1
|
Muszak D, Surmiak E, Plewka J, Magiera-Mularz K, Kocik-Krol J, Musielak B, Sala D, Kitel R, Stec M, Weglarczyk K, Siedlar M, Dömling A, Skalniak L, Holak TA. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J Med Chem 2021; 64:11614-11636. [PMID: 34313116 PMCID: PMC8365601 DOI: 10.1021/acs.jmedchem.1c00957] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
We describe a new
class of potent PD-L1/PD-1 inhibitors based on
a terphenyl scaffold that is derived from the rigidified biphenyl-inspired
structure. Using in silico docking, we designed and
then experimentally demonstrated the effectiveness of the terphenyl-based
scaffolds in inhibiting PD-1/PD-L1 complex formation using various
biophysical and biochemical techniques. We also present a high-resolution
structure of the complex of PD-L1 with one of our most potent inhibitors
to identify key PD-L1/inhibitor interactions at the molecular level.
In addition, we show the efficacy of our most potent inhibitors in
activating the antitumor response using primary human immune cells
from healthy donors.
Collapse
Affiliation(s)
- Damian Muszak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Justyna Kocik-Krol
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dominik Sala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Malgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Impaired Intestinal Sodium Transport in Inflammatory Bowel Disease: From the Passenger to the Driver's Seat. Cell Mol Gastroenterol Hepatol 2021; 12:277-292. [PMID: 33744482 PMCID: PMC8165433 DOI: 10.1016/j.jcmgh.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Although impaired intestinal sodium transport has been described for decades as a ubiquitous feature of inflammatory bowel disease (IBD), whether and how it plays a pivotal role in the ailment has remained uncertain. Our identification of dominant mutations in receptor guanylyl cyclase 2C as a cause of IBD-associated familial diarrhea syndrome brought a shift in the way we envision impaired sodium transport. Is this just a passive collateral effect resulting from intestinal inflammation, or is it a crucial regulator of IBD pathogenesis? This review summarizes the mutational spectrum and underlying mechanisms of monogenic IBD associated with congenital sodium diarrhea. We constructed a model proposing that impaired sodium transport is an upstream pathogenic factor in IBD. The review also synthesized emerging insights from microbiome and animal studies to suggest how sodium malabsorption can serve as a unifying mediator of downstream pathophysiology. Further investigations into the mechanisms underlying salt and water transport in the intestine will provide newer approaches for understanding the ion-microbiome-immune cross-talk that serves as a driver of IBD. Model systems, such as patient-derived enteroids or induced pluripotent stem cell models, are warranted to unravel the role of individual genes regulating sodium transport and to develop more effective epithelial rescue and repair therapies.
Collapse
|
3
|
Berger AA, Völler JS, Budisa N, Koksch B. Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment. Acc Chem Res 2017; 50:2093-2103. [PMID: 28803466 DOI: 10.1021/acs.accounts.7b00226] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the fluorine code is how we describe not only the focus of this Account, but also the systematic approach to studying the impact of fluorine's incorporation on the properties of peptides and proteins used by our groups and others. The introduction of fluorine has been shown to impart favorable, but seldom predictable, properties to peptides and proteins, but up until about two decades ago the outcomes of fluorine modification of peptides and proteins were largely left to chance. Driven by the motivation to extend the application of the unique properties of the element fluorine from medicinal and agro chemistry to peptide and protein engineering we have established extensive research programs that enable the systematic investigation of effects that accompany the introduction of fluorine into this class of biopolymers. The introduction of fluorine into amino acids offers a universe of options for modifications with regard to number and position of fluorine substituents in the amino acid side chain. Moreover, it is important to emphasize that the consequences of incorporating the C-F bond into a biopolymer can be attributed to two distinct yet related phenomena: (i) the fluorine substituent can directly engage in intermolecular interactions with its environment and/or (ii) the other functional groups present in the molecule can be influenced by the electron withdrawing nature of this element (intramolecular) and in turn interact differently with their immediate environment (intermolecular). Based on our studies, we have shown that a change in number and/or position of as subtle as one single fluorine substituent has the power to considerably modify key properties of amino acids such as hydrophobicity, polarity, and secondary structure propensity. These properties are crucial factors in peptide and protein engineering, and thus, fluorinated amino acids can be applied to fine-tune properties such as protein folding, proteolytic stability, and protein-protein interactions provided we understand and become able to predict the outcome of a fluorine substitution in this context. With this Account, we attempt to analyze information we gained from our recent projects on how the nature of the fluorine atom and C-F bond influence four key properties of peptides and proteins: peptide folding, protein-protein interactions, ribosomal translation, and protease stability. These results impressively show why the introduction of fluorine creates a new class of amino acids with a repertoire of functionalities that is unique to the world of proteins and in some cases orthogonal to the set of canonical and natural amino acids. Our concluding statements aim to offer a few conserved design principles that have emerged from systematic studies over the last two decades; in this way, we hope to advance the field of peptide and protein engineering based on the judicious introduction of fluorinated building blocks.
Collapse
Affiliation(s)
- Allison Ann Berger
- Institute
of Chemistry and Biochemistry − Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jan-Stefan Völler
- Institute
of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623 Berlin Germany
| | - Nediljko Budisa
- Institute
of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623 Berlin Germany
| | - Beate Koksch
- Institute
of Chemistry and Biochemistry − Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
4
|
Yadav PK, Antonyraj CB, Basheer Ahamed SI, Srinivas S. Understanding Russell's viper venom factor V activator's substrate specificity by surface plasmon resonance and in-silico studies. PLoS One 2017; 12:e0181216. [PMID: 28732041 PMCID: PMC5521794 DOI: 10.1371/journal.pone.0181216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022] Open
Abstract
Blood coagulation factor V (FV) is activated either by Factor X or thrombin, cleaving at three different sites viz., Site I (Arg709-Ser710), site II (Arg1018-Thr1019), and site III (Arg1545-Ser1546). Russell's viper venom factor V activator (RVV-V) is a thrombin-like serine proteinase that activates FV with selective, single cleavage at site III. A long lasting effort is being pending in understanding the 'selective' binding specificity of the RVV-V towards site III. Here, we present the binding kinetic study of RVV-V with two designed peptides corresponding to the regions from site I (Gln699-Asn713) and site II (1008Lys-Pro1022), respectively, that include 15 amino acids. Our investigation for justifying the binding efficacy and kinetics of peptides includes SPR method, protein-peptide docking, molecular dynamics simulation, and principal component analysis (PCA). Surprisingly, the SPR experiment disclosed that the Peptide II showed a lower binding affinity with KD of 2.775 mM while the Peptide I showed none. Docking and simulation of both the peptides with RVV-V engaged either rooted or shallow binding for Peptide II and Peptide I respectively. The peptide binding resulted in global conformational changes in the native fold of RVV-V, whereas the similar studies for thrombin failed to make major changes in the native fold. In support, the PCA analysis for RVV-V showed the dislocation of catalytic triad upon binding both the peptides. Hence, RVV-V, a serine protease, is incompetent in cleaving these two sites. This study suggests a transition in RVV-V from the native rigid to the distorted flexible structure and paves a way to design a new peptide substrate/inhibitor.
Collapse
Affiliation(s)
- Pradeep K. Yadav
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | | | - Sistla Srinivas
- GE Healthcare Life Sciences, John F Welch Technology Centre, EPIP, Bengaluru, India
| |
Collapse
|
5
|
Arai S, Shibazaki C, Adachi M, Honjo E, Tamada T, Maeda Y, Tahara T, Kato T, Miyazaki H, Blaber M, Kuroki R. An insight into the thermodynamic characteristics of human thrombopoietin complexation with TN1 antibody. Protein Sci 2016; 25:1786-96. [PMID: 27419667 PMCID: PMC5029525 DOI: 10.1002/pro.2985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022]
Abstract
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody-hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen-binding fragment (Fab) derived from the TN1 antibody (TN1-Fab). To clarify the mechanism by which hTPO is recognized by TN1-Fab the conformation of free TN1-Fab was determined to a resolution of 2.0 Å using X-ray crystallography and compared with the hTPO-bound form of TN1-Fab determined by a previous study. This structural comparison revealed that the conformation of TN1-Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen-binding site (paratope) of TN1-Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (-1.52 ± 0.05 kJ mol(-1) K(-1) ) differed significantly from calculations based upon the X-ray structure data of the hTPO-bound and unbound forms of TN1-Fab (-1.02 ∼ 0.25 kJ mol(-1) K(-1) ) suggesting that hTPO undergoes an induced-fit conformational change combined with significant desolvation upon TN1-Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.
Collapse
Affiliation(s)
- Shigeki Arai
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
| | - Chie Shibazaki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Eijiro Honjo
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Taro Tamada
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Yoshitake Maeda
- Kyowa Hakko Kirin Co. Ltd, 3-6-6 Asahi-Cho, Machida, Tokyo, 194-8533, Japan
| | - Tomoyuki Tahara
- Kyowa Hakko Kirin Co. Ltd, 3-6-6 Asahi-Cho, Machida, Tokyo, 194-8533, Japan
| | - Takashi Kato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Hiroshi Miyazaki
- Department of Innovative Drug Discovery and Development, Japan Agency for Medical Research and Development, 1-5-5 Nihonbashi-muromachi, Chuo, Tokyo, 103-0022, Japan
| | - Michael Blaber
- College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida, 32306-4300, USA
| | - Ryota Kuroki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| |
Collapse
|
6
|
Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI). JOURNAL OF BIOMOLECULAR NMR 2016; 66:37-53. [PMID: 27566173 DOI: 10.1007/s10858-016-0055-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D (13)C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically (13)C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14-Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m c14 and m c38). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for (13)C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m c38 isomerization, the (1)H-(13)C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tsutomu Terauchi
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
- SAIL Technologies Inc., 2008-2 Wada, Tama, Tokyo, 206-0001, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Melo R, Fieldhouse R, Melo A, Correia JDG, Cordeiro MNDS, Gümüş ZH, Costa J, Bonvin AMJJ, Moreira IS. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Int J Mol Sci 2016; 17:E1215. [PMID: 27472327 PMCID: PMC5000613 DOI: 10.3390/ijms17081215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set.
Collapse
Affiliation(s)
- Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - Robert Fieldhouse
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - André Melo
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Maria Natália D S Cordeiro
- REQUIMTE (Rede de Química e Tecnologia), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joaquim Costa
- CMUP/FCUP, Centro de Matemática da Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| | - Irina S Moreira
- CNC-Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands.
| |
Collapse
|
8
|
Zhou Y, Xie D, Zhang Y. Amide Rotation Hindrance Predicts Proteolytic Resistance of Cystine-Knot Peptides. J Phys Chem Lett 2016; 7:1138-42. [PMID: 26958702 PMCID: PMC4824663 DOI: 10.1021/acs.jpclett.6b00373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cystine-knot peptides have remarkable stability against protease degradation and are attractive scaffolds for peptide-based therapeutic and diagnostic agents. In this work, by studying the hydrolysis reaction of a cystine-knot inhibitor MCTI-A and its variants with ab initio QM/MM molecular dynamics simulations, we have elucidated an amide rotation hindrance mechanism for proteolysis resistance: The proteolysis of MCTI-A is retarded due to the higher free energy cost during the rotation of NH group around scissile peptide bond at the tetrahedral intermediate of acylation, and covalent constraint provided by disulfide bonds is the key factor to hinder this rotation. A nearly linear correlation has been revealed between free energy barriers of the peptide hydrolysis reaction and the amide rotation free energy changes at the protease-peptide Michaelis complex state. This suggests that amide rotation hindrance could be one useful feature to estimate peptide proteolysis stability.
Collapse
Affiliation(s)
- Yanzi Zhou
- Laboratory of Mesoscopic Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Corresponding Author: 1) , 2)
| | - Daiqian Xie
- Laboratory of Mesoscopic Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003 USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Corresponding Author: 1) , 2)
| |
Collapse
|
9
|
Ye S, Loll B, Berger AA, Mülow U, Alings C, Wahl MC, Koksch B. Fluorine teams up with water to restore inhibitor activity to mutant BPTI. Chem Sci 2015; 6:5246-5254. [PMID: 29449928 PMCID: PMC5669249 DOI: 10.1039/c4sc03227f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/11/2015] [Indexed: 11/21/2022] Open
Abstract
Fluorinated derivatives of aminobutyric acid engage in unique interactions with structural waters within the BPTI/trypsin interface and restore inhibitor activity.
Introducing fluorine into molecules has a wide range of effects on their physicochemical properties, often desirable but in most cases unpredictable. The fluorine atom imparts the C–F bond with low polarizability and high polarity, and significantly affects the behavior of neighboring functional groups, in a covalent or noncovalent manner. Here, we report that fluorine, present in the form of a single fluoroalkyl amino acid side chain in the P1 position of the well-characterized serine-protease inhibitor BPTI, can fully restore inhibitor activity to a mutant that contains the corresponding hydrocarbon side chain at the same site. High resolution crystal structures were obtained for four BPTI variants in complex with bovine β-trypsin, revealing changes in the stoichiometry and dynamics of water molecules in the S1 subsite. These results demonstrate that the introduction of fluorine into a protein environment can result in “chemical complementation” that has a significantly favorable impact on protein–protein interactions.
Collapse
Affiliation(s)
- Shijie Ye
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry , Takustr. 3 , Berlin, 14195 , Germany . ; ; Tel: +49-30-83855344
| | - Bernhard Loll
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry, Structural Biochemistry , Takustr. 6 , Berlin, 14195 , Germany
| | - Allison Ann Berger
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry , Takustr. 3 , Berlin, 14195 , Germany . ; ; Tel: +49-30-83855344
| | - Ulrike Mülow
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry , Takustr. 3 , Berlin, 14195 , Germany . ; ; Tel: +49-30-83855344
| | - Claudia Alings
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry, Structural Biochemistry , Takustr. 6 , Berlin, 14195 , Germany
| | - Markus Christian Wahl
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry, Structural Biochemistry , Takustr. 6 , Berlin, 14195 , Germany
| | - Beate Koksch
- Department of Biology, Chemistry, and Pharmacy , Freie Universität Berlin , Institute of Chemistry and Biochemistry , Takustr. 3 , Berlin, 14195 , Germany . ; ; Tel: +49-30-83855344
| |
Collapse
|
10
|
Pendlebury D, Wang R, Henin RD, Hockla A, Soares AS, Madden BJ, Kazanov MD, Radisky ES. Sequence and conformational specificity in substrate recognition: several human Kunitz protease inhibitor domains are specific substrates of mesotrypsin. J Biol Chem 2014; 289:32783-97. [PMID: 25301953 DOI: 10.1074/jbc.m114.609560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesotrypsin is an isoform of trypsin that is uniquely resistant to polypeptide trypsin inhibitors and can cleave some inhibitors rapidly. Previous studies have shown that the amyloid precursor protein Kunitz protease inhibitor domain (APPI) is a specific substrate of mesotrypsin and that stabilization of the APPI cleavage site in a canonical conformation contributes to recognition by mesotrypsin. We hypothesized that other proteins possessing potential cleavage sites stabilized in a similar conformation might also be mesotrypsin substrates. Here we evaluated a series of candidate substrates, including human Kunitz protease inhibitor domains from amyloid precursor-like protein 2 (APLP2), bikunin, hepatocyte growth factor activator inhibitor type 2 (HAI2), tissue factor pathway inhibitor-1 (TFPI1), and tissue factor pathway inhibitor-2 (TFPI2), as well as E-selectin, an unrelated protein possessing a potential cleavage site displaying canonical conformation. We find that Kunitz domains within APLP2, bikunin, and HAI2 are cleaved by mesotrypsin with kinetic profiles of specific substrates. TFPI1 and TFPI2 Kunitz domains are cleaved less efficiently by mesotrypsin, and E-selectin is not cleaved at the anticipated site. Cocrystal structures of mesotrypsin with HAI2 and bikunin Kunitz domains reveal the mode of mesotrypsin interaction with its canonical substrates. Our data suggest that major determinants of mesotrypsin substrate specificity include sequence preferences at the P1 and P'2 positions along with conformational stabilization of the cleavage site in the canonical conformation. Mesotrypsin up-regulation has been implicated previously in cancer progression, and proteolytic clearance of Kunitz protease inhibitors offers potential mechanisms by which mesotrypsin may mediate pathological effects in cancer.
Collapse
Affiliation(s)
- Devon Pendlebury
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Ruiying Wang
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Rachel D Henin
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexandra Hockla
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexei S Soares
- the Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Benjamin J Madden
- the Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Marat D Kazanov
- the A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| |
Collapse
|
11
|
Fukushima K, Kamimura T, Takimoto-Kamimura M. Structure basis 1/2SLPI and porcine pancreas trypsin interaction. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:943-7. [PMID: 24121345 PMCID: PMC3795561 DOI: 10.1107/s090904951302133x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
SLPI (secretory leukocyte protease inhibitor) is a 107-residue protease inhibitor which inhibits various serine proteases, including elastase, cathepsin G, chymotrypsin and trypsin. SLPI is obtained as a multiple inhibitor in lung defense and in chronic airway infection. X-ray crystal structures have so far reported that they are full-length SLPIs with bovine α-chymotrypsin and 1/2SLPI (recombinant C-terminal domain of SLPI; Arg58-Ala107) with HNE (human neutrophil elastase). To understand the role of this multiple inhibitory mechanism, the crystal structure of 1/2SLPI with porcine pancreas trypsin was solved and the binding modes of two other complexes compared. The Leu residue surprisingly interacts with the S1 site of trypsin, as with chymotrypsin and elastase. The inhibitory mechanism of 1/2SLPI using the wide primary binding site contacts (from P2' to P5) with various serine proteases is discussed. These inhibitory mechanisms have been acquired in the evolution of the protection system for acute inflammatory diseases.
Collapse
Affiliation(s)
- Kei Fukushima
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takashi Kamimura
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Midori Takimoto-Kamimura
- Medicinal Chemistry Technology Department, Teijin Institute for Bio-Medical Research, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
12
|
Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar Drugs 2013; 11:2069-112. [PMID: 23771044 PMCID: PMC3721222 DOI: 10.3390/md11062069] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Collapse
|
13
|
Persson F, Halle B. Transient access to the protein interior: simulation versus NMR. J Am Chem Soc 2013; 135:8735-48. [PMID: 23675835 DOI: 10.1021/ja403405d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many proteins rely on rare structural fluctuations for their function, whereby solvent and other small molecules gain transient access to internal cavities. In magnetic relaxation dispersion (MRD) experiments, water molecules buried in such cavities are used as intrinsic probes of the intermittent protein motions that govern their exchange with external solvent. While this has allowed a detailed characterization of exchange kinetics for several proteins, little is known about the exchange mechanism. Here, we use a millisecond all-atom MD trajectory produced by Shaw et al. (Science2010, 330, 341) to characterize water exchange from the four internal hydration sites in the protein bovine pancreatic trypsin inhibitor. Using a recently developed stochastic point process approach, we compute the survival correlation function probed by MRD experiments as well as other quantities designed to validate the exchange-mediated orientational randomization (EMOR) model used to interpret the MRD data. The EMOR model is found to be quantitatively accurate, and the simulation reproduces the experimental mean survival times for all four sites with activation energy discrepancies in the range 0-3 kBT. On the other hand, the simulated hydration sites are somewhat too flexible, and the water flip barrier is underestimated by up to 6 kBT. The simulation reveals that water molecules gain access to the internal sites by a transient aqueduct mechanism, migrating as single-file water chains through transient (<5 ns) tunnels or pores. The present study illustrates the power of state-of-the-art molecular dynamics simulations in validating and extending experimental results.
Collapse
Affiliation(s)
- Filip Persson
- Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
14
|
Millers EKI, Johnson LA, Birrell GW, Masci PP, Lavin MF, de Jersey J, Guddat LW. The structure of human microplasmin in complex with textilinin-1, an aprotinin-like inhibitor from the Australian brown snake. PLoS One 2013; 8:e54104. [PMID: 23335990 PMCID: PMC3545990 DOI: 10.1371/journal.pone.0054104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/07/2012] [Indexed: 01/01/2023] Open
Abstract
Textilinin-1 is a Kunitz-type serine protease inhibitor from Australian brown snake venom. Its ability to potently and specifically inhibit human plasmin (Ki = 0.44 nM) makes it a potential therapeutic drug as a systemic anti-bleeding agent. The crystal structures of the human microplasmin-textilinin-1 and the trypsin-textilinin-1 complexes have been determined to 2.78 Å and 1.64 Å resolution respectively, and show that textilinin-1 binds to trypsin in a canonical mode but to microplasmin in an atypical mode with the catalytic histidine of microplasmin rotated out of the active site. The space vacated by the histidine side-chain in this complex is partially occupied by a water molecule. In the structure of microplasminogen the χ1 dihedral angle of the side-chain of the catalytic histidine is rotated by 67° from its “active” position in the catalytic triad, as exemplified by its location when microplasmin is bound to streptokinase. However, when textilinin-1 binds to microplasmin the χ1 dihedral angle of this amino acid residue changes by −157° (i.e. in the opposite rotation direction compared to microplasminogen). The unusual mode of interaction between textilinin-1 and plasmin explains textilinin-1′s selectivity for human plasmin over plasma kallikrein. This difference can be exploited in future drug design efforts.
Collapse
Affiliation(s)
- Emma-Karin I. Millers
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Lambro A. Johnson
- Department of Medicine, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Geoff W. Birrell
- The Queensland Cancer Fund Research Unit, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Brisbane, Queensland, Australia
| | - Paul P. Masci
- Department of Medicine, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Martin F. Lavin
- The Queensland Cancer Fund Research Unit, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Brisbane, Queensland, Australia
| | - John de Jersey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
Entropy-enthalpy transduction caused by conformational shifts can obscure the forces driving protein-ligand binding. Proc Natl Acad Sci U S A 2012; 109:20006-11. [PMID: 23150595 DOI: 10.1073/pnas.1213180109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Molecular dynamics simulations of unprecedented duration now can provide new insights into biomolecular mechanisms. Analysis of a 1-ms molecular dynamics simulation of the small protein bovine pancreatic trypsin inhibitor reveals that its main conformations have different thermodynamic profiles and that perturbation of a single geometric variable, such as a torsion angle or interresidue distance, can select for occupancy of one or another conformational state. These results establish the basis for a mechanism that we term entropy-enthalpy transduction (EET), in which the thermodynamic character of a local perturbation, such as enthalpic binding of a small molecule, is camouflaged by the thermodynamics of a global conformational change induced by the perturbation, such as a switch into a high-entropy conformational state. It is noted that EET could occur in many systems, making measured entropies and enthalpies of folding and binding unreliable indicators of actual thermodynamic driving forces. The same mechanism might also account for the high experimental variance of measured enthalpies and entropies relative to free energies in some calorimetric studies. Finally, EET may be the physical mechanism underlying many cases of entropy-enthalpy compensation.
Collapse
|
16
|
García-Fernández R, Pons T, Perbandt M, Valiente PA, Talavera A, González-González Y, Rehders D, Chávez MA, Betzel C, Redecke L. Structural insights into serine protease inhibition by a marine invertebrate BPTI Kunitz-type inhibitor. J Struct Biol 2012; 180:271-9. [PMID: 22975140 DOI: 10.1016/j.jsb.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Proteins isolated from marine invertebrates are frequently characterized by exceptional structural and functional properties. ShPI-1, a BPTI Kunitz-type inhibitor from the Caribbean Sea anemone Stichodactyla helianthus, displays activity not only against serine-, but also against cysteine-, and aspartate proteases. As an initial step to evaluate the molecular basis of its activities, we describe the crystallographic structure of ShPI-1 in complex with the serine protease bovine pancreatic trypsin at 1.7Å resolution. The overall structure and the important enzyme-inhibitor interactions of this first invertebrate BPTI-like Kunitz-type inhibitor:trypsin complex remained largely conserved compared to mammalian BPTI-Kunitz inhibitor complexes. However, a prominent stabilizing role within the interface was attributed to arginine at position P3. Binding free-energy calculations indicated a 10-fold decrease for the inhibitor affinity against trypsin, if the P3 residue of ShPI-1 is mutated to alanine. Together with the increased role of Arg(11) at P3 position, slightly reduced interactions at the prime side (Pn') of the primary binding loop and at the secondary binding loop of ShPI-1 were detected. In addition, the structure provides important information for site directed mutagenesis to further optimize the activity of rShPI-1A for biotechnological applications.
Collapse
Affiliation(s)
- Rossana García-Fernández
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, Calle 25 No 411, Havana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Salameh MA, Soares AS, Alloy A, Radisky ES. Presence versus absence of hydrogen bond donor Tyr-39 influences interactions of cationic trypsin and mesotrypsin with protein protease inhibitors. Protein Sci 2012; 21:1103-12. [PMID: 22610453 PMCID: PMC3537232 DOI: 10.1002/pro.2097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
Abstract
Mesotrypsin displays unusual resistance to inhibition by polypeptide trypsin inhibitors and cleaves some such inhibitors as substrates, despite a high degree of conservation with other mammalian trypsins. Substitution of Arg for the generally conserved Gly-193 has been implicated as a critical determinant of the unusual behavior of mesotrypsin toward protein protease inhibitors. Another relatively conserved residue near the trypsin active site, Tyr-39, is substituted by Ser-39 in mesotrypsin. Tyr-39, but not Ser-39, forms a hydrogen bond with the main chain amide nitrogen of the P(4) ' residue of a bound protease inhibitor. To investigate the role of the Tyr-39 H-bond in trypsin-inhibitor interactions, we reciprocally mutated position 39 in mesotrypsin and human cationic trypsin to Tyr-39 and Ser-39, respectively. We assessed inhibition constants and cleavage rates of canonical protease inhibitors bovine pancreatic trypsin inhibitor (BPTI) and the amyloid precursor protein Kunitz protease inhibitor domain by mesotrypsin and cationic trypsin variants, finding that the presence of Ser-39 relative to Tyr-39 results in a 4- to 13-fold poorer binding affinity and a 2- to 18-fold increase in cleavage rate. We also report the crystal structure of the mesotrypsin-S39Y•BPTI complex, in which we observe an H-bond between Tyr-39 OH and BPTI Ile-19 N. Our results indicate that the presence of Ser-39 in mesotrypsin, and corresponding absence of a single H-bond to the inhibitor backbone, makes a small but significant functional contribution to the resistance of mesotrypsin to inhibition and the ability of mesotrypsin to proteolyze inhibitors.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| | - Alexei S Soares
- Department of Biology, Brookhaven National LaboratoryUpton, New York 11973
| | - Alexandre Alloy
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| |
Collapse
|
18
|
The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis. Blood 2012; 120:671-7. [PMID: 22674803 DOI: 10.1182/blood-2012-03-419523] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl(3)-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy.
Collapse
|
19
|
Majumder S, Khamrui S, Dasgupta J, Dattagupta JK, Sen U. Role of remote scaffolding residues in the inhibitory loop pre-organization, flexibility, rigidification and enzyme inhibition of serine protease inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:882-90. [PMID: 22709512 DOI: 10.1016/j.bbapap.2012.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Canonical serine protease inhibitors interact with cognate enzymes through the P3-P2' region of the inhibitory loop while its scaffold hardly makes any contact. Neighboring scaffolding residues like Arginines or Asparagine shape-up the inhibitory loop and favor the resynthesis of cleaved scissile bond. However, role of remote scaffolding residues, which are not involved in religation, was not properly explored. Crystal structures of two engineered winged bean chymotrypsin inhibitor (WCI) complexed with Bovine trypsin (BPT) namely L65R-WCI:BPT and F64Y/L65R-WCI:BPT show that the inhibitory loop of these engineered inhibitors are recognized and rigidified properly at the enzyme active site like other strong trypsin inhibitors. Chimeric protein ETI(L)-WCI(S), having a loop of Erythrina caffra Trypsin Inhibitor, ETI on the scaffold of WCI, was previously shown to behave like substrate. Non-canonical structure of the inhibitory loop and its flexibility are attributed to the presence of smaller scaffolding residues which cannot act as barrier to the inhibitory loop like in ETI. Double mutant A76R/L115Y-(ETI(L)-WCI(S)), where the barrier is reintroduced on ETI(L)-WCI(S), shows regaining of inhibitory activity. The structure of A76R/L115Y-(ETI(L)-WCI(S)) along with L65R-WCI:BPT and F64Y/L65R-WCI:BPT demonstrate here that the lost canonical conformation of the inhibitory loop is fully restored and loop flexibility is dramatically reduced. Therefore, residues at the inhibitory loop interact with the enzyme playing the primary role in recognition and binding but scaffolding residues having no direct interaction with the enzyme are crucial for rigidification event and the inhibitory potency. B-factor analysis indicates that the amount of inhibitory loop rigidification varies between different inhibitor families.
Collapse
Affiliation(s)
- Sudip Majumder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | | | |
Collapse
|
20
|
Navaneetham D, Sinha D, Walsh PN. Mechanisms and specificity of factor XIa and trypsin inhibition by protease nexin 2 and basic pancreatic trypsin inhibitor. J Biochem 2010; 148:467-79. [PMID: 20647553 DOI: 10.1093/jb/mvq080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Factor XIa (FXIa) inhibition by protease nexin-2 (PN2KPI) was compared with trypsin inhibition by basic pancreatic trypsin inhibitor (BPTI). PN2KPI was a potent inhibitor of FXIa (K(i) ∼ 0.81 nM) and trypsin (K(i) ∼ 0.03 nM), but not of other coagulation proteases (thrombin, FVIIa, FIXa, FXa, FXIIa, plasmin, kallikrein, K(i) > 185 nM). PN2KPI was ∼775-fold more potent than BPTI in FXIa inhibition, but both exhibited similar potencies against trypsin. Studies of FXIa and trypsin inhibition by PN2KPI and BPTI and P1 site swap mutants (PN2KPI-R15 K, BPTI-K15 R) demonstrated that FXIa inhibition by PN2KPI and P1 site swap mutants and trypsin inhibition by PN2KPI and BPTI conform to a single-step, slow equilibration inhibitory mechanism, whereas FXIa-inhibition by BPTI follows a classical, competitive inhibitory mechanism. Mutation of P1 impaired FXIa inhibition by PN2KPI-R15 K ∼14-fold, enhanced FXIa inhibition by BPTI-K15 R ∼150-fold, and had no effect on trypsin inhibition. Arginine at the P1 site of either PN2KPI or BPTI confers high affinity and specificity for FXIa, whereas either arginine or lysine suffices for trypsin inhibition. Thus, PN2KPI is a highly specific inhibitor of FXIa among coagulation enzymes, but the flexibility of trypsin renders it susceptible to inhibition by both wild-type and mutant forms of PN2KPI and BPTI.
Collapse
Affiliation(s)
- Duraiswamy Navaneetham
- Sol Sherry Thrombosis Research Center; Department of Medicine; and Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
21
|
Structural binding evidence of the trypanocidal drugs berenil and pentacarinate active principles to a serine protease model. Int J Biol Macromol 2010; 46:502-11. [PMID: 20356563 DOI: 10.1016/j.ijbiomac.2010.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 11/22/2022]
Abstract
Bovine trypsin is a model system for the serine protease class of enzymes, which is an important target for contemporary medicinal chemistry. Some structural and thermodynamic reports are available on its interaction with benzamidine-based compounds but no structural information is available so far on its binding modes to the active principles of the trypanocidal drugs Pentacarinate (pentamidine) and Berenil (diminazene). The crystallographic structures of bovine beta-trypsin in complex with the ligands were determined to a resolution of 1.57 A (diminazene) and 1.70 A (diminazene and pentamidine). The second benzamidine moieties in these inhibitors are bound to the enzyme in different hot spots and only few hydrogen bonds mediate these interactions. Thermodynamic parameters for the association of pentamidine with beta-trypsin reveal that this inhibitor has about 1.3-fold lower affinity than diminazene. Moreover its binding mode resembles other benzamidine-based compounds that assess the aryl binding pocket of the enzyme; however, with almost 2.5-fold higher affinity. This is the first structural evidence of the binding of Berenil and Pentacarinate active principles trypanocidal drugs to serine proteases.
Collapse
|
22
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
23
|
Popov ME, Sten'gach MA, Andreeva NS. [Modeling of substrate and inhibitory complexes of histidine-aspartic protease]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:422-9. [PMID: 18672695 DOI: 10.1134/s1068162008030229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional structure of histo-aspartic protease (HAP), a pepsin-like enzyme from the causative agent of malaria Plasmodium falciparum, is suggested on the basis of homologous modeling followed by equilibration by the method of molecular dynamics. The presence of a His residue in the catalytic site instead of an Asp residue, which is characteristic of pepsin-like enzymes, and replacement of some other conserved residues in the active site make it possible for the enzyme to function by the covalent mechanism inherent in serine proteases. The detailed structures of HAP complexes with pepstatin, a noncovalent inhibitor of aspartic proteases, and phenylmethylsulfonyl fluoride, a covalent inhibitor of serine proteases, as well as with a pentapeptide substrate are discussed.
Collapse
|
24
|
Zakharova E, Horvath MP, Goldenberg DP. Functional and structural roles of the Cys14-Cys38 disulfide of bovine pancreatic trypsin inhibitor. J Mol Biol 2008; 382:998-1013. [PMID: 18692070 DOI: 10.1016/j.jmb.2008.07.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
The disulfide bond between Cys14 and Cys38 of bovine pancreatic trypsin inhibitor lies on the surface of the inhibitor and forms part of the protease-binding region. The functional properties of three variants lacking this disulfide, with one or both of the Cys residues replaced with Ser, were examined, and X-ray crystal structures of the complexes with bovine trypsin were determined and refined to the 1.58-A resolution limit. The crystal structure of the complex formed with the mutant with both Cys residues replaced was nearly identical with that of the complex containing the wild-type protein, with the Ser oxygen atoms positioned to replace the disulfide bond with a hydrogen bond. The two structures of the complexes with single replacements displayed small local perturbations with alternate conformations of the Ser side chains. Despite the absence of the disulfide bond, the crystallographic temperature factors show no evidence of increased flexibility in the complexes with the mutant inhibitors. All three of the variants were cleaved by trypsin more rapidly than the wild-type inhibitor, by as much as 10,000-fold, indicating that the covalent constraint normally imposed by the disulfide contributes to the remarkable resistance to hydrolysis displayed by the wild-type protein. The rates of hydrolysis display an unusual dependence on pH over the range of 3.5-8.0, decreasing at the more alkaline values, as compared with the increased hydrolysis rates for normal substrates under these conditions. These observations can be accounted for by a model for inhibition in which an acyl-enzyme intermediate forms at a significant rate but is rapidly converted back to the enzyme-inhibitor complex by nucleophilic attack by the newly created amino group. The model suggests that a lack of flexibility in the acyl-enzyme intermediate, rather than the enzyme-inhibitor complex, may be a key factor in the ability of bovine pancreatic trypsin inhibitor and similar inhibitors to resist hydrolysis.
Collapse
Affiliation(s)
- Elena Zakharova
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | |
Collapse
|
25
|
Persson E, Halle B. Nanosecond to Microsecond Protein Dynamics Probed by Magnetic Relaxation Dispersion of Buried Water Molecules. J Am Chem Soc 2008; 130:1774-87. [DOI: 10.1021/ja0775873] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erik Persson
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Bertil Halle
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
26
|
Getun IV, Brown CK, Tulla-Puche J, Ohlendorf D, Woodward C, Barany G. Partially Folded Bovine Pancreatic Trypsin Inhibitor Analogues Attain Fully Native Structures when Co-Crystallized with S195A Rat Trypsin. J Mol Biol 2008; 375:812-23. [DOI: 10.1016/j.jmb.2007.10.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/28/2007] [Accepted: 10/30/2007] [Indexed: 11/24/2022]
|
27
|
Salameh MA, Soares AS, Hockla A, Radisky ES. Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 2007; 283:4115-23. [PMID: 18077447 DOI: 10.1074/jbc.m708268200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|