1
|
Wen Y, Kang X, Li Z, Xia L, Lu Y. Identification of a secretory heme-binding protein from Nocardia seriolae involved in cell apoptosis. JOURNAL OF FISH DISEASES 2022; 45:1189-1199. [PMID: 35671346 DOI: 10.1111/jfd.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
According to the whole-genome bioinformatics analysis, a heme-binding protein from Nocardia seriolae (HBP) was found. HBP was predicted to be a bacterial secretory protein, located at mitochondrial membrane in eukaryotic cells and have a similar protein structure with the heme-binding protein of Mycobacterium tuberculosis, Rv0203. In this study, HBP was found to be a secretory protein and co-localized with mitochondria in FHM cells. Quantitative analysis of mitochondrial membrane potential value, caspase-3 activity, and transcription level of apoptosis-related genes suggested that overexpression of HBP protein can induce cell apoptosis. In conclusion, HBP was a secretory protein which may target to mitochondria and involve in cell apoptosis in host cells. This research will promote the function study of HBP and deepen the comprehension of the virulence factors and pathogenic mechanisms of N. seriolae.
Collapse
Affiliation(s)
- Yiming Wen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Xu Kang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiyuan Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Liqun Xia
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, China
| |
Collapse
|
2
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
3
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
4
|
Bonjack-Shterengartz M, Avnir D. The enigma of the near-symmetry of proteins: Domain swapping. PLoS One 2017; 12:e0180030. [PMID: 28708874 PMCID: PMC5510828 DOI: 10.1371/journal.pone.0180030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/08/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of proteins form oligomers which have rotational symmetry. Literature has suggested many functional advantages that the symmetric packing offers. Yet, despite these advantages, the vast majority of protein oligomers are only nearly symmetric. A key question in the field of proteins structure is therefore, if symmetry is so advantageous, why do oligomers settle for aggregates that do not maximize that structural property? The answer to that question is apparently multi-parametric, and involves distortions at the interaction zones of the monomer units of the oligomer in order to minimize the free energy, the dynamics of the protein, the effects of surroundings parameters, and the mechanism of oligomerization. The study of this problem is in its infancy: Only the first parameter has been explored so far. Here we focus on the last parameter-the mechanism of formation. To test this effect we have selected to focus on the domain swapping mechanism of oligomerization, by which oligomers form in a mechanism that swaps identical portions of monomeric units, resulting in an interwoven oligomer. We are using continuous symmetry measures to analyze in detail the oligomer formed by this mechanism, and found, that without exception, in all analyzed cases, perfect symmetry is given away, and we are able to identify that the main burden of distortion lies in the hinge regions that connect the swapped portions. We show that the continuous symmetry analysis method clearly identifies the hinge region of swapped domain proteins-considered to be a non-trivial task. We corroborate our conclusion about the central role of the hinge region in affecting the symmetry of the oligomers, by a special probability analysis developed particularly for that purpose.
Collapse
Affiliation(s)
- Maayan Bonjack-Shterengartz
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Avnir
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
5
|
Effect of methionine80 heme coordination on domain swapping of cytochrome c. J Biol Inorg Chem 2017; 22:705-712. [DOI: 10.1007/s00775-017-1446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
6
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
7
|
Kawakami N, Kondo H, Muramatsu M, Miyamoto K. Protein Nanoparticle Formation Using a Circularly Permuted α-Helix-Rich Trimeric Protein. Bioconjug Chem 2017; 28:336-340. [DOI: 10.1021/acs.bioconjchem.6b00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Norifumi Kawakami
- Department of Bioscience
and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroki Kondo
- Department of Bioscience
and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masayuki Muramatsu
- Department of Bioscience
and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience
and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach. Biochem J 2016; 473:2239-48. [PMID: 27208170 PMCID: PMC4941744 DOI: 10.1042/bcj20160131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
In bacteria, some scarce nutrients are sensed, bound and internalized by their specific transporter. In the present study, using an integrative structural approach, we study HasR, a bacterial haem transporter in both its free and its loaded forms. Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.
Collapse
|
9
|
Hayashi Y, Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Sci Rep 2016; 6:19334. [PMID: 26838805 PMCID: PMC4738263 DOI: 10.1038/srep19334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
Knowledge on domain swapping in vitro is increasing, but domain swapping may not occur regularly in vivo, and its information in cells is limited. Herein, we show that domain-swapped oligomers of a thermostable c-type cytochrome, Hydrogenobacter thermophilus cyt c552, are formed in E. coli which expresses cyt c552. The region containing the N-terminal α-helix and heme was domain-swapped between protomers in the dimer formed in E. coli. The amount of cyt c552 oligomers increased in E. coli as the cyt c552 concentration was increased, whereas that of high-order oligomers decreased in the order of decrease in protein stability, indicating that domain swapping decreases in cells when the protein stability decreases. Apo cyt c552 was detected in the cyt c552 oligomer formed in E. coli, but not in that of the A5F/M11V/Y32F/Y41E/I76V mutant. The cyt c552 oligomer containing its apo protein may form at the periplasm, since the apo protein detected by mass measurements did not contain the signal peptide. These results show that domain-swapped cyt c552 oligomers were formed in E. coli, owing to the stability of the transient oligomer containing the apo protein before heme attachment. This is an indication that exceedingly stable proteins may have disadvantages forming domain-swapped oligomers in cells.
Collapse
Affiliation(s)
- Yugo Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
10
|
The crystal structure of heme acquisition system A from Yersinia pseudotuberculosis (HasAypt): Roles of the axial ligand Tyr75 and two distal arginines in heme binding. J Inorg Biochem 2015. [DOI: 10.1016/j.jinorgbio.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|
12
|
Roy J, Sen Santara S, Adhikari A, Mukherjee A, Adak S. Control of catalysis in globin coupled adenylate cyclase by a globin-B domain. Arch Biochem Biophys 2015; 579:85-90. [PMID: 26095616 DOI: 10.1016/j.abb.2015.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
The globin coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) has two globin domains (globin-A and globin-B). Globin-B domain (210-360 amino acids) may guide the interaction between globin-A and adenylate cyclase domains for the regulation of catalysis. We investigated the role of globin-B domain in HemAC-Lm by constructing a series of mutants namely Δ209 (209 amino acids deleted), Δ360 (360 amino acids deleted), H161A, H311A and H311A-Δ209. Spectroscopic data suggest that the Δ209 and H311A-Δ209 proteins to be Fe(2+)-O2 form and apo form, respectively, indicating that His311 residue in the globin-B domain is crucial for heme binding in Δ209 protein. However, the H311A mutant is still of the Fe(2+)-O2 form whereas H161A mutant shows the apo form, indicating that only His161 residue in the globin-A domain is responsible for heme binding in full length enzyme. cAMP measurements suggest that the activities of Δ360 and Δ209 proteins were ∼10 and ∼1000 times lesser than full length enzyme, respectively, leading to the fact that globin-B domain inhibited catalysis rather than activation in absence of globin-A domain. These data suggest that the O2 bound globin-A domain in HemAC-Lm allows the best cooperation of the catalytic domain interactions to generate optimum cAMP.
Collapse
Affiliation(s)
- Jayasree Roy
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Sen Santara
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ayan Adhikari
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Aditi Mukherjee
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
13
|
Smith AD, Wilks A. Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J Biol Chem 2015; 290:7756-66. [PMID: 25616666 DOI: 10.1074/jbc.m114.633495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR and PhuR receptors have distinct heme coordinating ligands and substrate specificities. HasR is encoded in an operon with a secreted hemophore, HasAp. In contrast the non-hemophore-dependent PhuR is encoded within an operon along with proteins required for heme translocation into the cytoplasm. Herein we report on the contributions of the HasR and PhuR receptors to heme uptake and utilization. Employing bacterial genetics and isotopic [(13)C]heme labeling studies we have shown both PhuR and HasR are required for optimal heme utilization. However, the unique His-Tyr-ligated PhuR plays a major role in the acquisition of heme. In contrast the HasR receptor plays a primary role in the sensing of extracellular heme and a supplementary role in heme uptake. We propose PhuR and HasR represent non-redundant heme receptors, capable of accessing heme across a wide range of physiological conditions on colonization of the host.
Collapse
Affiliation(s)
- Aaron D Smith
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
14
|
Carbon monoxide binding properties of domain-swapped dimeric myoglobin. J Biol Inorg Chem 2015; 20:523-30. [DOI: 10.1007/s00775-014-1236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
|
15
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
16
|
Lin YW, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Rational design of heterodimeric protein using domain swapping for myoglobin. Angew Chem Int Ed Engl 2014; 54:511-5. [PMID: 25370865 DOI: 10.1002/anie.201409267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 11/12/2022]
Abstract
Protein design is a useful method to create novel artificial proteins. A rational approach to design a heterodimeric protein using domain swapping for horse myoglobin (Mb) was developed. As confirmed by X-ray crystallographic analysis, a heterodimeric Mb with two different active sites was produced efficiently from two surface mutants of Mb, in which the charges of two amino acids involved in the dimer salt bridges were reversed in each mutant individually, with the active site of one mutant modified. This study shows that the method of constructing heterodimeric Mb with domain swapping is useful for designing artificial multiheme proteins.
Collapse
Affiliation(s)
- Ying-Wu Lin
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 (Japan); School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 (China)
| | | | | | | | | | | |
Collapse
|
17
|
Lin YW, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Rational Design of Heterodimeric Protein using Domain Swapping for Myoglobin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
19
|
Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1629-41. [PMID: 24129268 DOI: 10.1016/j.bbamcr.2013.09.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, CNRS UMR 8621, University Paris-Sud XI, Building 409, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem 2013; 129:162-71. [PMID: 23916118 DOI: 10.1016/j.jinorgbio.2013.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/12/2022]
Abstract
Heme proteins perform various biological functions ranging from electron transfer, oxygen binding and transport, catalysis, to signaling. Although adopting proper native states is very important for these functions, progresses in representative heme proteins, including cytochrome c (cyt c), cytochrome b5 (cyt b5), myoglobin (Mb), neuroglobin (Ngb), cytochrome P450 (CYP) and heme-based sensor proteins such as CO sensor CooA, showed that various native functions, or new functions evolved, are also closely associated with non-native states. The structure and function relationship of heme proteins in non-native states is thus as important as that in native states for elucidating the precise roles of heme proteins in biological systems.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | |
Collapse
|
21
|
Kimata-Ariga Y, Kubota-Kawai H, Lee YH, Muraki N, Ikegami T, Kurisu G, Hase T. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin-NADP+ reductase. Biochem Biophys Res Commun 2013; 434:867-72. [PMID: 23618857 DOI: 10.1016/j.bbrc.2013.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 01/17/2023]
Abstract
Ferredoxin-NADP(+) reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP(+). In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd-FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS-PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd-FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
MacKinnon SS, Malevanets A, Wodak S. Intertwined Associations in Structures of Homooligomeric Proteins. Structure 2013; 21:638-49. [DOI: 10.1016/j.str.2013.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/24/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
23
|
Hayashi Y, Nagao S, Osuka H, Komori H, Higuchi Y, Hirota S. Domain Swapping of the Heme and N-Terminal α-Helix in Hydrogenobacter thermophilus Cytochrome c552 Dimer. Biochemistry 2012; 51:8608-16. [DOI: 10.1021/bi3011303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yugo Hayashi
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hisao Osuka
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hirofumi Komori
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Higuchi
- Department of Life Science,
Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School
of Materials
Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
24
|
Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. ACTA ACUST UNITED AC 2012; 152:521-9. [DOI: 10.1093/jb/mvs098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Lees JPB, Manlandro CM, Picton LK, Tan AZE, Casares S, Flanagan JM, Fleming KG, Hill RB. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission. J Mol Biol 2012; 423:143-58. [PMID: 22789569 DOI: 10.1016/j.jmb.2012.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide repeat (TPR)-like protein whose role in assembly of the fission machinery remains obscure. Two nonfunctional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild-type Fis1. A72P also disrupts dimerization of nonfunctional variants, indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is nonfunctional in fission, consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR-containing proteins may reversibly self-associate.
Collapse
Affiliation(s)
- Jonathan P B Lees
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, Département de Microbiologie, 25-28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
27
|
Liu L, Byeon IJL, Bahar I, Gronenborn AM. Domain swapping proceeds via complete unfolding: a 19F- and 1H-NMR study of the Cyanovirin-N protein. J Am Chem Soc 2012; 134:4229-35. [PMID: 22296296 DOI: 10.1021/ja210118w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Domain swapping creates protein oligomers by exchange of structural units between identical monomers. At present, no unifying molecular mechanism of domain swapping has emerged. Here we used the protein Cyanovirin-N (CV-N) and (19)F-NMR to investigate the process of domain swapping. CV-N is an HIV inactivating protein that can exist as a monomer or a domain-swapped dimer. We measured thermodynamic and kinetic parameters of the conversion process and determined the size of the energy barrier between the two species. The barrier is very large and of similar magnitude to that for equilibrium unfolding of the protein. Therefore, for CV-N, overall unfolding of the polypeptide is required for domain swapping.
Collapse
Affiliation(s)
- Lin Liu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
28
|
Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S. Structural and oxygen binding properties of dimeric horse myoglobin. Dalton Trans 2012; 41:11378-85. [DOI: 10.1039/c2dt30893b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Abstract
Among thousands of homo-oligomeric protein structures, there is a small but growing subset of ‘domain-swapped’ proteins. The term ‘domain swapping,’ originally coined by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange identical units for oligomerization. This type of assembly could play a role in disease-related aggregation and amyloid formation or as a specific mechanism for regulating function. This chapter introduces terms and features concerning domain swapping, summarizes ideas about its putative mechanisms, reports on domain-swapped structures collected from the literature, and describes a few notable examples in detail.
Collapse
|
30
|
Mayfield JA, Dehner CA, DuBois JL. Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol 2011; 15:260-6. [PMID: 21339081 DOI: 10.1016/j.cbpa.2011.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/01/2011] [Indexed: 01/01/2023]
Abstract
Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.
Collapse
Affiliation(s)
- Jeffery A Mayfield
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
31
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Gao JL, Nguyen KA, Hunter N. Characterization of a hemophore-like protein from Porphyromonas gingivalis. J Biol Chem 2010; 285:40028-38. [PMID: 20940309 DOI: 10.1074/jbc.m110.163535] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The porphyrin auxotrophic pathogen Porphyromonas gingivalis obtains the majority of essential iron and porphyrin from host hemoproteins. To achieve this, the organism expresses outer membrane gingipains containing cysteine proteinase domains linked to hemagglutinin domains. Heme mobilized in this way is taken up by P. gingivalis through a variety of potential portals where HmuY/HmuR of the hmu locus are best described. These receptors have relatively low binding affinities for heme. In this report, we describe a novel P. gingivalis protein, HusA, the product of PG2227, which rapidly bound heme with a high binding constant at equilibrium of 7 × 10(-10) M. HusA is both expressed on the outer membrane and released from the organism. Spectral analysis indicated an unusual pattern of binding where heme was ligated preferentially as a dimer. Further, the presence of dimeric heme induced protein dimer formation. Deletional inactivation of husA showed that expression of this moiety was essential for growth of P. gingivalis under conditions of heme limitation. This finding was in accord with the pronounced increase in gene expression levels for husA with progressive reduction of heme supplementation. Antibodies reactive against HusA were detected in patients with chronic periodontitis, suggesting that the protein is expressed during the course of infection by P. gingivalis. It is predicted that HusA efficiently sequesters heme from gingipains and fulfills the function of a high affinity hemophore-like protein to meet the heme requirement for growth of P. gingivalis during establishment of infection.
Collapse
Affiliation(s)
- Jin-Long Gao
- Institute of Dental Research, Westmead Millennium Institute and Centre for Oral Health, Westmead Hospital, The University of Sydney, Sydney, New South Wales 2145, Australia
| | | | | |
Collapse
|
33
|
Yukl ET, Jepkorir G, Alontaga AY, Pautsch L, Rodriguez JC, Rivera M, Moënne-Loccoz P. Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 2010; 49:6646-54. [PMID: 20586423 DOI: 10.1021/bi100692f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extreme limitation of free iron has driven various pathogens to acquire iron from the host in the form of heme. Specifically, several Gram-negative pathogens secrete a heme binding protein known as HasA to scavenge heme from the extracellular environment and to transfer it to the receptor protein HasR for import into the bacterial cell. Structures of heme-bound and apo-HasA homologues show that the heme iron(III) ligands, His32 and Tyr75, reside on loops extending from the core of the protein and that a significant conformational change must occur at the His32 loop upon heme binding. Here, we investigate the kinetics of heme acquisition by HasA from Pseudomonas aeruginosa (HasAp). The rate of heme acquisition from human met-hemoglobin (met-Hb) closely matches that of heme dissociation which suggests a passive mode of heme uptake from this source. The binding of free hemin is characterized by an initial rapid phase forming an intermediate before further conversion to the final complex. Analysis of this same reaction using an H32A variant lacking the His heme ligand shows only the rapid phase to form a heme-protein complex spectroscopically equivalent to that of the wild-type intermediate. Further characterization of these reactions using electron paramagnetic resonance and resonance Raman spectroscopy of rapid freeze quench samples provides support for a model in which heme is initially bound by the Tyr75 to form a high-spin heme-protein complex before slower coordination of the His32 ligand upon closing of the His loop over the heme. The slow rate of this loop closure implies that the induced-fit mechanism of heme uptake in HasAp is not based on a rapid sampling of the H32 loop between open and closed configurations but, rather, that the H32 loop motions are triggered by the formation of the high-spin heme-HasAp intermediate complex.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Science and Engineering, School of Medicine, Oregon Health and Science University, 20000 Northwest Walker Road, Beaverton, Oregon 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Harvat EM, Redfield C, Stevens JM, Ferguson SJ. Probing the heme-binding site of the cytochrome c maturation protein CcmE. Biochemistry 2010; 48:1820-8. [PMID: 19178152 DOI: 10.1021/bi801609a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maturation of c-type cytochromes in many bacterial species and plant mitochondria requires the participation of the heme chaperone CcmE that binds heme covalently via a His residue (H130 in Escherichia coli) before transferring it stereospecifically to the apo form of cytochromes c. Only the structure of the apo form of CcmE is known; the heme-binding site has been modeled on the surface of the protein in the vicinity of H130. We have determined the reduction potential of CcmE, which suggests that heme bound to CcmE is not as exposed to solvent as was initially thought. Alanine insertions in the vicinity of the heme-binding histidine (which we showed by NMR do not perturb the protein fold) strikingly abolish formation of both holo-CcmE and cytochrome c, whereas previously reported point mutations of residues adjacent to H130 gave only a partial attenuation. The heme iron coordinating residue Y134 proved to be strictly required for axial ligation of both ferrous and ferric heme. These results indicate the existence of a conformationally well-defined heme pocket that involves amino acids located in the proximity of H130. However, mutation of Y134 affected neither heme attachment to CcmE nor cytochrome c maturation, suggesting that heme binding and release from CcmE are hydrophobically driven and relatively indifferent to axial ligation.
Collapse
Affiliation(s)
- Edgar M Harvat
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
35
|
Suits MDL, Lang J, Pal GP, Couture M, Jia Z. Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Sci 2009; 18:825-38. [PMID: 19319934 PMCID: PMC2762594 DOI: 10.1002/pro.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 A resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The nu(Fe-CO) and nu(C-O) frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX.
Collapse
Affiliation(s)
- Michael D L Suits
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Jérôme Lang
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Gour P Pal
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Manon Couture
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Zongchao Jia
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6,*Correspondence to: Zongchao Jia, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. E-mail:
| |
Collapse
|
36
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
37
|
Lukat-Rodgers GS, Rodgers KR, Caillet-Saguy C, Izadi-Pruneyre N, Lecroisey A. Novel Heme Ligand Displacement by CO in the Soluble Hemophore HasA and Its Proximal Ligand Mutants: Implications for Heme Uptake and Release. Biochemistry 2008; 47:2087-98. [DOI: 10.1021/bi7019518] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gudrun S. Lukat-Rodgers
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105-5516, and Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| | - Kenton R. Rodgers
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105-5516, and Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| | - Celia Caillet-Saguy
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105-5516, and Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| | - Nadia Izadi-Pruneyre
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105-5516, and Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| | - Anne Lecroisey
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105-5516, and Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| |
Collapse
|
38
|
Block DR, Lukat-Rodgers GS, Rodgers KR, Wilks A, Bhakta MN, Lansky IB. Identification of two heme-binding sites in the cytoplasmic heme-trafficking protein PhuS from Pseudomonas aeruginosa and their relevance to function. Biochemistry 2007; 46:14391-402. [PMID: 18020455 DOI: 10.1021/bi701509n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PhuS is a cytoplasmic, 39 kDa heme-binding protein from Pseudomonas aeruginosa. It has previously been shown to transfer heme to its cognate heme oxygenase. It is expressed from the phu operon, which encodes a group of proteins known to actively internalize and transport heme from host organisms. This study combines the spectral resolution of resonance Raman spectroscopy with site-directed mutagenesis to identify and characterize the heme-bound states of holo-PhuS. This combined approach has identified a site in monomeric PhuS having alternate His ligands at positions 209 and 212. A second distinct binding site is present in dimeric PhuS. This site supports six-coordinate, low-spin heme, even when both His209 and His212 are mutated to Ala. The presence of conserved His and Tyr residues in all of the homologs characterized to date suggest that the dimer could be of the domain-swapped type in which two protein molecules are cross-linked by bound heme. The multiple heme-bound states and their sensitivity to pH suggest the possibility that these cytoplasmic heme-binding proteins have multiple functions that are toggled by variations in intracellular conditions.
Collapse
Affiliation(s)
- Darci R Block
- Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, 1231 Albrecht Avenue, Fargo, North Dakota 58105, USA
| | | | | | | | | | | |
Collapse
|
39
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|