothesize that binding occurs by conformational capture of bases in the base pair open state. The unstable secondary structure of the apical stem-loop makes duck epsilon-RT binding unusual in light of recent classifications of RNA target interactions that assume stable secondary structures.
Collapse
Affiliation(s)
- Kirsten A M Ampt
- Biophysical Chemistry, Institute of Molecules and Materials, Radboud University of Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Toor N, Keating KS, Pyle AM. Structural insights into RNA splicing. Curr Opin Struct Biol 2009; 19:260-6. [PMID: 19443210 DOI: 10.1016/j.sbi.2009.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
Abstract
Intron splicing is a fundamental biological process whereby noncoding sequences are removed from precursor RNAs. Recent work has provided new insights into the structural features and reaction mechanisms of two introns that catalyze their own splicing from precursor RNA: the group I and II introns. In addition, there is an increasing amount of structural information on the spliceosome, which is a ribonucleoprotein machine that catalyzes nuclear pre-mRNA splicing in eukaryotes. Here, we compare structures and catalytic mechanisms of self-splicing RNAs and we discuss the possible implications for spliceosomal reaction mechanisms.
Collapse
Affiliation(s)
- Navtej Toor
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
20
|
Dayie KT, Padgett RA. A glimpse into the active site of a group II intron and maybe the spliceosome, too. RNA (NEW YORK, N.Y.) 2008; 14:1697-703. [PMID: 18658120 PMCID: PMC2525965 DOI: 10.1261/rna.1154408] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.
Collapse
Affiliation(s)
- Kwaku T Dayie
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
21
|
Key labeling technologies to tackle sizeable problems in RNA structural biology. Int J Mol Sci 2008; 9:1214-1240. [PMID: 19325801 PMCID: PMC2635727 DOI: 10.3390/ijms9071214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/06/2008] [Accepted: 07/14/2008] [Indexed: 01/09/2023] Open
Abstract
The ability to adopt complex three-dimensional (3D) structures that can rapidly interconvert between multiple functional states (folding and dynamics) is vital for the proper functioning of RNAs. Consequently, RNA structure and dynamics necessarily determine their biological function. In the post-genomic era, it is clear that RNAs comprise a larger proportion (>50%) of the transcribed genome compared to proteins (< or =2%). Yet the determination of the 3D structures of RNAs lags considerably behind those of proteins and to date there are even fewer investigations of dynamics in RNAs compared to proteins. Site specific incorporation of various structural and dynamic probes into nucleic acids would likely transform RNA structural biology. Therefore, various methods for introducing probes for structural, functional, and biotechnological applications are critically assessed here. These probes include stable isotopes such as (2)H, (13)C, (15)N, and (19)F. Incorporation of these probes using improved RNA ligation strategies promises to change the landscape of structural biology of supramacromolecules probed by biophysical tools such as nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography and Raman spectroscopy. Finally, some of the structural and dynamic problems that can be addressed using these technological advances are outlined.
Collapse
|
22
|
Abstract
Many recently discovered RNA functions rely on highly complex multistep conformational transitions that occur in response to an array of cellular signals. These dynamics accompany and guide, for example, RNA cotranscriptional folding, ligand sensing and signaling, site-specific catalysis in ribozymes, and the hierarchically ordered assembly of ribonucleoproteins. RNA dynamics are encoded by both the inherent properties of RNA structure, spanning many motional modes with a large range of amplitudes and timescales, and external trigger factors, ranging from proteins, nucleic acids, metal ions, metabolites, and vitamins to temperature and even directional RNA biosynthesis itself. Here, we review recent advances in our understanding of RNA dynamics as highlighted by biophysical tools.
Collapse
|
23
|
Liu J, Zhang J, Yang Y, Huang H, Shen W, Hu Q, Wang X, Wu J, Shi Y. Conformational change upon ligand binding and dynamics of the PDZ domain from leukemia-associated Rho guanine nucleotide exchange factor. Protein Sci 2008; 17:1003-14. [PMID: 18411422 DOI: 10.1110/ps.073416508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Leukemia-associated Rho guanine nucleotide exchange factor (LARG) is a RhoA-specific guanine nucleotide exchange factor (GEF) that can activate RhoA. The PDZ (PSD-95/Disc-large/ZO-1 homology) domain of LARG interacts with membrane receptors, which can relay extracellular signals to RhoA signal transduction pathways. Until now there is no structural and dynamic information about these interactions. Here we report the NMR structures of the LARG PDZ in the apo form and in complex with the plexin-B1 C-terminal octapeptide. Unobservable resonances of the residues in betaB/betaC and betaE/alphaB loops in apo state were observed in the complex state. A distinct region of the binding groove in the LARG PDZ was found to undergo conformational change compared with other PDZs. Analysis of the (15)N relaxation data using reduced spectral density mapping shows that the apo LARG PDZ (especially its ligand-binding groove) is flexible and exhibits internal motions on both picosecond to nanosecond and microsecond to millisecond timescales. Mutagenesis and thermodynamic studies indicate that the conformation of the betaB/betaC and betaE/alphaB loops affects the PDZ-peptide interaction. It is suggested that the conformational flexibility could facilitate the change of structures upon ligand binding.
Collapse
Affiliation(s)
- Jiangxin Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|