1
|
Wu T, Chen Y, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Mechanism-Guided Computational Design Drives meso-Diaminopimelate Dehydrogenase to Efficient Synthesis of Aromatic d-amino Acids. ACS Synth Biol 2024; 13:1879-1892. [PMID: 38847341 DOI: 10.1021/acssynbio.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.
Collapse
Affiliation(s)
- Tianfu Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yihan Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
3
|
Matsuda K, Wakimoto T. Penicillin-binding protein-type thioesterases: An emerging family of non-ribosomal peptide cyclases with biocatalytic potentials. Curr Opin Chem Biol 2024; 80:102465. [PMID: 38759287 DOI: 10.1016/j.cbpa.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Macrocyclization of peptides reduces conformational flexibilities, potentially leading to improved drug-like properties, such as target specificities and metabolic stabilities. As chemical methodologies often allow side reactions like epimerization and oligomerization, keen attention has been directed toward enzymatic peptide cyclization using peptide cyclases from specialized metabolic pathways. Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified family of peptide cyclases involved in the biosynthesis of non-ribosomal peptides in actinobacteria. PBP-type TEs have undergone intensive investigation due to their outstanding potential as biocatalysts. This review summarizes the rapidly growing knowledge on PBP-type TEs, with special emphasis on their functions, scopes, and structures, and efforts towards their biocatalytic applications.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
4
|
Santos JC, Handa S, Fernandes LGV, Bleicher L, Gandin CA, de Oliveira-Neto M, Ghosh P, Nascimento ALTO. Structural and biochemical characterization of Leptospira interrogans Lsa45 reveals a penicillin-binding protein with esterase activity. Process Biochem 2023; 125:141-153. [PMID: 36643388 PMCID: PMC9836055 DOI: 10.1016/j.procbio.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/β subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for β-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin β-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.
Collapse
Affiliation(s)
- Jademilson C. Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Instituto Federal da Bahia – IFBA - Rodovia BR-367, R. José Fontana, 1, 45810-000, Porto Seguro - BA, Brazil
| | - Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - César A. Gandin
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Mario de Oliveira-Neto
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Ana Lucia T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Singh V, Dhankhar P, Dalal V, Tomar S, Golemi-Kotra D, Kumar P. Drug-Repurposing Approach To Combat Staphylococcus aureus: Biomolecular and Binding Interaction Study. ACS OMEGA 2022; 7:38448-38458. [PMID: 36340146 PMCID: PMC9631409 DOI: 10.1021/acsomega.2c03671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/04/2022] [Indexed: 05/15/2023]
Abstract
Staphylococcus aureus is considered as one of the most widespread bacterial pathogens and continues to be a prevalent cause of mortality and morbidity across the globe. FmtA is a key factor linked with methicillin resistance in S. aureus. Consequently, new antibacterial compounds are crucial to combat S. aureus resistance. Here, we present the virtual screening of a set of compounds against the available crystal structure of FmtA. The findings indicate that gemifloxacin, paromomycin, streptomycin, and tobramycin were the top-ranked potential drug molecules based on the binding affinity. Furthermore, these drug molecules were analyzed with molecular dynamics simulations, which showed that the identified molecules formed highly stable FmtA-inhibitor(s) complexes. Molecular mechanics Poisson-Boltzmann surface area and quantum mechanics/molecular mechanics calculations suggested that the active site residues (Ser127, Lys130, Tyr211, and Asp213) of FmtA are crucial for the interaction with the inhibitor(s) to form stable protein-inhibitor(s) complexes. Moreover, fluorescence- and isothermal calorimetry-based binding studies showed that all the molecules possess dissociation constant values in the micromolar scale, revealing a strong binding affinity with FmtAΔ80, leading to stable protein-drug(s) complexes. The findings of this study present potential beginning points for the rational development of advanced, safe, and efficacious antibacterial agents targeting FmtA.
Collapse
Affiliation(s)
- Vishakha Singh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee247667, India
| | - Poonam Dhankhar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee247667, India
| | - Vikram Dalal
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee247667, India
| | - Shailly Tomar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee247667, India
| | - Dasantila Golemi-Kotra
- Department
of Biology, York University, 4700 Keele Street, TorontoM3J 1P3, Ontario, Canada
| | - Pravindra Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee247667, India
- ; . Tel.: +91-1332-286286
| |
Collapse
|
6
|
Dalal V, Golemi-Kotra D, Kumar P. Quantum Mechanics/Molecular Mechanics Studies on the Catalytic Mechanism of a Novel Esterase (FmtA) of Staphylococcus aureus. J Chem Inf Model 2022; 62:2409-2420. [PMID: 35475370 DOI: 10.1021/acs.jcim.2c00057] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FmtA is a novel esterase that shares the penicillin-binding protein (PBP) core structural folding but found to hydrolyze the removal of d-Ala from teichoic acids. Molecular docking, dynamics, and MM-GBSA of FmtA and its variants S127A, K130A, Y211A, D213A, and K130AY211A, in the presence or absence of wall teichoic acid (WTA), suggest that active site residues S127, K130, Y211, D213, N343, and G344 play a role in substrate binding. Quantum mechanics (QM)/molecular mechanics (MM) calculations reveal that during WTA catalysis, K130 deprotonates S127, and the nucleophilic S127 attacks the carbonyl carbon of d-Ala bound to WTA. The tetrahedral intermediate (TI) complex is stabilized by hydrogen bonding to the oxyanion holes. The TI complex displays a high energy gap and collapses to an energetically favorable acyl-enzyme complex.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| | - Dasantila Golemi-Kotra
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| |
Collapse
|
7
|
Dalal V, Dhankhar P, Singh V, Singh V, Rakhaminov G, Golemi-Kotra D, Kumar P. Structure-Based Identification of Potential Drugs Against FmtA of Staphylococcus aureus: Virtual Screening, Molecular Dynamics, MM-GBSA, and QM/MM. Protein J 2021; 40:148-165. [PMID: 33421024 DOI: 10.1007/s10930-020-09953-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is resistant to β-lactam antibiotics and causes several skin diseases to life-threatening diseases. FmtA is found to be one of the main factors involved in methicillin resistance in S. aureus. FmtA exhibits an esterase activity that removes the D-Ala from teichoic acid. Teichoic acids played a significant role in cell wall synthesis, cell division, colonization, biofilm formation, virulence, antibiotic resistance, and pathogenesis. The virtual screening of drug molecules against the crystal structure of FmtA was performed and the binding affinities of top three molecules (ofloxacin, roflumilast, and furazolidone) were predicted using molecular docking. The presence of positive potential and electron affinity regions in screened drug molecules by DFT analysis illustrated that these molecules are reactive in nature. The protein-ligand complexes were subjected to molecular dynamics simulation. Molecular dynamics analysis such as RMSD, RMSF, Rg, SASA, PCA, and FEL results suggested that FmtA-drug(s) complexes are stable. MM-GBSA binding affinity and QM/MM results (ΔG, ΔH, and ΔS) revealed that active site residues (Ser127, Lys130, Tyr211, Asp213, and Asn343) of FmtA played an essential for the binding of the drug(s) to form a lower energy stable protein-ligand complexes. FmtAΔ42 was purified using cation exchange and gel filtration chromatography. Fluorescence spectroscopy and circular dichroism results showed that interactions of drugs with FmtAΔ42 affect the tertiary structure and increase the thermostability of the protein. The screened molecules need to be tested and could be further modified to develop the antimicrobial compounds against S. aureus.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Poonam Dhankhar
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Vishakha Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Vishakha Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India
| | - Gaddy Rakhaminov
- Department of Biology, York University, 4700 Keele Street, Toronto, Canada
| | | | - Pravindra Kumar
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttrakhand, 247667, India.
| |
Collapse
|
8
|
Dalal V, Kumar P, Rakhaminov G, Qamar A, Fan X, Hunter H, Tomar S, Golemi-Kotra D, Kumar P. Repurposing an Ancient Protein Core Structure: Structural Studies on FmtA, a Novel Esterase of Staphylococcus aureus. J Mol Biol 2019; 431:3107-3123. [DOI: 10.1016/j.jmb.2019.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
|
9
|
Effect of Active Site Pocket Structure Modification of d-Stereospecific Amidohydrolase on the Recognition of Stereospecific and Hydrophobic Substrates. Mol Biotechnol 2018; 60:690-697. [DOI: 10.1007/s12033-018-0104-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Elyas YYA, Miyatani K, Bito T, Uraji M, Hatanaka T, Shimizu K, Arima J. Active site pocket of Streptomycesd-stereospecific amidohydrolase has functional roles in aminolysis activity. J Biosci Bioeng 2018; 126:293-300. [PMID: 29628267 DOI: 10.1016/j.jbiosc.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 11/19/2022]
Abstract
d-Stereospecific amidohydrolase from Streptomyces sp. 82F2 (DAH) recognizes d-amino acyl ester derivatives as substrates and catalyzes hydrolysis and aminolysis to yield d-amino acids and d-amino acyl peptides or amide derivatives, respectively. Crystallographic analysis has revealed that DAH possesses a large cavity with a small pocket at the bottom. Because the pocket is close to the catalytic center and is thought to interact with substrates, we examined the function of the eight residues that form the pocket in terms of substrate recognition and aminolysis via mutational analysis. Formation of the acyl-enzyme intermediate and catalysis of aminolysis by DAH were changed by substitutions of selected residues with Ala. In particular, I338A DAH exhibited a significant increase in the condensation product of Ac-d-Phe methyl ester and 1,8-diaminooctane (Ac-d-Phe-1,8-diaminooctane) compared with the wild-type DAH. A similar effect was observed by the mutation of Ile338 to Gly and Ser. The pocket shapes and local flexibility of the mutants I338G, I338A, and I338S are thought to resemble each other. Thus, changes in the shape and local flexibility of the pocket of DAH by mutation presumably alter substrate recognition for aminolysis.
Collapse
Affiliation(s)
| | - Kazusa Miyatani
- Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Misugi Uraji
- Research Institute for Biological Sciences (RIBS), Okayama 716-1241, Japan
| | - Tadashi Hatanaka
- Research Institute for Biological Sciences (RIBS), Okayama 716-1241, Japan
| | - Katsuhiko Shimizu
- Division of Regional Contribution and Lifelong Learning, Organization of Regional Industrial-Academic Cooperation, Tottori University, 4-101 Koyama-minami, Tottori 680-8550, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
11
|
Nirasawa S, Nakahara K, Takahashi S. Cloning and characterization of the novel d-aspartyl endopeptidase, paenidase, from Paenibacillus sp. B38. J Biochem 2018; 164:103-112. [DOI: 10.1093/jb/mvy033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Satoru Nirasawa
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Kazuhiko Nakahara
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Saori Takahashi
- Akita Research Institute of Food and Brewing, 4-26 Sanuki, Arayamachi, Akita 010-1623, Japan
| |
Collapse
|
12
|
Tang XL, Lu XF, Wu ZM, Zheng RC, Zheng YG. Biocatalytic production of ( S )-2-aminobutanamide by a novel d -aminopeptidase from Brucella sp. with high activity and enantioselectivity. J Biotechnol 2018; 266:20-26. [DOI: 10.1016/j.jbiotec.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/11/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
13
|
Biochemical and Structural Analysis of a Novel Esterase from Caulobacter crescentus related to Penicillin-Binding Protein (PBP). Sci Rep 2016; 6:37978. [PMID: 27905486 PMCID: PMC5131357 DOI: 10.1038/srep37978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 01/16/2023] Open
Abstract
Considering that the prevalence of antibiotic-resistant pathogenic bacteria is largely increasing, a thorough understanding of penicillin-binding proteins (PBPs) is of great importance and crucial significance because this enzyme family is a main target of β-lactam-based antibiotics. In this work, combining biochemical and structural analysis, we present new findings that provide novel insights into PBPs. Here, a novel PBP homologue (CcEstA) from Caulobacter crescentus CB15 was characterized using native-PAGE, mass spectrometry, gel filtration, CD spectroscopy, fluorescence, reaction kinetics, and enzyme assays toward various substrates including nitrocefin. Furthermore, the crystal structure of CcEstA was determined at a 1.9 Å resolution. Structural analyses showed that CcEstA has two domains: a large α/β domain and a small α-helix domain. A nucleophilic serine (Ser68) residue is located in a hydrophobic groove between the two domains along with other catalytic residues (Lys71 and Try157). Two large flexible loops (UL and LL) of CcEstA are proposed to be involved in the binding of incoming substrates. In conclusion, CcEstA could be described as a paralog of the group that contains PBPs and β-lactamases. Therefore, this study could provide new structural and functional insights into the understanding this protein family.
Collapse
|
14
|
Affiliation(s)
- R. F. Pratt
- Department
of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
15
|
The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids. mBio 2016; 7:e02070-15. [PMID: 26861022 PMCID: PMC4752606 DOI: 10.1128/mbio.02070-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakthrough in understanding FmtA function. We show that FmtA hydrolyzes the ester bond between d-Ala and the backbone of teichoic acids, which are polyglycerol-phosphate or polyribitol-phosphate polymers found in the S. aureus cell envelope. FmtA contains two conserved motifs found in serine active-site penicillin-binding proteins (PBPs) and β-lactamases. The conserved SXXK motif was found to be important for the d-amino esterase activity of FmtA. Moreover, we show that deletion of fmtA (ΔfmtA) led to higher levels of d-Ala in teichoic acids, and this effect was reversed by complementation of ΔfmtA with fmtA. The positive charge on d-Ala partially masks the negative charge of the polyol-phosphate backbone of teichoic acids; hence, a change in the d-Ala content will result in modulation of their charge. Cell division, biofilm formation, autolysis, and colonization are among the many processes in S. aureus affected by the d-Ala content and overall charge of the cell surface teichoic acids. The esterase activity of FmtA and the regulation of fmtA suggest that FmtA functions as a modulator of teichoic acid charge, thus FmtA may be involved in S. aureus cell division, biofilm formation, autolysis, and colonization. IMPORTANCE Teichoic acids are involved in cell division, cell wall synthesis, biofilm formation, attachment of bacteria to artificial surfaces, and colonization. However, the function of teichoic acids is not fully understood. Modification by glycosylation and/or d-alanylation of the polyol-phosphate backbone of teichoic acids is important in the above cell processes. The intrinsic negative charge of teichoic acid backbone plays a role in the charge and/or pH of the bacterial surface, and d-alanylation represents a means through which bacteria modulate the charge or the pH of their surfaces. We discovered that FmtA removes d-Ala from teichoic acids. We propose FmtA may provide a temporal and spatial regulation of the bacterial cell surface charge in two ways, by removing the d-Ala from LTA to make it available to wall teichoic acid (WTA) in response to certain conditions and by removing it from WTA to allow the cell to reset its surface charge to a previous condition.
Collapse
|
16
|
Arima J, Shimone K, Miyatani K, Tsunehara Y, Isoda Y, Hino T, Nagano S. Crystal structure of D-stereospecific amidohydrolase from Streptomyces sp. 82F2 - insight into the structural factors for substrate specificity. FEBS J 2015; 283:337-49. [PMID: 26513520 DOI: 10.1111/febs.13579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED D-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2, which catalyzes amide bond formation from d-aminoacyl esters and l-amino acids (aminolysis), can be used to synthesize short peptides with a dl-configuration. We found that DAH can use 1,8-diaminooctane and other amino compounds as acyl acceptors in the aminolysis reaction. Low concentrations of 1,8-diaminooctane inhibited acyl-DAH intermediate formation. By contrast, excess 1,8-diaminooctane promoted aminolysis by DAH, producing d-Phe-1,8-diaminooctane via nucleophilic attack of the diamine on enzyme-bound d-Phe. To clarify the mechanism of substrate specificity and amide bond formation by DAH, the crystal structure of the enzyme that binds 1,8-diaminooctane was determined at a resolution of 1.49 Å. Comparison of the DAH crystal structure with those of other members of the S12 peptidase family indicated that the substrate specificity of DAH arises from its active site structure. The 1,8-diaminooctane molecule binds at the entrance of the active site pocket. The electrkon density map showed that another potential 1,8-diaminooctane binding site, probably with lower affinity, is present close to the active site. The enzyme kinetics and structural comparisons suggest that the location of enzyme-bound diamine can explain the inhibition of the acyl-enzyme intermediate formation, although the bound diamine is too far from the active site for aminolysis. Despite difficulty in locating the diamine binding site for aminolysis definitively, we propose that the excess diamine also binds at or near the second binding site to attack the acyl-enzyme intermediate during aminolysis. DATABASE The coordinates and structure factors for d-stereospecific amidohydrolase have been deposited in the Protein Data Bank at the Research Collaboratory for Structural Bioinformatics under code: 3WWX.
Collapse
Affiliation(s)
- Jiro Arima
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Kana Shimone
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Kazusa Miyatani
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Yuka Tsunehara
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Yoshitaka Isoda
- United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Japan
| |
Collapse
|
17
|
Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B. Sci Rep 2015; 5:13836. [PMID: 26370172 PMCID: PMC4570186 DOI: 10.1038/srep13836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023] Open
Abstract
Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP.
Collapse
|
18
|
Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 2015; 99:3341-9. [DOI: 10.1007/s00253-015-6507-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
|
19
|
Presence of multiple acyltranferases with diverse substrate specificity in Bacillus smithii strain IITR6b2 and characterization of unique acyltransferase with nicotinamide. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim S, Duc Ngo T, Kim KK, Kim TD. Characterization, crystallization and preliminary X-ray diffraction analysis of an (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767: enantioselectivity for potential industrial applications. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1374-7. [PMID: 23143253 PMCID: PMC3515385 DOI: 10.1107/s1744309112040626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022]
Abstract
The structures and reaction mechanisms of enantioselective hydrolases, which can be used in industrial applications such as biotransformations, are largely unknown. Here, the X-ray crystallographic study of a novel (S)-specific esterase (pfEstA) from Pseudomonas fluorescens KCTC 1767, which can be used in the production of (S)-ketoprofen, is described. Multiple sequence alignments with other hydrolases revealed that pfEstA contains a conserved Ser67 within the S-X-X-K motif as well as a highly conserved Tyr156. Recombinant protein containing an N-terminal His tag was expressed in Escherichia coli, purified to homogeneity and characterized using SDS-PAGE, MALDI-TOF MS and enantioselective analysis. pfEstA was crystallized using a solution consisting of 1 M sodium citrate, 0.1 M CHES pH 9.5, and X-ray diffraction data were collected to a resolution of 1.9 Å with an Rmerge of 7.9%. The crystals of pfEstA belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=65.31, b=82.13, c=100.41 Å, α=β=γ=90°.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T. Doohun Kim
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
22
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 906] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|