1
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Alonazi M, Krayem N, Alharbi MG, Khayyat AIA, Alanazi H, Horchani H, Ben Bacha A. Functional Characterization and Anti-Tumor Effect of a Novel Group II Secreted Phospholipase A 2 from Snake Venom of Saudi Cerastes cerates gasperetti. Molecules 2023; 28:6517. [PMID: 37764293 PMCID: PMC10536776 DOI: 10.3390/molecules28186517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Route de Soukra 3038, Sfax BP 1173, Tunisia;
| | - Mona G. Alharbi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Humidah Alanazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| | - Habib Horchani
- Science Department, College of Rivière-Du-Loup, Rivière-Du-Loup, QC G5R 1R1, Canada;
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (M.A.); (M.G.A.); (A.I.A.K.); (H.A.)
| |
Collapse
|
3
|
De Luca D, Alonso A, Autilio C. Bile acids-induced lung injury: update of reverse translational biology. Am J Physiol Lung Cell Mol Physiol 2022; 323:L93-L106. [DOI: 10.1152/ajplung.00523.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bile acids in lung tissue is associated with some clinical features observed in various medical specialties, but it took time to understand that these are due to a "bile acid-induced lung injury" since specific translational studies and cross-disciplinary awareness were lacking. We used a reverse translational approach to update and summarize the current knowledge about the mechanisms of bile acid-induced lung injury. This has been done in a cross-disciplinary fashion since these conditions may occur in patients of various age and in different medical fields. We here define these clinical conditions, then we review the physiopathology of these conditions and the animal models used to mimic them and, finally, their pathobiology. Mechanisms of bile acid-induced lung injury have been partially clarified overtime and are represented by: 1) the interaction with secretory phospholipase A2 pathway, 2) the effect on surfactant function and structure, 3) the biological effects on inflammation and local immunity, 4) the direct cellular toxicity. These mechanisms are schematically illustrated and histological comparisons between ARDS induced by bile acids and other triggers are also provided. Based on these mechanisms we propose possible direct therapeutic applications and, finally, we discuss further research steps to improve the understanding of processes that generate pathological clinical conditions.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital, Clamart, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Le Plessis Robinson, France
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| |
Collapse
|
4
|
Krayem N, Sidhoum R, Cherif S, Karray A. Efficient heterologous expression in Pichia pastoris, immobilization and functional characterization of a scorpion venom secreted phospholipase A 2. Toxicon 2022; 216:1-10. [PMID: 35660627 DOI: 10.1016/j.toxicon.2022.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Industrial processes have expanded with the ability to clone and express recombinant immobilized enzymes in microorganisms such as Pichia pastoris that have commercially attractive amounts of the appropriate genes. This report describes the overexpression in Pichia pastoris, immobilization, and functional characterization of a secreted phospholipase A2 from scorpion venom Scorpio maurus: rPLA2(-5). After 48 h of culture, the recombinant rPLA2(-5) was secreted into the culture medium and expressed at about 9 mg/L. Comparative analyses of the kinetics and hydrolysis of rPLA2(-5) monolayers at various surface pressures were conducted with the same form produced in Escherichia coli. As a second part of the study, rPLA2(-5) overexpressed in Pichia pastoris was immobilized by adsorption on CaCO3, with about 78 percent of the activity. In comparison to the free enzyme, rPLA2(-5) was studied for stability. Immobilization improved the thermal stability of rPLA2(-5) and even the stability at acidic pH. Moreover, we found that the immobilization improved the stability of rPLA2(-5) towards bile salts, Tween 80, Triton X-100, and SDS, as well as its stability towards many organic solvents. Until now, this is the first study to describe the overexpression and immobilization of a scorpion venom phospholipase A2 that possesses an interesting stability characteristic that makes it useful for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia.
| | - Rim Sidhoum
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| | - Slim Cherif
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| |
Collapse
|
5
|
Mei L, Fu Q, Guo T, Ji Q, Zhou Y. Structural changes and cholesterol-lowering in denatured whey protein isolate: Malic acid combined enzymolysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
7
|
Lordan R, Redfern S, Tsoupras A, Zabetakis I. Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 2020; 11:2861-2885. [DOI: 10.1039/c9fo01742a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review presents the latest research on the cardioprotective effects of n-3 fatty acids (FA) and n-3 FA bound to polar lipids (PL). Overall, n-3 PL may have enhanced bioavailability and potentially bioactivityversusfree FA and ester forms of n-3 FA.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Shane Redfern
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Ioannis Zabetakis
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| |
Collapse
|
8
|
Siow HL, Choi SB, Gan CY. Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Stremmel W, Staffer S, Wannhoff A, Pathil A, Chamulitrat W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis. FASEB J 2014; 28:3159-70. [PMID: 24719358 DOI: 10.1096/fj.14-249763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Excess hepatic fat accumulation leads to nonalcoholic steatohepatitis (NASH), a serious threat to health for which no effective treatment is available. However, the mechanism responsible for fatty acid uptake by hepatocytes remains unclear. Using the human hepatocyte-derived tumor cell line HepG2, we found that fatty acid influx is mediated by a heterotetrameric plasma membrane protein complex consisting of plasma membrane fatty acid-binding protein, caveolin-1, CD36, and calcium-independent membrane phospholipase A2 (iPLA2β). Blocking iPLA2β with the bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) caused the dissociation of the complex, thereby inhibiting fatty acid influx (IC50 47 μM), and suppressed the synthesis of all subunits through a reduction in lysophosphatidylcholine from 8.0 to 3.5 μmol/mg of protein and corresponding depletion of phosphorylated c-Jun N-terminal kinase. These findings were substantiated by an observed 56.5% decrease in fatty acid influx in isolated hepatocytes derived from iPLA2β-knockout mice. Moreover, steatosis and inflammation were abrogated by UDCA-LPE treatment in a cellular model of NASH. Thus, iPLA2β acts as an upstream checkpoint for mechanisms that regulate fatty acid uptake, and its inhibition by UDCA-LPE qualifies this nontoxic compound as a therapeutic candidate for the treatment of NASH.-Stremmel, W., Staffer, S., Wannhoff, A., Pathil, A., Chamulitrat, W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Wolfgang Stremmel
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Staffer
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Wannhoff
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Pathil
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Gioiello A, Venturoni F, Tamimi S, Custodi C, Pellicciari R, Macchiarulo A. Conformational properties of cholic acid, a lead compound at the crossroads of bile acid inspired drug discovery. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00024b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DFT and NMR spectroscopy studies unveil three major minima conformations of cholic acid that may affect its biological properties.
Collapse
Affiliation(s)
- Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
| | - Francesco Venturoni
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
| | - Sara Tamimi
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
| | - Chiara Custodi
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
| | - Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
- TES Pharma S.r.l
- Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università degli Studi di Perugia
- 06123 Perugia, Italy
| |
Collapse
|
11
|
Extending the hydrophobic cavity of β-cyclodextrin results in more negative heat capacity changes but reduced binding affinities. J INCL PHENOM MACRO 2013. [DOI: 10.1007/s10847-013-0305-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
De Luca D, Capoluongo E, Rigo V. Secretory phospholipase A2 pathway in various types of lung injury in neonates and infants: a multicentre translational study. BMC Pediatr 2011; 11:101. [PMID: 22067747 PMCID: PMC3247178 DOI: 10.1186/1471-2431-11-101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 11/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secretory phospholipase A2 (sPLA2) is a group of enzymes involved in lung tissue inflammation and surfactant catabolism. sPLA2 plays a role in adults affected by acute lung injury and seems a promising therapeutic target. Preliminary data allow foreseeing the importance of such enzyme in some critical respiratory diseases in neonates and infants, as well. Our study aim is to clarify the role of sPLA2 and its modulators in the pathogenesis and clinical severity of hyaline membrane disease, infection related respiratory failure, meconium aspiration syndrome and acute respiratory distress syndrome. sPLA2 genes will also be sequenced and possible genetic involvement will be analysed. METHODS/DESIGN Multicentre, international, translational study, including several paediatric and neonatal intensive care units and one coordinating laboratory. Babies affected by the above mentioned conditions will be enrolled: broncho-alveolar lavage fluid, serum and whole blood will be obtained at definite time-points during the disease course. Several clinical, respiratory and outcome data will be recorded. Laboratory researchers who perform the bench part of the study will be blinded to the clinical data. DISCUSSION This study, thanks to its multicenter design, will clarify the role(s) of sPLA2 and its pathway in these diseases: sPLA2 might be the crossroad between inflammation and surfactant dysfunction. This may represent a crucial target for new anti-inflammatory therapies but also a novel approach to protect surfactant or spare it, improving alveolar stability, lung mechanics and gas exchange.
Collapse
Affiliation(s)
- Daniele De Luca
- Pediatric Intensive Care Unit, Dept of Emergency and Intensive Care, University Hospital "A.Gemelli", Catholic University of the Sacred Heart - Rome, Italy
- Laboratory of Clinical Molecular Biology, Dept of Molecular Medicine, University Hospital "A.Gemelli", Catholic University of the Sacred Heart - Rome, Italy
| | - Ettore Capoluongo
- Pediatric Intensive Care Unit, Dept of Emergency and Intensive Care, University Hospital "A.Gemelli", Catholic University of the Sacred Heart - Rome, Italy
| | - Vincent Rigo
- Neonatal Intensive Care Unit, University of Liège, CHU de Liège (CHR Citadelle), Belgium
| |
Collapse
|
13
|
Pereañez JA, Núñez V, Patiño AC. Inhibitory effects of bile acids on enzymatic and pharmacological activities of a snake venom phospholipase A(2) from group IIA. Protein J 2011; 30:253-61. [PMID: 21499855 DOI: 10.1007/s10930-011-9327-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bile acids, such as cholic acid (CA) and ursodeoxycholic acid (UDCA) have shown to decrease or increase the enzymatic activity of group IB pancreatic PLA(2), depending on the concentration used. Studies suggest that the inhibition of hydrolysis rate of the substrate is due to formation in aqueous phase of a complex between bile acid and PLA(2), which is catalytically inert. For this reason, we tested the inhibition of the enzymatic activity of group IIA snake venom PLA(2) by bile acids, using an aqueous phase model. In addition, we measured the ability of bile acids to inhibit the toxic effects caused by the mentioned toxin. UDCA and CA inhibited the enzymatic activity of the PLA(2) in a competitive mode. Moreover, these compounds inhibited myotoxic, cytotoxic and edema-forming activities induced by the toxin, but UDCA was more efficient than CA. It was demonstrated that bile acids interact directly with this protein by causing slight changes in the intrinsic fluorescence spectra. Preliminary molecular docking studies suggest that bile acids interact with amino acids at the active site of the PLA(2) through different interactions, CA showed hydrogen bonds with His48, whereas, UDCA displayed with Asp49. Results obtained herein may turn UDCA and CA into promising models for the development of new molecules with anti-inflammatory and anti-snake venom PLA(2) properties.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, A.A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
14
|
Lee J, Kim YK, Min DH. Laser Desorption/Ionization Mass Spectrometric Assay for Phospholipase Activity Based on Graphene Oxide/Carbon Nanotube Double-Layer Films. J Am Chem Soc 2010; 132:14714-7. [DOI: 10.1021/ja106276j] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jieon Lee
- Department of Chemistry, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Young-Kwan Kim
- Department of Chemistry, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | - Dal-Hee Min
- Department of Chemistry, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
15
|
Pan YH, Bahnson BJ. Structure of a premicellar complex of alkyl sulfates with the interfacial binding surfaces of four subunits of phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1443-8. [PMID: 20302975 DOI: 10.1016/j.bbapap.2010.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/12/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
The properties of three discrete premicellar complexes (E1#, E2#, E3#) of pig pancreatic group-IB secreted phospholipase A2 (sPLA2) with monodisperse alkyl sulfates have been characterized [Berg, O. G. et al., Biochemistry 43, 7999-8013, 2004]. Here we have solved the 2.7 A crystal structure of group-IB sPLA2 complexed with 12 molecules of octyl sulfate (C8S) in a form consistent with a tetrameric oligomeric that exists during the E1# phase of premicellar complexes. The alkyl tails of the C8S molecules are centered in the middle of the tetrameric cluster of sPLA2 subunits. Three of the four sPLA2 subunits also contain a C8S molecule in the active site pocket. The sulfate oxygen of a C8S ligand is complexed to the active site calcium in three of the four protein active sites. The interactions of the alkyl sulfate head group with Arg-6 and Lys-10, as well as the backbone amide of Met-20, are analogous to those observed in the previously solved sPLA2 crystal structures with bound phosphate and sulfate anions. The cluster of three anions found in the present structure is postulated to be the site for nucleating the binding of anionic amphiphiles to the interfacial surface of the protein, and therefore this binding interaction has implications for interfacial activation of the enzyme.
Collapse
Affiliation(s)
- Ying H Pan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
16
|
Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phospholipase A2. J Mol Biol 2010; 398:83-96. [PMID: 20211188 DOI: 10.1016/j.jmb.2010.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/21/2022]
Abstract
Secretory phospholipase A(2) is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A(2), which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 A resolution of the minoTc complex of phospholipase A(2) (PLA(2)) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca(2+)-binding loop, preventing Ca(2)(+) binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA(2) is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA(2) was determined by surface plasmon resonance, resulting in a dissociation constant K(d)=1.8 x 10(-)(4) M.
Collapse
|
17
|
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model 2009; 16:311-26. [DOI: 10.1007/s00894-009-0547-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|
18
|
Yu BZ, Kaimal R, Bai S, El Sayed KA, Tatulian SA, Apitz RJ, Jain MK, Deng R, Berg OG. Effect of guggulsterone and cembranoids of Commiphora mukul on pancreatic phospholipase A(2): role in hypocholesterolemia. JOURNAL OF NATURAL PRODUCTS 2009; 72:24-28. [PMID: 19102680 DOI: 10.1021/np8004453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Guggulsterone (7) and cembranoids (8-12) from Commiphora mukul stem bark resin guggul were shown to be specific modulators of two independent sites that are also modulated by bile salts (1-6) to control cholesterol absorption and catabolism. Guggulsterone (7) antagonized the chenodeoxycholic acid (3)-activated nuclear farnesoid X receptor (FXR), which regulates cholesterol metabolism in the liver. The cembranoids did not show a noticeable effect on FXR, but lowered the cholate (1)-activated rate of human pancreatic IB phospholipase A2 (hPLA2), which controls gastrointestinal absorption of fat and cholesterol. Analysis of the data using a kinetic model has suggested an allosteric mechanism for the rate increase of hPLA2 by cholate and also for the rate-lowering effect by certain bile salts or cembranoids on the cholate-activated hPLA2 hydrolysis of phosphatidylcholine vesicles. The allosteric inhibition of PLA2 by certain bile salts and cembranoids showed some structural specificity. Biophysical studies also showed specific interaction of the bile salts with the interface-bound cholate-activated PLA2. Since cholesterol homeostasis in mammals is regulated by FXR in the liver for metabolism and by PLA2 in the intestine for absorption, modulation of PLA2 and FXR by bile acids and selected guggul components suggests novel possibilities for hypolipidemic and hypocholesterolemic therapies.
Collapse
Affiliation(s)
- Bao-Zhu Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19713, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Slama P, Filippis I, Lappe M. Detection of protein catalytic residues at high precision using local network properties. BMC Bioinformatics 2008; 9:517. [PMID: 19055796 PMCID: PMC2632678 DOI: 10.1186/1471-2105-9-517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 12/04/2008] [Indexed: 12/02/2022] Open
Abstract
Background Identifying the active site of an enzyme is a crucial step in functional studies. While protein sequences and structures can be experimentally characterized, determining which residues build up an active site is not a straightforward process. In the present study a new method for the detection of protein active sites is introduced. This method uses local network descriptors derived from protein three-dimensional structures to determine whether a residue is part of an active site. It thus does not involve any sequence alignment or structure similarity to other proteins. A scoring function is elaborated over a set of more than 220 proteins having different structures and functions, in order to detect protein catalytic sites with a high precision, i.e. with a minimal rate of false positives. Results The scoring function was based on the counts of first-neighbours on side-chain contacts, third-neighbours and residue type. Precision of the detection using this function was 28.1%, which represents a more than three-fold increase compared to combining closeness centrality with residue surface accessibility, a function which was proposed in recent years. The performance of the scoring function was also analysed into detail over a smaller set of eight proteins. For the detection of 'functional' residues, which were involved either directly in catalytic activity or in the binding of substrates, precision reached a value of 72.7% on this second set. These results suggested that our scoring function was effective at detecting not only catalytic residues, but also any residue that is part of the functional site of a protein. Conclusion As having been validated on the majority of known structural families, this method should prove useful for the detection of active sites in any protein with unknown function, and for direct application to the design of site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Patrick Slama
- Structural Bioinformatics Group, Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Influence of sodium monoketocholate on the hypolipidemic activity of lovastatin in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet 2008; 33:77-84. [DOI: 10.1007/bf03191024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Gilson SD, Stone EA. Sinus mucocele secondary to craniofacial trauma in a dog. J Am Vet Med Assoc 1991; 35:321-6. [PMID: 1885313 DOI: 10.1007/s00134-008-1321-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/21/2008] [Indexed: 12/16/2022]
Abstract
A sinsus mucocele formed in the frontal sinus of a dog secondary to obstruction of the nasofrontal opening. The dog was successfully treated by surgical enlargement of the nasofrontal opening, curettage of the sinus epithelium, and placement of a fat graft and drain in the sinus. Although mucocele formation is uncommon in animals, it should be considered as a differential diagnosis for masses of the sinonasal area. Characteristic radiographic and cytologic findings should alert the clinician to this diagnosis, and along with aggressive treatment, should shorten the diagnostic and treatment delay experienced by the dog in this report.
Collapse
Affiliation(s)
- S D Gilson
- Department of Companion Animals and Special Species Medicine, College of Veterinary Medicine, North Carolina State University, Raleigh 27606
| | | |
Collapse
|