1
|
Neiber RR, Samak NA, Xing J, Elmongy EI, Galhoum AA, El Sayed IET, Guibal E, Xin J, Lu X. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133203. [PMID: 38103294 DOI: 10.1016/j.jhazmat.2023.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 μg/mL for E. coli, P. aeruginosa, and 6.25 μg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 μg/mL for E. coli, P. aeruginosa, and 25 μg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.
Collapse
Affiliation(s)
- Rana R Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nadia A Samak
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Aquatic microbiology department, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Jianmin Xing
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, 100049 Beijing, China; CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt.
| | | | - Eric Guibal
- Institut Mines Telecom-Mines Alès, C2MA, 6 avenue de Clavières, F-30319 Alès cedex, France
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
2
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
3
|
Hayek SS, Koh KH, Grams ME, Wei C, Ko YA, Li J, Samelko B, Lee H, Dande RR, Lee HW, Hahm E, Peev V, Tracy M, Tardi NJ, Gupta V, Altintas MM, Garborcauskas G, Stojanovic N, Winkler CA, Lipkowitz MS, Tin A, Inker LA, Levey AS, Zeier M, Freedman BI, Kopp JB, Skorecki K, Coresh J, Quyyumi AA, Sever S, Reiser J. A tripartite complex of suPAR, APOL1 risk variants and α vβ 3 integrin on podocytes mediates chronic kidney disease. Nat Med 2017; 23:945-953. [PMID: 28650456 PMCID: PMC6019326 DOI: 10.1038/nm.4362] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) independently predicts chronic kidney disease (CKD) incidence and progression. Apolipoprotein L1 (APOL1) gene variants G1 and G2, but not the reference allele (G0), are associated with an increased risk of CKD in individuals of recent African ancestry. Here we show in two large, unrelated cohorts that decline in kidney function associated with APOL1 risk variants was dependent on plasma suPAR levels: APOL1-related risk was attenuated in patients with lower suPAR, and strengthened in those with higher suPAR levels. Mechanistically, surface plasmon resonance studies identified high-affinity interactions between suPAR, APOL1 and αvβ3 integrin, whereby APOL1 protein variants G1 and G2 exhibited higher affinity for suPAR-activated avb3 integrin than APOL1 G0. APOL1 G1 or G2 augments αvβ3 integrin activation and causes proteinuria in mice in a suPAR-dependent manner. The synergy of circulating factor suPAR and APOL1 G1 or G2 on αvβ3 integrin activation is a mechanism for CKD.
Collapse
Affiliation(s)
- Salim S Hayek
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kwi Hye Koh
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Morgan E Grams
- Welch Center for Prevention and Johns Hopkins Bloomberg School of Public Health, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Jing Li
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Beata Samelko
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Hyun Lee
- Center for Biomolecular Science and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ranadheer R Dande
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ha Won Lee
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Melissa Tracy
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicholas J Tardi
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M Altintas
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Garrett Garborcauskas
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Nikolina Stojanovic
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Basic Science Program, NCI, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael S Lipkowitz
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC, USA
| | - Adrienne Tin
- Welch Center for Prevention and Johns Hopkins Bloomberg School of Public Health, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Andrew S Levey
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Martin Zeier
- Division of Nephrology, Ruprecht Karls University, Heidelberg, Germany
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karl Skorecki
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rambam Health Care Campus, Haifa, Israel
| | - Josef Coresh
- Welch Center for Prevention and Johns Hopkins Bloomberg School of Public Health, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sanja Sever
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
4
|
de Geus SW, Baart VM, Boonstra MC, Kuppen PJ, Prevoo HA, Mazar AP, Bonsing BA, Morreau H, van de Velde CJ, Vahrmeijer AL, Sier CF. Prognostic Impact of Urokinase Plasminogen Activator Receptor Expression in Pancreatic Cancer: Malignant Versus Stromal Cells. Biomark Insights 2017; 12:1177271917715443. [PMID: 28690396 PMCID: PMC5484551 DOI: 10.1177/1177271917715443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) has been proposed as a potential prognostic factor for various malignancies. The aim of this study is to assess the prognostic value of uPAR expression in neoplastic and stromal cells of patients with pancreatic adenocarcinoma. Urokinase plasminogen activator receptor expression was determined by immunohistochemistry in 122 pancreatic ductal adenocarcinomas. Kaplan-Meier and Cox regression analyses were used to determine the association with survival. Respectively 66%, 82% and 62% of patients with pancreatic cancer expressed uPAR in neoplastic cells, stromal, and in both combined. Multivariate analysis showed a significant inverse association between uPAR expression in both neoplastic and stromal cells and overall survival. The prognostic impact of uPAR in stromal cells is substantial, but not as pronounced as that of uPAR expression in neoplastic cells. This study suggests a role for uPAR as a biomarker to single out higher risk subgroups of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Susanna Wl de Geus
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter Jk Kuppen
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrica Ajm Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Cornelis Fm Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands.,Antibodies for Research Applications B.V., Gouda, The Netherlands
| |
Collapse
|
5
|
Belov S, Buneva VN, Nevinsky GA. How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP. J Mol Recognit 2017; 30. [PMID: 28470769 DOI: 10.1002/jmr.2637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (Kd = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10-1 to 2.3 × 10-4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (Kd , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins.
Collapse
Affiliation(s)
- Sergey Belov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Boonstra MC, Van Driel PBAA, Keereweer S, Prevoo HAJM, Stammes MA, Baart VM, Löwik CWGM, Mazar AP, van de Velde CJH, Vahrmeijer AL, Sier CFM. Preclinical uPAR-targeted multimodal imaging of locoregional oral cancer. Oral Oncol 2017; 66:1-8. [PMID: 28249642 DOI: 10.1016/j.oraloncology.2016.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Establishing adequate resection margins and lymphatic mapping are crucial for the prognosis of oral cancer patients. Novel targeted imaging modalities are needed, enabling pre- and intraoperative detection of tumour cells, in combination with improved post-surgical examination by the pathologist. The urokinase-receptor (uPAR) is overexpressed in head and neck cancer, where it is associated with tumour progression and metastasis. MATERIAL AND METHODS To determine suitability of uPAR for molecular imaging of oral cancer surgery, human head and neck tumours were sectioned and stained for uPAR to evaluate the expression pattern compared to normal mucosa. Furthermore, metastatic oral squamous carcinoma cell line OSC-19 was used for targeting uPAR in in vivo mouse models. Using anti-uPAR antibody ATN-658, equipped with a multimodal label, the in vivo specificity was investigated and the optimal dose and time-window were evaluated. RESULTS All human oral cancer tissues expressed uPAR in epithelial and stromal cells. Hybrid ATN-658 clearly visualized tongue tumours in mice using either NIRF or SPECT imaging. Mean fluorescent TBRs over time were 4.3±0.7 with the specific tracer versus 1.7±0.1 with a control antibody. A significant difference in TBRs could be seen between 1nmol (150μg) and 0.34nmol (50μg) dose groups (n=4, p<0.05). Co-expression between BLI, GFP and the NIR fluorescent signals were seen in the tongue tumour, whereas human cytokeratin staining confirmed presence of malignant cells in the positive cervical lymph nodes. CONCLUSION This study shows the applicability of an uPAR specific multimodal tracer in an oral cancer model, combining SPECT with intraoperative guidance.
Collapse
Affiliation(s)
- M C Boonstra
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - P B A A Van Driel
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, and Head & Neck Surgery, Erasmus Medical Centre, Rotterdam, Netherlands
| | - H A J M Prevoo
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - M A Stammes
- Department of Radiology, Leiden University Medical Centre, Leiden, Netherlands; Percuros BV, Enschede, Netherlands
| | - V M Baart
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C W G M Löwik
- Department of Radiology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - A P Mazar
- Monopar Therapeutics Inc, Northbrook, IL, United States
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Centre, Leiden, Netherlands; Antibodies for Research Applications BV, Gouda, Netherlands.
| |
Collapse
|
7
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Osajima T, Hoshino T. Roles of the respective loops at complementarity determining region on the antigen-antibody recognition. Comput Biol Chem 2016; 64:368-383. [DOI: 10.1016/j.compbiolchem.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023]
|
9
|
uPAR-targeted multimodal tracer for pre- and intraoperative imaging in cancer surgery. Oncotarget 2016; 6:14260-73. [PMID: 25895028 PMCID: PMC4546465 DOI: 10.18632/oncotarget.3680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Pre- and intraoperative diagnostic techniques facilitating tumor staging are of paramount importance in colorectal cancer surgery. The urokinase receptor (uPAR) plays an important role in the development of cancer, tumor invasion, angiogenesis, and metastasis and over-expression is found in the majority of carcinomas. This study aims to develop the first clinically relevant anti-uPAR antibody-based imaging agent that combines nuclear (111In) and real-time near-infrared (NIR) fluorescent imaging (ZW800-1). Conjugation and binding capacities were investigated and validated in vitro using spectrophotometry and cell-based assays. In vivo, three human colorectal xenograft models were used including an orthotopic peritoneal carcinomatosis model to image small tumors. Nuclear and NIR fluorescent signals showed clear tumor delineation between 24h and 72h post-injection, with highest tumor-to-background ratios of 5.0 ± 1.3 at 72h using fluorescence and 4.2 ± 0.1 at 24h with radioactivity. 1-2 mm sized tumors could be clearly recognized by their fluorescent rim. This study showed the feasibility of an uPAR-recognizing multimodal agent to visualize tumors during image-guided resections using NIR fluorescence, whereas its nuclear component assisted in the pre-operative non-invasive recognition of tumors using SPECT imaging. This strategy can assist in surgical planning and subsequent precision surgery to reduce the number of incomplete resections.
Collapse
|
10
|
Hoffmann T, Krackhardt AM, Antes I. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. PLoS Comput Biol 2015; 11:e1004244. [PMID: 26185983 PMCID: PMC4505886 DOI: 10.1371/journal.pcbi.1004244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 02/01/2023] Open
Abstract
T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. The recognition of antigenic peptides by cytotoxic T-cells is one of the crucial steps during the adaptive immune response. Thus a detailed understanding of this process is not only important for elucidating the mechanism behind T-cell signaling, but also for various emerging new medical applications like T-cell based immunotherapies and designed bio-therapeutics. However, despite the fast growing interest in this field, the mechanistic basis of the immune response is still largely unknown. Previous qualitative studies suggested that the T-cell receptor (TCR) Vα/Vβ-interdomain angle plays a crucial role in epitope recognition as it predetermines the relative position of its antigen-recognizing CDR1-3 loops and thus TCR specificity. In the manuscript we present a systematic bioinformatic analysis of the structural characteristics of bound and unbound TCR molecules focusing on the Vα/Vβ-angle. Our results demonstrate the importance of this angle for signaling, as several distinct Vα/Vβ-angle based structural clusters could be observed and larger angle flexibilities exist for unbound TCRs than for bound TCRs, providing quantitative proof for a two-step locking mechanism upon epitope recognition. In this context, we could identify a unique rotational point, which allows a quantitative, yet intuitive description of all observed angle variations and the structural changes upon epitope binding.
Collapse
MESH Headings
- Binding Sites
- Computer Simulation
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/ultrastructure
- Models, Chemical
- Models, Immunological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
| | - Angela M. Krackhardt
- Medizinische Klinik III, Innere Medizin mit Schwerpunkt Hämatologie und Onkologie, Technische Universität München, Munich, Germany
- Clinical Cooperation Group, Antigen specific T cell therapy, Helmholtz Zentrum München (GmbH), German Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
11
|
Stabilizing a Flexible Interdomain Hinge Region Harboring the SMB Binding Site Drives uPAR into Its Closed Conformation. J Mol Biol 2015; 427:1389-1403. [DOI: 10.1016/j.jmb.2015.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/02/2015] [Accepted: 01/27/2015] [Indexed: 01/04/2023]
|
12
|
Ahn SB, Chan C, Dent OF, Mohamedali A, Kwun SY, Clarke C, Fletcher J, Chapuis PH, Nice EC, Baker MS. Epithelial and stromal cell urokinase plasminogen activator receptor expression differentially correlates with survival in rectal cancer stages B and C patients. PLoS One 2015; 10:e0117786. [PMID: 25692297 PMCID: PMC4333212 DOI: 10.1371/journal.pone.0117786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) has been proposed as a potential prognostic factor for colorectal cancer (CRC) patient survival. However, CRC uPAR expression remains controversial, especially regarding cell types where uPAR is overexpressed (e.g., epithelium (uPARE) or stroma-associated cells (uPARS)) and associated prognostic relevance. In this study, two epitope-specific anti-uPAR monoclonal antibodies (MAbs) could discriminate expression of uPARE from uPARS and were used to examine this association with survival of stages B and C rectal cancer (RC) patients. Using immunohistochemistry, MAbs #3937 and R4 were used to discriminate uPARE from uPARS respectively in the central and invasive frontal regions of 170 stage B and 179 stage C RC specimens. Kaplan-Meier and Cox regression analyses were used to determine association with survival. uPAR expression occurred in both epithelial and stromal compartments with differential expression observed in many cases, indicating uPARE and uPARS have different cellular roles. In the central and invasive frontal regions, uPARE was adversely associated with overall stage B survival (HR = 1.9; p = 0.014 and HR = 1.5; p = 0.031, respectively) reproducing results from previous studies. uPARS at the invasive front was associated with longer stage C survival (HR = 0.6; p = 0.007), reflecting studies demonstrating that macrophage peritumoural accumulation is associated with longer survival. This study demonstrates that different uPAR epitopes should be considered as being expressed on different cell types during tumour progression and at different stages in RC. Understanding how uPARE and uPARS expression affects survival is anticipated to be a useful clinical prognostic marker of stages B and C RC.
Collapse
Affiliation(s)
- Seong Beom Ahn
- Australian School of Advanced Medicine, Faculty of Human Science, Macquarie University, North Ryde, NSW 2109, Australia
| | - Charles Chan
- Anatomical Pathology Department, Concord Hospital and Discipline of Pathology, University of Sydney, Concord, NSW 2139, Australia
| | - Owen F Dent
- Department of Colorectal Surgery, Concord Hospital and Discipline of Surgery, University of Sydney, Concord, NSW 2139, Australia
| | - Abidali Mohamedali
- Australian School of Advanced Medicine, Faculty of Human Science, Macquarie University, North Ryde, NSW 2109, Australia
| | - Sun Young Kwun
- Anatomical Pathology Department, Concord Hospital and Discipline of Pathology, University of Sydney, Concord, NSW 2139, Australia
| | - Candice Clarke
- Anatomical Pathology Department, Concord Hospital and Discipline of Pathology, University of Sydney, Concord, NSW 2139, Australia
| | - Julie Fletcher
- Anatomical Pathology Department, Concord Hospital and Discipline of Pathology, University of Sydney, Concord, NSW 2139, Australia
| | - Pierre H Chapuis
- Department of Colorectal Surgery, Concord Hospital and Discipline of Surgery, University of Sydney, Concord, NSW 2139, Australia
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mark S Baker
- Australian School of Advanced Medicine, Faculty of Human Science, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
13
|
Computational and statistical study on the molecular interaction between antigen and antibody. J Mol Graph Model 2014; 53:128-139. [DOI: 10.1016/j.jmgm.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
|
14
|
Sa R, Fang L, Huang M, Li Q, Wei Y, Wu K. Evaluation of interactions between urokinase plasminogen and inhibitors using molecular dynamic simulation and free-energy calculation. J Phys Chem A 2014; 118:9113-9. [PMID: 24984238 DOI: 10.1021/jp5064319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding modes of urokinase-type plasminogen activator (uPA) with five inhibitors (1-(7-sulfonamidoisoquinolinyl) guanidine derivatives) were predicted based on molecular dynamic simulations. MM/PBSA free-energy calculations and MM/GBSA free-energy decomposition analyses were performed on the studied complexes. The calculated binding free energies are reasonably consistent with the experimental results. The free-energy decomposition analyses elucidate the different contributions of the energy of some favorable residues in the interactions between protein and ligand of each complex. The results indicate that the inhibitors mainly interact with the S1 pocket of uPA, wherein the hydrogen bonds and the interactions between guanidines and the corresponding residues play an important role. Moreover, hydrogen bond analyses show the water-mediated hydrogen-bond network near the S1 pocket between uPA, and the ligand probably leads to excellent selectivity of these inhibitors on uPA.
Collapse
Affiliation(s)
- Rongjian Sa
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Boonstra MC, Verbeek FPR, Mazar AP, Prevoo HAJM, Kuppen PJK, van de Velde CJH, Vahrmeijer AL, Sier CFM. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer 2014; 14:269. [PMID: 24742002 PMCID: PMC3997436 DOI: 10.1186/1471-2407-14-269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/03/2014] [Indexed: 01/22/2023] Open
Abstract
Background The receptor for urokinase-type plasminogen activator (uPAR) is associated with cancer development and progression. Within the tumor microenvironment uPAR is expressed by malignant cells as well as tumor-associated stromal cells. However, the contribution of uPAR expression in these stromal cells to malignancy and patient survival in colorectal cancer is still unclear. This study compares the association of uPAR expression in both colorectal tumor-associated stromal cells and neoplastic cells with clinico-pathological characteristics and patient survival using tissue micro arrays (TMA). Methods Immunohistochemical staining of uPAR expression was performed on tumor tissue from 262 colorectal cancer patients. Kaplan-Meier, log rank, and uni- and multivariate Cox’s regression analyses were used to calculate associations between uPAR expression and patient survival. Results In the colorectal tumor-associated stromal microenvironment, uPAR is expressed in macrophages, (neoangiogenic) endothelial cells and myofibroblasts. uPAR expression in tumor-associated stromal cells and neoplastic cells (and both combined) were negatively associated with overall survival (OS) and Disease Free Survival (DFS). Uni- and multivariate Cox’s regression analysis for combined uPAR expression in tumor-associated stromal and neoplastic cells showed significant and independent negative associations with OS and DFS. Only uPAR expression in tumor-associated stromal cells showed independent significance in the uni- and multivariate analysis for DFS. Conclusion This study demonstrates a significant independent negative association between colorectal cancer patient survival and uPAR expression in especially tumor-associated stromal cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
16
|
Xu X, Cai Y, Wei Y, Donate F, Juarez J, Parry G, Chen L, Meehan EJ, Ahn RW, Ugolkov A, Dubrovskyi O, O'Halloran TV, Huang M, Mazar AP. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM). PLoS One 2014; 9:e85349. [PMID: 24465541 PMCID: PMC3897428 DOI: 10.1371/journal.pone.0085349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.
Collapse
Affiliation(s)
- Xiang Xu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuan Cai
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America ; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Ying Wei
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Fernando Donate
- Agensys, St. Santa Monica, California, United States of America
| | - Jose Juarez
- GNF, San Diego, California, United States of America
| | - Graham Parry
- Attenuon, San Diego, California, United States of America
| | - Liqing Chen
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, United States of America
| | - Edward J Meehan
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, United States of America
| | - Richard W Ahn
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Andrey Ugolkov
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Oleksii Dubrovskyi
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America ; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America ; Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Mingdong Huang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew P Mazar
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America ; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
17
|
Teplyakov A, Obmolova G, Malia T, Gilliland G. Antigen recognition by antibody C836 through adjustment of V(L)/V(H) packing. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1165-7. [PMID: 22102019 PMCID: PMC3212354 DOI: 10.1107/s1744309111027746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/11/2011] [Indexed: 11/10/2022]
Abstract
C836 is a neutralizing monoclonal antibody to human interleukin IL-13 generated by mouse immunization. The crystal structure of the C836 Fab was determined at 2.5 Å resolution and compared with the IL-13-bound form determined previously. This comparison indicates an induced-fit mechanism of antigen recognition through rigid-body rotation of the V(L) and V(H) domains. The magnitude of this rearrangement is one of the largest observed for antibody-protein interactions.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Centocor R&D Inc., 145 King of Prussia Road, Radnor, PA 19087, USA.
| | | | | | | |
Collapse
|
18
|
Degryse B, Fernandez-Recio J, Citro V, Blasi F, Cubellis MV. In silico docking of urokinase plasminogen activator and integrins. BMC Bioinformatics 2008; 9 Suppl 2:S8. [PMID: 18387210 PMCID: PMC2323671 DOI: 10.1186/1471-2105-9-s2-s8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Urokinase, its receptor and the integrins are functionally associated and involved in regulation of cell signaling, migration, adhesion and proliferation. No structural information is available on this potential multimolecular complex. However, the tri-dimensional structure of urokinase, urokinase receptor and integrins is known. Results We have modeled the interaction of urokinase on two integrins, αIIbβ3 in the open configuration and αvβ3 in the closed configuration. We have found that multiple lowest energy solutions point to an interaction of the kringle domain of uPA at the boundary between α and β chains on the surface of the integrins. This region is not far away from peptides that have been previously shown to have a biological role in urokinase receptor/integrins dependent signaling. Conclusions We demonstrated that in silico docking experiments can be successfully carried out to identify the binding mode of the kringle domain of urokinase on the scaffold of integrins in the open and closed conformation. Importantly we found that the binding mode was the same on different integrins and in both configurations. To get a molecular view of the system is a prerequisite to unravel the complex protein-protein interactions underlying urokinase/urokinase receptor/integrin mediated cell motility, adhesion and proliferation and to design rational in vitro experiments.
Collapse
|