1
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
2
|
Navidi M, Yadav S, Struts AV, Brown MF, Nesnas N. Synthesis of 9-CD 3-9- cis-Retinal Cofactor of Isorhodopsin. Tetrahedron Lett 2018; 59:4521-4524. [PMID: 30692701 DOI: 10.1016/j.tetlet.2018.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the synthesis of 9-CD3-9-cis-retinal via a six-step procedure from β-ionone. The steps involve an initial deuteration of the methyl ketone of β-ionone followed by two consecutive Horner-Wadsworth-Emmons (HWE) coupling reactions and their corresponding DIBAL reductions. A final oxidation of the allylic alcohol of the retinol leads to the target compound. This deuterium labeled retinoid is an important cofactor for studying protein-retinoid interactions in isorhodopsin.
Collapse
Affiliation(s)
- Mozhgan Navidi
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - Shreya Yadav
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - Andrey V Struts
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Nasri Nesnas
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
| |
Collapse
|
3
|
Vugmeyster L, Ostrovsky D. Static solid-state 2H NMR methods in studies of protein side-chain dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:1-17. [PMID: 28844219 PMCID: PMC5576518 DOI: 10.1016/j.pnmrs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 05/27/2023]
Abstract
In this review, we discuss the experimental static deuteron NMR techniques and computational approaches most useful for the investigation of side-chain dynamics in protein systems. Focus is placed on the interpretation of line shape and relaxation data within the framework of motional modeling. We consider both jump and diffusion models and apply them to uncover glassy behaviors, conformational exchange and dynamical transitions in proteins. Applications are chosen from globular and membrane proteins, amyloid fibrils, peptide adsorbed on surfaces and proteins specific to connective tissues.
Collapse
|
4
|
Hofrnann L, Alexander NS, Sun W, Zhang J, Orban T, Palczewski K. Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Biochemistry 2017; 56:2338-2348. [PMID: 28402104 PMCID: PMC5501310 DOI: 10.1021/acs.biochem.7b00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Opsins comprise the protein component of light sensitive G protein-coupled receptors (GPCRs) in the retina of the eye that are responsible for the transduction of light into a biochemical signal. Here, we used hydrogen/deuterium (H/D) exchange coupled with mass spectrometry to map conformational changes in green cone opsin upon light activation. We then compared these findings with those reported for rhodopsin. The extent of H/D exchange in green cone opsin was greater than in rhodopsin in the dark and bleached states, suggesting a higher structural heterogeneity for green cone opsin. Further analysis revealed that green cone opsin exists as a dimer in both dark (inactive) and bleached (active) states, and that the predicted glycosylation sites at N32 and N34 are indeed glycosylated. Comparison of deuterium uptake between inactive and active states of green cone opsin also disclosed a reduced solvent accessibility of the extracellular N-terminal region and an increased accessibility of the chromophore binding site. Increased H/D exchange at the extracellular side of transmembrane helix four (TM4) combined with an analysis of sequence alignments revealed a conserved Pro-Pro motif in extracellular loop 2 (EL2) of monostable visual GPCRs. These data present new insights into the locus of chromophore release at the extracellular side of TM4 and TM5 and provide a foundation for future functional evaluation.
Collapse
Affiliation(s)
- Lukas Hofrnann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathan S. Alexander
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Jianye Zhang
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Tivadar Orban
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Retinal Conformation Changes Rhodopsin's Dynamic Ensemble. Biophys J 2016; 109:608-17. [PMID: 26244742 DOI: 10.1016/j.bpj.2015.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/23/2022] Open
Abstract
G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.
Collapse
|
6
|
Struts AV, Barmasov AV, Brown MF. CONDENSED-MATTER SPECTROSCOPY SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. II. MAGNETIC RESONANCE METHODS. OPTICS AND SPECTROSCOPY 2016; 120:286-293. [PMID: 28260816 PMCID: PMC5334789 DOI: 10.1134/s0030400x16010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about the both local structure and dynamics of the cofactor bound to the protein and its light induced changes. Complementary site-directed spin labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multi-scale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.
Collapse
Affiliation(s)
- A V Struts
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia; University of Arizona, Tucson, AZ 85721 USA
| | - A V Barmasov
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia
| | - M F Brown
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
7
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Struts AV, Barmasov AV, Brown MF. SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY. OPTICS AND SPECTROSCOPY 2015; 118:711-717. [PMID: 28260815 PMCID: PMC5334778 DOI: 10.1134/s0030400x15050240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance, NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Collapse
Affiliation(s)
- A V Struts
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia; University of Arizona, Tucson, AZ 85721 USA
| | - A V Barmasov
- St. Petersburg State Medical University, 194100 St. Petersburg, Russia; St. Petersburg State University, 199034 St. Petersburg, Russia
| | - M F Brown
- University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
9
|
Kimata N, Reeves PJ, Smith SO. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:111-118. [PMID: 25797010 PMCID: PMC4391883 DOI: 10.1016/j.jmr.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.
Collapse
Affiliation(s)
- Naoki Kimata
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States.
| |
Collapse
|
10
|
Marchand G, Eng J, Schapiro I, Valentini A, Frutos LM, Pieri E, Olivucci M, Léonard J, Gindensperger E. Directionality of Double-Bond Photoisomerization Dynamics Induced by a Single Stereogenic Center. J Phys Chem Lett 2015; 6:599-604. [PMID: 26262473 DOI: 10.1021/jz502644h] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In light-driven single-molecule rotary motors, the photoisomerization of a double bond converts light energy into the rotation of a moiety (the rotor) with respect to another (the stator). However, at the level of a molecular population, an effective rotary motion can only be achieved if a large majority of the rotors rotate in the same, specific direction. Here we present a quantitative investigation of the directionality (clockwise vs counterclockwise) induced by a single stereogenic center placed in allylic position with respect to the reactive double bond of a model of the biomimetic indanylidene-pyrrolinium framework. By computing ensembles of nonadiabatic trajectories at 300 K, we predict that the photoisomerization is >70% unidirectional for the Z → E and E → Z conversions. Most importantly, we show that such directionality, resulting from the asymmetry of the excited state force field, can still be observed in the presence of a small (ca. 2°) pretwist or helicity of the reactive double bond. This questions the validity of the conjecture that a significant double-bond pretwist (e.g., >10°) in the ground state equilibrium structure of synthetic or natural rotary motors would be required for unidirectional motion.
Collapse
Affiliation(s)
- Gabriel Marchand
- ‡Institut de Chimie, Université de Strasbourg, CNRS UMR 7177, 1 rue Blaise Pascal, Strasbourg 67008, France
| | - Julien Eng
- ‡Institut de Chimie, Université de Strasbourg, CNRS UMR 7177, 1 rue Blaise Pascal, Strasbourg 67008, France
| | | | - Alessio Valentini
- §Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, Siena 53100, Italy
- ⊥Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Luis Manuel Frutos
- ⊥Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Elisa Pieri
- §Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, Siena 53100, Italy
| | - Massimo Olivucci
- §Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, Siena 53100, Italy
- ∥Chemistry Department, Bowling Green State University, 141 Overman Hall, Bowling Green, Ohio 43403, United States
| | | | - Etienne Gindensperger
- ‡Institut de Chimie, Université de Strasbourg, CNRS UMR 7177, 1 rue Blaise Pascal, Strasbourg 67008, France
| |
Collapse
|
11
|
Struts AV, Chawla U, Perera SMDC, Brown MF. Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy. Methods Mol Biol 2015; 1271:133-58. [PMID: 25697522 DOI: 10.1007/978-1-4939-2330-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state (2)H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. Moreover (2)H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state (2)H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition we review optimized conditions for trapping the rhodopsin photointermediates; and we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | |
Collapse
|
12
|
Sun X, Ågren H, Tu Y. Functional Water Molecules in Rhodopsin Activation. J Phys Chem B 2014; 118:10863-73. [DOI: 10.1021/jp505180t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xianqiang Sun
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Yaoquan Tu
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Leioatts N, Mertz B, Martínez-Mayorga K, Romo TD, Pitman MC, Feller SE, Grossfield A, Brown MF. Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures. Biochemistry 2014; 53:376-85. [PMID: 24328554 DOI: 10.1021/bi4013947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state (2)H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp265(6.48) residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin.
Collapse
Affiliation(s)
- Nicholas Leioatts
- Department of Biochemistry and Biophysics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pope A, Eilers M, Reeves PJ, Smith SO. Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:683-93. [PMID: 24183693 DOI: 10.1016/j.bbabio.2013.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
Abstract
Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein-protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Andreyah Pope
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Markus Eilers
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
15
|
Abstract
Activation of class-A G-protein-coupled receptors (GPCRs) involves large-scale reorganization of the H3/H6 interhelical network. In rhodopsin (Rh), this process is coupled to a change in the protonation state of a key residue, E134, whose exact role in activation is not well understood. Capturing this millisecond pH-dependent process is a well-appreciated challenge. We have developed a scheme combining the harmonic Fourier beads (HFB) method and constant-pH molecular dynamics with pH-based replica exchange (pH-REX) to gain insight into the structural changes that occur along the activation pathway as a function of the protonation state of E134. Our results indicate that E134 is protonated as a consequence of tilting of H6 by ca. 4.0° with respect to its initial position and simultaneous rotation by ca. 23° along its principal axis. The movement of H6 is associated with breakage of the E247-R135 and R135-E134 salt bridges and concomitant release of the E134 side chain, which results in an increase in its pKa value above physiological pH. An increase in the hydrophobicity of the environment surrounding E134 leads to further tilting and rotation of H6 and upshift of the E134 pKa. Such atomic-level information, which is not accessible through experiments, refines the earlier proposed sequential model of Rh activation (see: Zaitseva, E.; et al. Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate . J. Am. Chem. Soc. 2010, 132, 4815) and argues that the E134 protonation switch is both a cause and a consequence of the H6 motion.
Collapse
Affiliation(s)
- Elena N. Laricheva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karunesh Arora
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer L. Knight
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
17
|
Bergueiro J, Montenegro J, Saá C, López S. Synthesis of 11-cis-Retinoids by Hydrosilylation-Protodesilylation of an 11,12-Didehydro Precursor: Easy Access to 11- and 12-Mono- and 11,12-Dideuteroretinoids. Chemistry 2012; 18:14100-7. [DOI: 10.1002/chem.201202260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 12/27/2022]
|
18
|
Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:241-51. [PMID: 21851809 PMCID: PMC5270601 DOI: 10.1016/j.bbamem.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Physics, St. Petersburg State Medical University, St. Petersburg 194100, Russia
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, IN 47933, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
20
|
Im W, Jo S, Kim T. An ensemble dynamics approach to decipher solid-state NMR observables of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:252-62. [PMID: 21851810 DOI: 10.1016/j.bbamem.2011.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/22/2011] [Accepted: 07/30/2011] [Indexed: 11/18/2022]
Abstract
Solid-state NMR (SSNMR) is an invaluable tool for determining orientations of membrane proteins and peptides in lipid bilayers. Such orientational descriptions provide essential information about membrane protein functions. However, when a semi-static single conformer model is used to interpret various SSNMR observables, important dynamics information can be missing, and, sometimes, even orientational information can be misinterpreted. In addition, over the last decade, molecular dynamics (MD) simulation and semi-static SSNMR interpretation have shown certain levels of discrepancies in terms of transmembrane helix orientation and dynamics. Dynamic fitting models have recently been proposed to resolve these discrepancies by taking into account transmembrane helix whole body motions using additional parameters. As an alternative approach, we have developed SSNMR ensemble dynamics (SSNMR-ED) using multiple conformer models, which generates an ensemble of structures that satisfies the experimental observables without any fitting parameters. In this review, various computational methods for determining transmembrane helix orientations are discussed, and the distributions of VpuTM (from HIV-1) and WALP23 (a synthetic peptide) orientations from SSNMR-ED simulations are compared with those from MD simulations and semi-static/dynamic fitting models. Such comparisons illustrate that SSNMR-ED can be used as a general means to extract both membrane protein structure and dynamics from the SSNMR measurements. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| | | | | |
Collapse
|
21
|
Tang M, Berthold DA, Rienstra CM. Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. J Phys Chem Lett 2011; 2:1836-1841. [PMID: 21841965 PMCID: PMC3153064 DOI: 10.1021/jz200768r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is sensitivity, due to limited quantities of labeled high-molecular-weight proteins. Here we demonstrate the incorporation of paramagnetic metal (Cu(2+)) ions, through either EDTA or a chelator lipid, into membrane protein samples for rapid data collection under fast magic-angle spinning (MAS) and low power (1)H decoupling. Spectral sensitivity of DsbB (20 kDa), an integral membrane protein, more than doubles in the same experimental time due to (1)H T(1) relaxation enhancement by Cu(2+) ions, with DsbB native fold and active site intact. This technique can be implemented to acquire multidimensional solid-state NMR spectra for chemical shift assignments and structure elucidation of large membrane proteins with small sample quantities.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 USA
| |
Collapse
|
22
|
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A 2011; 108:8263-8. [PMID: 21527723 DOI: 10.1073/pnas.1014692108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation allows investigation of light-induced changes in local ps-ns time scale motions of retinal bound to rhodopsin. Site-specific (2)H labels were introduced into methyl groups of the retinal ligand that are essential to the activation process. We conducted solid-state (2)H NMR relaxation (spin-lattice, T(1Z), and quadrupolar-order, T(1Q)) experiments in the dark, Meta I, and Meta II states of the photoreceptor. Surprisingly, we find the retinylidene methyl groups exhibit site-specific differences in dynamics that change upon light excitation--even more striking, the C9-methyl group is a dynamical hotspot that corresponds to a crucial functional hotspot of rhodopsin. Following 11-cis to trans isomerization, the (2)H NMR data suggest the β-ionone ring remains in its hydrophobic binding pocket in all three states of the protein. We propose a multiscale activation mechanism with a complex energy landscape, whereby the photonic energy is directed against the E2 loop by the C13-methyl group, and toward helices H3 and H5 by the C5-methyl of the β-ionone ring. Changes in retinal structure and dynamics initiate activating fluctuations of transmembrane helices H5 and H6 in the Meta I-Meta II equilibrium of rhodopsin. Our proposals challenge the Standard Model whereby a single light-activated receptor conformation yields the visual response--rather an ensemble of substates is present, due to the entropy gain produced by photolysis of the inhibitory retinal lock.
Collapse
|
23
|
Tang M, Sperling LJ, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM. Solid-state NMR study of the charge-transfer complex between ubiquinone-8 and disulfide bond generating membrane protein DsbB. J Am Chem Soc 2011; 133:4359-66. [PMID: 21375236 DOI: 10.1021/ja107775w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone (Coenzyme Q) plays an important role in the mitochondrial respiratory chain and also acts as an antioxidant in its reduced form, protecting cellular membranes from peroxidation. De novo disulfide bond generation in the E. coli periplasm involves a transient complex consisting of DsbA, DsbB, and ubiquinone (UQ). It is hypothesized that a charge-transfer complex intermediate is formed between the UQ ring and the DsbB-C44 thiolate during the reoxidation of DsbA, which gives a distinctive ~500 nm absorbance band. No enzymological precedent exists for an UQ-protein thiolate charge-transfer complex, and definitive evidence of this unique reaction pathway for DsbB has not been fully demonstrated. In order to study the UQ-8-DsbB complex in the presence of native lipids, we have prepared isotopically labeled samples of precipitated DsbB (WT and C41S) with endogenous UQ-8 and lipids, and we have applied advanced multidimensional solid-state NMR methods. Double-quantum filter and dipolar dephasing experiments facilitated assignments of UQ isoprenoid chain resonances not previously observed and headgroup sites important for the characterization of the UQ redox states: methyls (~20 ppm), methoxys (~60 ppm), olefin carbons (120-140 ppm), and carbonyls (150-160 ppm). Upon increasing the DsbB(C41S) pH from 5.5 to 8.0, we observed a 10.8 ppm upfield shift for the UQ C1 and C4 carbonyls indicating an increase of electron density on the carbonyls. This observation is consistent with the deprotonation of the DsbB-C44 thiolate at pH 8.0 and provides direct evidence of the charge-transfer complex formation. A similar trend was noted for the UQ chemical shifts of the DsbA(C33S)-DsbB(WT) heterodimer, confirming that the charge-transfer complex is unperturbed by the DsbB(C41S) mutant used to mimic the intermediate state of the disulfide bond generating reaction pathway.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
24
|
Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 2011; 18:392-4. [PMID: 21278756 DOI: 10.1038/nsmb.1982] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
X-ray and magnetic resonance approaches, though central to studies of G protein-coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state (2)H NMR relaxation elucidates picosecond-to-nanosecond-timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I-meta II equilibrium on the microsecond-to-millisecond timescale.
Collapse
|
25
|
|
26
|
Abstract
The implementation of multiconfigurational quantum chemistry methods into a quantum-mechanics/molecular-mechanics protocol has allowed the construction of a realistic computer model for the sensory rhodopsin of the cyanobacterium Anabaena PCC 7120. The model, which reproduces the absorption spectra of both the all-trans and 13-cis forms of the protein and their associated K and L intermediates, is employed to investigate the light-driven steps of the photochromic cycle exhibited by the protein. It is found that the photoisomerizations of the all-trans and 13-cis retinal chromophores occur through unidirectional, counterclockwise 180° rotations of the =C14-C15= moiety with respect to the Lys210-linked end of the chromophore axis. Thus, the sequential interconversions of the all-trans and 13-cis forms during a single photochromic cycle yield a complete (360°) unidirectional rotation of the =C14-C15= moiety. This finding implies that Anabaena sensory rhodopsin is a biological realization of a light-driven molecular rotor.
Collapse
|
27
|
Goncalves JA, Ahuja S, Erfani S, Eilers M, Smith SO. Structure and function of G protein-coupled receptors using NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:159-80. [PMID: 20633362 PMCID: PMC2907352 DOI: 10.1016/j.pnmrs.2010.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/08/2010] [Indexed: 05/15/2023]
Affiliation(s)
- Joseph A Goncalves
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
28
|
Zaitseva E, Brown MF, Vogel R. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate. J Am Chem Soc 2010; 132:4815-21. [PMID: 20230054 DOI: 10.1021/ja910317a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photon absorption by rhodopsin is proposed to lead to an activation pathway that is described by the extended reaction scheme Meta I <==>Meta II(a) <==> Meta II(b) <==> Meta II(b)H(+), where Meta II(b)H(+) is thought to be the conformational substate that activates the G protein transducin. Here we test this extended scheme for rhodopsin in a membrane bilayer environment by investigating lipid perturbation of the activation mechanism. We found that symmetric membrane lipids having two unsaturated acyl chains, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), selectively stabilize the Meta II(a) substate in the above mechanism. By combining FTIR and UV-visible difference spectroscopy, we characterized the structural and functional changes involved in the transition to the Meta II(a) intermediate, which links the inactive Meta I intermediate with the Meta II(b) states formed by helix rearrangement. Besides the opening of the Schiff base ionic lock, the Meta II(a) substate is characterized by an activation switch in a conserved water-mediated hydrogen-bonded network involving transmembrane helices H1/H2/H7, which is sensed by its key residue Asp83. On the other hand, movement of retinal toward H5 and its interaction with another interhelical H3/H5 network mediated by His211 and Glu122 is absent in Meta II(a). The latter rearrangement takes place only in the subsequent transition to Meta II(b), which has been previously associated with movement of H6. Our results imply that activating structural changes in the H1/H2/H7 network are triggered by disruption of the Schiff base salt bridge and occur prior to other chromophore-induced changes in the H3/H5 network and the outward tilt of H6 in the activation process.
Collapse
Affiliation(s)
- Ekaterina Zaitseva
- Biophysics Section, Institute of Molecular Medicine and Cell Research, University of Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
29
|
Abstract
Rhodopsin is a specialized G protein-coupled receptor (GPCR) found in vertebrate rod cells. Absorption of light by its 11-cis retinal chromophore leads to rapid photochemical isomerization and receptor activation. Recent results from protein crystallography and NMR spectroscopy show how structural changes on the extracellular side of rhodopsin induced by retinal isomerization are coupled to the motion of membrane-spanning helices to create a G protein binding pocket on the intracellular side of the receptor. The signaling pathway provides a comprehensive explanation for the conservation of specific amino acids and structural motifs across the class A family of GPCRs, as well as for the conservation of selected residues within the visual receptor subfamily. The emerging model of activation indicates that, rather than being unique, the visual receptors provide a basis for understanding the common structural and dynamic elements in the class A GPCRs.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
30
|
Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des 2010; 15:4003-16. [PMID: 20028318 DOI: 10.2174/138161209789824803] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Ahuja S, Eilers M, Hirshfeld A, Yan ECY, Ziliox M, Sakmar TP, Sheves M, Smith SO. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. J Am Chem Soc 2010; 131:15160-9. [PMID: 19795853 DOI: 10.1021/ja9034768] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the (13)C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the (15)N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the (13)C15 and (15)Nepsilon chemical shifts indicate that the C horizontal lineN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal (13)C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T(1) relaxation time of the retinal (13)C18 methyl group and the conjugated retinal (13)C5 and (13)C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the beta-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints. J Mol Biol 2009; 396:510-27. [PMID: 20004206 DOI: 10.1016/j.jmb.2009.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/09/2009] [Accepted: 12/02/2009] [Indexed: 11/20/2022]
Abstract
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.
Collapse
|
33
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
34
|
Luo W, Cady SD, Hong M. Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: a solid-state NMR investigation. Biochemistry 2009; 48:6361-8. [PMID: 19489611 PMCID: PMC4082982 DOI: 10.1021/bi900716s] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dynamic and structural properties of membrane proteins are intimately affected by the lipid bilayer. One property of membrane proteins is uniaxial rotational diffusion, which depends on the membrane viscosity and thickness. This rotational diffusion is readily manifested in solid-state NMR spectra as characteristic line shapes and temperature-dependent line narrowing or broadening. We show here that this whole-body uniaxial diffusion is suppressed in lipid bilayers mimicking the composition of eukaryotic cell membranes, which are rich in cholesterol and sphingomyelin. We demonstrate this membrane-induced immobilization on the transmembrane peptide of the influenza A M2 (AM2-TM) proton channel protein. At physiological temperature, AM2-TM undergoes uniaxial diffusion faster than approximately 10(5) s(-1) in DLPC, DMPC, and POPC bilayers, but the motion is slowed by 2 orders of magnitude, to <10(3) s(-1), in a cholesterol-rich virus envelope-mimetic membrane ("viral membrane"). The immobilization is manifested as near rigid-limit (2)H quadrupolar couplings and (13)C-(1)H, (15)N-(1)H, and (13)C-(15)N dipolar couplings for all labeled residues. The immobilization suppresses intermediate time scale broadening of the NMR spectra, thus allowing high-sensitivity and high-resolution spectra to be measured at physiological temperature. The conformation of the protein in the viral membrane is more homogeneous than in model PC membranes, as evidenced by the narrow (15)N lines. The immobilization of the M2 helical bundle by the membrane composition change indicates the importance of studying membrane proteins in environments as native as possible. It also suggests that eukaryote-mimetic lipid membranes may greatly facilitate structure determination of membrane proteins by solid-state NMR.
Collapse
Affiliation(s)
- Wenbin Luo
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - Sarah D. Cady
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, IA 50011
| |
Collapse
|
35
|
Brown MF, Martínez-Mayorga K, Nakanishi K, Salgado GFJ, Struts AV. Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy. Photochem Photobiol 2009; 85:442-53. [PMID: 19267870 DOI: 10.1111/j.1751-1097.2008.00510.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state (2)H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific (2)H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability (2)H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C(3)) axes with an order parameter for the off-axial motion of SC(3) approximately 0.9. For the dark state, the (2)H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the beta-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, (2)H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the beta-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the beta-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state (2)H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
36
|
Jardón-Valadez E, Bondar AN, Tobias DJ. Dynamics of the internal water molecules in squid rhodopsin. Biophys J 2009; 96:2572-6. [PMID: 19348742 DOI: 10.1016/j.bpj.2008.12.3927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/04/2008] [Accepted: 12/09/2008] [Indexed: 10/20/2022] Open
Abstract
Understanding the mechanism of G-protein coupled receptors action is of major interest for drug design. The visual rhodopsin is the prototype structure for the family A of G-protein coupled receptors. Upon photoisomerization of the covalently bound retinal chromophore, visual rhodopsins undergo a large-scale conformational change that prepares the receptor for a productive interaction with the G-protein. The mechanism by which the local perturbation of the retinal cis-trans isomerization is transmitted throughout the protein is not well understood. The crystal structure of the visual rhodopsin from squid solved recently suggests that a chain of water molecules extending from the retinal toward the cytoplasmic side of the protein may play a role in the signal transduction from the all-trans retinal geometry to the activated receptor. As a first step toward understanding the role of water in rhodopsin function, we performed a molecular dynamics simulation of squid rhodopsin embedded in a hydrated bilayer of polyunsaturated lipid molecules. The simulation indicates that the water molecules present in the crystal structure participate in favorable interactions with side chains in the interhelical region and form a persistent hydrogen-bond network in connecting Y315 to W274 via D80.
Collapse
|
37
|
Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A, Ziliox M, Syrett N, Reeves PJ, Khorana HG, Sheves M, Smith SO. Location of the retinal chromophore in the activated state of rhodopsin*. J Biol Chem 2009; 284:10190-201. [PMID: 19176531 DOI: 10.1074/jbc.m805725200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly(188) (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the beta-ionone ring moves to a position between Met(207) and Phe(208) on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cepsilon carbons of Lys(296) (H7) and Met(44) (H1) and between Gly(121) (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu(122) (H3) and His(211) (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.
Collapse
Affiliation(s)
- Shivani Ahuja
- Departments of Physics & Astronomy and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci U S A 2008; 105:17795-800. [PMID: 18997017 DOI: 10.1073/pnas.0804541105] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the G protein-coupled receptor (GPCR) rhodopsin is initiated by light-induced isomerization of the retinal ligand, which triggers 2 protonation switches in the conformational transition to the active receptor state Meta II. The first switch involves disruption of an interhelical salt bridge by internal proton transfer from the retinal protonated Schiff base (PSB) to its counterion, Glu-113, in the transmembrane domain. The second switch consists of uptake of a proton from the solvent by Glu-134 of the conserved E(D)RY motif at the cytoplasmic terminus of helix 3, leading to pH-dependent receptor activation. By using a combination of UV-visible and FTIR spectroscopy, we study the activation mechanism of rhodopsin in different membrane environments and show that these 2 protonation switches become partially uncoupled at physiological temperature. This partial uncoupling leads to approximately 50% population of an entropy-stabilized Meta II state in which the interhelical PSB salt bridge is broken and activating helix movements have taken place but in which Glu-134 remains unprotonated. This partial activation is converted to full activation only by coupling to the pH-dependent protonation of Glu-134 from the solvent, which stabilizes the active receptor conformation by lowering its enthalpy. In a membrane environment, protonation of Glu-134 is therefore a thermodynamic rather than a structural prerequisite for activating helix movements. In light of the conservation of the E(D)RY motif in rhodopsin-like GPCRs, protonation of this carboxylate also may serve a similar function in signal transduction of other members of this receptor family.
Collapse
|
39
|
Tikhonova IG, Best RB, Engel S, Gershengorn MC, Hummer G, Costanzi S. Atomistic insights into rhodopsin activation from a dynamic model. J Am Chem Soc 2008; 130:10141-9. [PMID: 18620390 DOI: 10.1021/ja0765520] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Martínez-Mayorga K, Medina-Franco JL, Giulianotti MA, Pinilla C, Dooley CT, Appel JR, Houghten RA. Conformation-opioid activity relationships of bicyclic guanidines from 3D similarity analysis. Bioorg Med Chem 2008; 16:5932-8. [PMID: 18468907 PMCID: PMC2533277 DOI: 10.1016/j.bmc.2008.04.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/19/2008] [Accepted: 04/23/2008] [Indexed: 11/19/2022]
Abstract
Conformation of bicyclic guanidines with kappa-opioid receptor activity derived in our laboratory from a positional scanning synthetic combinatorial library is presented in this work. We propose a common bioactive conformation and putative pharmacophoric features by means of 3D similarity methods. Our 'Y' shape molecular binding model explains structure-activity relationships and suggests that the guanidine functionality and a 4-methoxybenzyl group may be involved in key interactions with the receptor. Comparison of our model with known opiates suggest a similar binding mode showing that the bicyclic guanidines presented in this work are suitable scaffolds for further development of new opioid receptors ligands.
Collapse
MESH Headings
- Binding Sites
- Bridged Bicyclo Compounds, Heterocyclic/chemistry
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Combinatorial Chemistry Techniques
- Computational Biology
- Guanidine/analogs & derivatives
- Guanidine/chemistry
- Guanidine/metabolism
- Nucleic Acid Conformation
- Receptors, Opioid/chemistry
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Karina Martínez-Mayorga
- Torrey Pines Institute for Molecular Studies, 5775 Old Dixie Highway, Fort Pierce, FL 34946, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys J 2008; 95:789-803. [PMID: 18390613 DOI: 10.1529/biophysj.107.120691] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As one of the best studied members of the pharmaceutically relevant family of G-protein-coupled receptors, rhodopsin serves as a prototype for understanding the mechanism of G-protein-coupled receptor activation. Here, we aim at exploring functionally relevant conformational changes and signal transmission mechanisms involved in its photoactivation brought about through a cis-trans photoisomerization of retinal. For this exploration, we propose a molecular dynamics simulation protocol that utilizes normal modes derived from the anisotropic network model for proteins. Deformations along multiple low-frequency modes of motion are used to efficiently sample collective conformational changes in the presence of explicit membrane and water environment, consistent with interresidue interactions. We identify two highly stable regions in rhodopsin, one clustered near the chromophore, the other near the cytoplasmic ends of transmembrane helices H1, H2, and H7. Due to redistribution of interactions in the neighborhood of retinal upon stabilization of the trans form, local structural rearrangements in the adjoining H3-H6 residues are efficiently propagated to the cytoplasmic end of these particular helices. In the structures obtained by our simulations, all-trans retinal interacts with Cys(167) on H4 and Phe(203) on H5, which were not accessible in the dark state, and exhibits stronger interactions with H5, while some of the contacts made (in the cis form) with H6 are lost.
Collapse
|
42
|
Sapra KT, Park PSH, Palczewski K, Muller DJ. Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1330-1337. [PMID: 18266338 PMCID: PMC2504747 DOI: 10.1021/la702299z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular interactions and mechanical properties that contribute to the stability and function of proteins are complex and of fundamental importance. In this study, we used single-molecule dynamic force spectroscopy (DFS) to explore the interactions and the unfolding energy landscape of bovine rhodopsin and bacteriorhodopsin. An analysis of the experimental data enabled the extraction of parameters that provided insights into the kinetic stability and mechanical properties of these membrane proteins. Individual structural segments of rhodopsin and bacteriorhodopsin have different properties. A core of rigid structural segments was observed in rhodopsin but not in bacteriorhodopsin. This core may reflect differences in mechanisms of protein folding between the two membrane proteins. The different structural rigidity of the two proteins may also reflect their adaptation to differing functions.
Collapse
Affiliation(s)
- K. Tanuj Sapra
- Corresponding authors. (K.T.S.) E-mail: . (D.J.M.) E-mail: . Tel: +49-351-46340330/48. Fax: +49-351-46340342
| | | | | | - Daniel J. Muller
- Corresponding authors. (K.T.S.) E-mail: . (D.J.M.) E-mail: . Tel: +49-351-46340330/48. Fax: +49-351-46340342
| |
Collapse
|
43
|
Visual Receptors. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Computational Methods, Molecular Dynamics - III. Biophys J 2008. [DOI: 10.1016/s0006-3495(08)79144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Brown MF, Heyn MP, Job C, Kim S, Moltke S, Nakanishi K, Nevzorov AA, Struts AV, Salgado GFJ, Wallat I. Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2979-3000. [PMID: 18021739 PMCID: PMC5233718 DOI: 10.1016/j.bbamem.2007.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanaka K, Struts AV, Krane S, Fujioka N, Salgado GFJ, Martínez-Mayorga K, Brown MF, Nakanishi K. Synthesis of CD3-Labeled 11-cis-Retinals and Application to Solid-State Deuterium NMR Spectroscopy of Rhodopsin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.2177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|