1
|
Ullah M, Akbar S, Raza A, Zou Q. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm. Bioinformatics 2024; 40:btae305. [PMID: 38710482 PMCID: PMC11256913 DOI: 10.1093/bioinformatics/btae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
MOTIVATION Despite the extensive manufacturing of antiviral drugs and vaccination, viral infections continue to be a major human ailment. Antiviral peptides (AVPs) have emerged as potential candidates in the pursuit of novel antiviral drugs. These peptides show vigorous antiviral activity against a diverse range of viruses by targeting different phases of the viral life cycle. Therefore, the accurate prediction of AVPs is an essential yet challenging task. Lately, many machine learning-based approaches have developed for this purpose; however, their limited capabilities in terms of feature engineering, accuracy, and generalization make these methods restricted. RESULTS In the present study, we aim to develop an efficient machine learning-based approach for the identification of AVPs, referred to as DeepAVP-TPPred, to address the aforementioned problems. First, we extract two new transformed feature sets using our designed image-based feature extraction algorithms and integrate them with an evolutionary information-based feature. Next, these feature sets were optimized using a novel feature selection approach called binary tree growth Algorithm. Finally, the optimal feature space from the training dataset was fed to the deep neural network to build the final classification model. The proposed model DeepAVP-TPPred was tested using stringent 5-fold cross-validation and two independent dataset testing methods, which achieved the maximum performance and showed enhanced efficiency over existing predictors in terms of both accuracy and generalization capabilities. AVAILABILITY AND IMPLEMENTATION https://github.com/MateeullahKhan/DeepAVP-TPPred.
Collapse
Affiliation(s)
- Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
| |
Collapse
|
2
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Akbar S, Raza A, Zou Q. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. BMC Bioinformatics 2024; 25:102. [PMID: 38454333 PMCID: PMC10921744 DOI: 10.1186/s12859-024-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Viral infections have been the main health issue in the last decade. Antiviral peptides (AVPs) are a subclass of antimicrobial peptides (AMPs) with substantial potential to protect the human body against various viral diseases. However, there has been significant production of antiviral vaccines and medications. Recently, the development of AVPs as an antiviral agent suggests an effective way to treat virus-affected cells. Recently, the involvement of intelligent machine learning techniques for developing peptide-based therapeutic agents is becoming an increasing interest due to its significant outcomes. The existing wet-laboratory-based drugs are expensive, time-consuming, and cannot effectively perform in screening and predicting the targeted motif of antiviral peptides. METHODS In this paper, we proposed a novel computational model called Deepstacked-AVPs to discriminate AVPs accurately. The training sequences are numerically encoded using a novel Tri-segmentation-based position-specific scoring matrix (PSSM-TS) and word2vec-based semantic features. Composition/Transition/Distribution-Transition (CTDT) is also employed to represent the physiochemical properties based on structural features. Apart from these, the fused vector is formed using PSSM-TS features, semantic information, and CTDT descriptors to compensate for the limitations of single encoding methods. Information gain (IG) is applied to choose the optimal feature set. The selected features are trained using a stacked-ensemble classifier. RESULTS The proposed Deepstacked-AVPs model achieved a predictive accuracy of 96.60%%, an area under the curve (AUC) of 0.98, and a precision-recall (PR) value of 0.97 using training samples. In the case of the independent samples, our model obtained an accuracy of 95.15%, an AUC of 0.97, and a PR value of 0.97. CONCLUSION Our Deepstacked-AVPs model outperformed existing models with a ~ 4% and ~ 2% higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed Deepstacked-AVPs model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, 25124, KP, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
4
|
In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals (Basel) 2022; 15:ph15091141. [PMID: 36145362 PMCID: PMC9501638 DOI: 10.3390/ph15091141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
The therapeutic potential of venom-derived peptides, such as bioactive peptides (BAPs), is determined by specificity, stability, and pharmacokinetics properties. BAPs, including anti-infective or antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), share several physicochemical characteristics and are potential alternatives to antibiotic-based therapies and drug delivery systems, respectively. This study used in silico methods to predict AMPs and CPPs derived from natterins from the venomous fish Thalassophryne nattereri. Fifty-seven BAPs (19 AMPs, 8 CPPs, and 30 AMPs/CPPs) were identified using the web servers CAMP, AMPA, AmpGram, C2Pred, and CellPPD. The physicochemical properties were analyzed using ProtParam, PepCalc, and DispHred tools. The membrane-binding potential and cellular location of each peptide were analyzed using the Boman index by APD3, and TMHMM web servers. All CPPs and two AMPs showed high membrane-binding potential. Fifty-four peptides were located in the plasma membrane. Peptide immunogenicity, toxicity, allergenicity, and ADMET parameters were evaluated using several web servers. Sixteen antiviral peptides and 37 anticancer peptides were predicted using the web servers Meta-iAVP and ACPred. Secondary structures and helical wheel projections were predicted using the PEP-FOLD3 and Heliquest web servers. Fifteen peptides are potential lead compounds and were selected to be further synthesized and tested experimentally in vitro to validate the in silico screening. The use of computer-aided design for predicting peptide structure and activity is fast and cost-effective and facilitates the design of potent therapeutic peptides. The results demonstrate that toxins form a natural biotechnological platform in drug discovery, and the presence of CPP and AMP sequences in toxin families opens new possibilities in toxin biochemistry research.
Collapse
|
5
|
Cadima-Couto I, Tauzin A, Freire JM, Figueira TN, Silva RDM, Pérez-Peinado C, Cunha-Santos C, Bártolo I, Taveira N, Gano L, Correia JDG, Goncalves J, Mammano F, Andreu D, Castanho MARB, Veiga AS. Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infect Dis 2021; 7:6-22. [PMID: 33319557 DOI: 10.1021/acsinfecdis.9b00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for the development of new anti-HIV drugs that can complement existing medicines to be used against resistant strains. Here, we report the anti-HIV-1 peptide pepRF1, a human serum-resistant peptide derived from the Dengue virus capsid protein. In vitro, pepRF1 shows a 50% inhibitory concentration of 1.5 nM with a potential therapeutic window higher than 53 000. This peptide is specific for CXCR4-tropic strains, preventing viral entry into target cells by binding to the viral coreceptor CXCR4, acting as an antagonist of this receptor. pepRF1 is more effective than T20, the only peptide-based HIV-1 entry inhibitor approved, and excels in inhibiting a HIV-1 strain resistant to T20. Potentially, pepRF1 can be used alone or in combination with other anti-HIV drugs. Furthermore, one can also envisage its use as a novel therapeutic strategy for other CXCR4-related diseases.
Collapse
Affiliation(s)
- Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alexandra Tauzin
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - João M. Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tiago N. Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Clara Pérez-Peinado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Catarina Cunha-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Fabrizio Mammano
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Chowdhury AS, Reehl SM, Kehn-Hall K, Bishop B, Webb-Robertson BJM. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance. Sci Rep 2020; 10:19260. [PMID: 33159146 PMCID: PMC7648056 DOI: 10.1038/s41598-020-76161-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
The emergence of viral epidemics throughout the world is of concern due to the scarcity of available effective antiviral therapeutics. The discovery of new antiviral therapies is imperative to address this challenge, and antiviral peptides (AVPs) represent a valuable resource for the development of novel therapies to combat viral infection. We present a new machine learning model to distinguish AVPs from non-AVPs using the most informative features derived from the physicochemical and structural properties of their amino acid sequences. To focus on those features that are most likely to contribute to antiviral performance, we filter potential features based on their importance for classification. These feature selection analyses suggest that secondary structure is the most important peptide sequence feature for predicting AVPs. Our Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction (FIRM-AVP) approach achieves a higher accuracy than either the model with all features or current state-of-the-art single classifiers. Understanding the features that are associated with AVP activity is a core need to identify and design new AVPs in novel systems. The FIRM-AVP code and standalone software package are available at https://github.com/pmartR/FIRM-AVP with an accompanying web application at https://msc-viz.emsl.pnnl.gov/AVPR.
Collapse
Affiliation(s)
- Abu Sayed Chowdhury
- Biological Sciences Division, Pacific Northwest National Laboratory, J4-18, P.O. Box 999, Richland, WA, 99354, USA
| | - Sarah M Reehl
- Computing and Analytics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99354, USA
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, 20110, USA
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, J4-18, P.O. Box 999, Richland, WA, 99354, USA.
| |
Collapse
|
7
|
Zhao XZ, Métifiot M, Kiselev E, Kessl JJ, Maddali K, Marchand C, Kvaratskhelia M, Pommier Y, Burke TR. HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence. Molecules 2018; 23:molecules23081858. [PMID: 30049955 PMCID: PMC6222646 DOI: 10.3390/molecules23081858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69–75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center of Cancer Research, Frederick, MD 21702, USA.
| | - Mathieu Métifiot
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacques J Kessl
- College of Pharmacy and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Kasthuraiah Maddali
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mamuka Kvaratskhelia
- College of Pharmacy and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Terrence R Burke
- Chemical Biology Laboratory, Center of Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Identification of interaction between HIV-1 glycoprotein 41 and integrase. Virol Sin 2016; 31:415-424. [PMID: 27681265 DOI: 10.1007/s12250-016-3820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/30/2016] [Indexed: 10/20/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes 15 viral proteins. Protein-protein interactions play a large role in the function of these proteins. In this study, we attempted to identify novel interactions between the HIV-1 proteins to better understand the role played by viral protein-protein interactions in the life cycle of HIV-1. Genes encoding the 15 viral proteins from the HIV-1 strain AD8 were inserted into the plasmids of a yeast two-hybrid system. By screening 120 pairs of proteins, interactions between seven pairs were found. This led to the discovery of an interaction between the HIV-1 proteins integrase (IN) and glycoprotein 41 (gp41), which was confirmed by both co-immunoprecipitation (Co-IP) assays and fluorescence resonance energy transfer (FRET) imaging in live cells. In addition, it was found that the amino acids at positions 76-100 of gp41 are required for it to bind to IN. Deletion of this region from gp41 prevented its interaction with IN and reduced the production of HIV-1 in 293T cells. This study provides new information on HIV-1 protein-protein interactions which improves the understanding of the biological functions of gp41 and IN during the virus life cycle.
Collapse
|
10
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
11
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
12
|
Hetti Arachchilage M, Piontkivska H. Coevolutionary Analysis Identifies Protein-Protein Interaction Sites between HIV-1 Reverse Transcriptase and Integrase. Virus Evol 2016; 2:vew002. [PMID: 27152230 PMCID: PMC4854294 DOI: 10.1093/ve/vew002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The replication of human immunodeficiency virus-1 (HIV-1) requires reverse transcription of the viral RNA genome and integration of newly synthesized pro-viral DNA into the host genome. This is mediated by the viral proteins reverse transcriptase (RT) and integrase (IN). The formation and stabilization of the pre-integration complex (PIC), which is an essential step for reverse transcription, nuclear import, chromatin targeting, and subsequent integration, involves direct and indirect modes of interaction between RT and IN proteins. While epitope-based treatments targeting IN-viral DNA and IN-RT complexes appear to be a promising combination for an anti-HIV treatment, the mechanisms of IN-RT interactions within the PIC are not well understood due to the transient nature of the protein complex and the intrinsic flexibility of its components. Here, we identify potentially interacting regions between the IN and RT proteins within the PIC through the coevolutionary analysis of amino acid sequences of the two proteins. Our results show that specific regions in the two proteins have strong coevolutionary signatures, suggesting that these regions either experience direct and prolonged interactions between them that require high affinity and/or specificity or that the regions are involved in interactions mediated by dynamic conformational changes and, hence, may involve both direct and indirect interactions. Other regions were found to exhibit weak, but positive correlations, implying interactions that are likely transient and/or have low affinity. We identified a series of specific regions of potential interactions between the IN and RT proteins (e.g., specific peptide regions within the C-terminal domain of IN were identified as potentially interacting with the Connection domain of RT). Coevolutionary analysis can serve as an important step in predicting potential interactions, thus informing experimental studies. These studies can be integrated with structural data to gain a better understanding of the mechanisms of HIV protein interactions.
Collapse
Affiliation(s)
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
13
|
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2015; 6:755-74. [PMID: 25186605 DOI: 10.2217/imt.14.37] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically.
Collapse
Affiliation(s)
- Ameya S Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | |
Collapse
|
14
|
Poorinmohammad N, Mohabatkar H, Behbahani M, Biria D. Computational prediction of anti HIV-1 peptides andin vitroevaluation of anti HIV-1 activity of HIV-1 P24-derived peptides. J Pept Sci 2014; 21:10-6. [DOI: 10.1002/psc.2712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/30/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan Iran
| | - Davood Biria
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies; University of Isfahan; Isfahan Iran
| |
Collapse
|
15
|
Abstract
HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach.
Collapse
Affiliation(s)
- Roberto Di Santo
- Dipartimento
di Chimica e
Tecnologie del Farmaco, Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, P.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
16
|
Giroud C, Chazal N, Gay B, Eldin P, Brun S, Briant L. HIV-1-associated PKA acts as a cofactor for genome reverse transcription. Retrovirology 2013; 10:157. [PMID: 24344931 PMCID: PMC3880072 DOI: 10.1186/1742-4690-10-157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events.
Collapse
Affiliation(s)
| | | | | | | | | | - Laurence Briant
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS)-CNRS UMR 5236, Université Montpellier 1,2, 1919 route de Mende, Montpellier, cedex 2 34293, France.
| |
Collapse
|
17
|
Nomura W, Aikawa H, Ohashi N, Urano E, Meétifiot M, Fujino M, Maddali K, Ozaki T, Nozue A, Narumi T, Hashimoto C, Tanaka T, Pommier Y, Yamamoto N, Komano JA, Murakami T, Tamamura H. Cell-permeable stapled peptides based on HIV-1 integrase inhibitors derived from HIV-1 gene products. ACS Chem Biol 2013; 8:2235-44. [PMID: 23898787 PMCID: PMC7577350 DOI: 10.1021/cb400495h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1 integrase (IN) is an enzyme which is indispensable for the stable infection of host cells because it catalyzes the insertion of viral DNA into the genome and thus is an attractive target for the development of anti-HIV agents. Earlier, we found Vpr-derived peptides with inhibitory activity against HIV-1 IN. These Vpr-derived peptides are originally located in an α-helical region of the parent Vpr protein. Addition of an octa-arginyl group to the inhibitory peptides caused significant inhibition against HIV replication associated with an increase in cell permeability but also relatively high cytotoxicity. In the current study, stapled peptides, a new class of stabilized α-helical peptidomimetics were adopted to enhance the cell permeability of the above lead peptides. A series of stapled peptides, which have a hydrocarbon link formed by a ruthenium-catalyzed ring-closing metathesis reaction between successive turns of α-helix, were designed, synthesized, and evaluated for biological activity. In cell-based assays some of the stapled peptides showed potent anti-HIV activity comparable with that of the original octa-arginine-containing peptide (2) but with lower cytotoxicity. Fluorescent imaging experiments revealed that these stapled peptides are significantly cell permeable, and CD analysis showed they form α-helical structures, whereas the unstapled congeners form β-sheet structures. The application of this stapling strategy to Vpr-derived IN inhibitory peptides led to a remarkable increase in their potency in cells and a significant reduction of their cytotoxicity.
Collapse
Affiliation(s)
- Wataru Nomura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Haruo Aikawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mathieu Meétifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Taro Ozaki
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ami Nozue
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuo Narumi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chie Hashimoto
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomohiro Tanaka
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jun A. Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
18
|
Chang KY, Yang JR. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One 2013; 8:e70166. [PMID: 23940542 PMCID: PMC3734225 DOI: 10.1371/journal.pone.0070166] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/16/2013] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to examine and predict antiviral peptides. Although antiviral peptides hold great potential in antiviral drug discovery, little is done in antiviral peptide prediction. In this study, we demonstrate that a physicochemical model using random forests outperform in distinguishing antiviral peptides. On the experimental benchmark, our physicochemical model aided with aggregation and secondary structural features reaches 90% accuracy and 0.79 Matthew's correlation coefficient, which exceeds the previous models. The results suggest that aggregation could be an important feature for identifying antiviral peptides. In addition, our analysis reveals the characteristics of the antiviral peptides such as the importance of lysine and the abundance of α-helical secondary structures.
Collapse
Affiliation(s)
- Kuan Y Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.
| | | |
Collapse
|
19
|
Qureshi A, Thakur N, Kumar M. HIPdb: a database of experimentally validated HIV inhibiting peptides. PLoS One 2013; 8:e54908. [PMID: 23359817 PMCID: PMC3554673 DOI: 10.1371/journal.pone.0054908] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Background Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. Descriptions HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC50, assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and ‘Map’ for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. Conclusion HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | | |
Collapse
|
20
|
Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:75-105. [PMID: 23885999 DOI: 10.1016/b978-0-12-405880-4.00003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of HIV as the cause for AIDS 30 years ago, major progress has been made, including the discovery of drugs that now control the disease. Here, we review the integrase (IN) inhibitors from the discovery of the first compounds 20 years ago to the approval of two highly effective IN strand transfer inhibitors (INSTIs), raltegravir (Isentress) and elvitegravir (Stribild), and the promising clinical activity of dolutegravir. After summarizing the molecular mechanism of action of the INSTIs as interfacial inhibitors, we discuss the remaining challenges. Those include: overcoming resistance to clinical INSTIs, long-term safety of INSTIs, cost of therapy, place of the INSTIs in prophylactic treatments, and the development of new classes of inhibitors (the LEDGINs) targeting IN outside its catalytic site. We also discuss the role of chromatin and host DNA repair factor for the completion of integration.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
21
|
Maes M, Loyter A, Friedler A. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J 2012; 279:2795-809. [PMID: 22742518 DOI: 10.1111/j.1742-4658.2012.08680.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
22
|
Solbak SMØ, Wray V, Horvli O, Raae AJ, Flydal MI, Henklein P, Henklein P, Nimtz M, Schubert U, Fossen T. The host-pathogen interaction of human cyclophilin A and HIV-1 Vpr requires specific N-terminal and novel C-terminal domains. BMC STRUCTURAL BIOLOGY 2011; 11:49. [PMID: 22185200 PMCID: PMC3269379 DOI: 10.1186/1472-6807-11-49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/20/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. RESULTS Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. CONCLUSIONS For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.
Collapse
Affiliation(s)
- Sara M Ø Solbak
- Centre of Pharmacy, University of Bergen, N-5007 Bergen Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fourati S, Malet I, Guenzel CA, Soulie C, Maidou-Peindara P, Morand-Joubert L, Wirden M, Sayon S, Peytavin G, Simon A, Katlama C, Benichou S, Calvez V, Marcelin AG. E17A mutation in HIV-1 Vpr confers resistance to didanosine in association with thymidine analog mutations. Antiviral Res 2011; 93:167-74. [PMID: 22138483 DOI: 10.1016/j.antiviral.2011.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/02/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND HIV-1 accessory Vpr protein is involved in the reverse transcription process and has been shown to modulate the virus mutation rate. This process may play a role in the kinetics of appearance of drug resistance mutations under antiretroviral treatment. METHODS Vpr sequences were analyzed from plasma viruses derived from 97 HIV-1-infected individuals failing antiretroviral treatment and 63 antiretroviral-naïve patients. Vpr genetic variability was analyzed for association with specific drug treatment and drug resistance mutations. Biological and virological experiments were employed to characterize a mutation in Vpr found to be associated with virological failure. RESULTS E17A mutation located in the first α-helix of Vpr was more prevalent in HAART-treated individuals compared to untreated individuals. E17A was associated with thymidine analog mutations (TAMs) in reverse transcriptase M41L, L210W and T215Y and with the use of didanosine in the patients' treatment histories. E17A had no impact on the biochemical and functional properties of Vpr, and did not affect kinetics of replication of wild-type or TAMs-containing viruses. However, its association with TAMs and the use of didanosine was consistent with phenotypic susceptibility assays showing a significant 3-fold decrease in didanosine susceptibility of viruses harboring Vpr E17A combined with TAMs compared to viruses harboring TAMs alone. CONCLUSION These findings highlight a novel role of Vpr in HIV-1 drug resistance. Vpr E17A confers resistance to didanosine when associated with TAMs. Whether Vpr E17A facilitates excision of didanosine is still to be determined.
Collapse
Affiliation(s)
- Slim Fourati
- Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface. Talanta 2011; 85:770-8. [DOI: 10.1016/j.talanta.2011.04.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/21/2022]
|
25
|
A bioorganometallic approach for rapid electrochemical analysis of human immunodeficiency virus type-1 reverse transcriptase in serum. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.03.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Fitzkee NC, Torchia DA, Bax A. Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Protein Sci 2011; 20:500-12. [PMID: 21213249 DOI: 10.1002/pro.582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 10/07/2010] [Indexed: 11/12/2022]
Abstract
Measurements of rapid hydrogen exchange (HX) of water with protein amide sites contain valuable information on protein structure and function, but current NMR methods for measuring HX rates are limited in their applicability to large protein systems. An alternate method for measuring rapid HX is presented that is well-suited for larger proteins, and we apply the method to the deuterated, homodimeric 36 kDa HIV-1 integrase catalytic core domain (CCD). Using long mixing times for water-amide magnetization exchange at multiple pH values, HX rates spanning more than four orders of magnitude were measured, as well as NOE cross-relaxation rates to nearby exchangeable protons. HX protection factors for the CCD are found to be large (>10(4)) for residues along the dimer interface, but much smaller in many other regions. Notably, the catalytic helix (residues 152-167) exhibits low HX protection at both ends, indicative of fraying at both termini as opposed to just the N-terminal end, as originally thought. Residues in the LEDGF/p75 binding pocket also show marginal stability, with protection factors in the 10-100 range (∼1.4-2.7 kcal/mol). Additionally, elevated NOE cross-relaxation rates are identified and, as expected, correspond to proximity of the amide proton to a rapidly exchanging proton, typically from an OH side chain. Indirect NOE transfer between H(2) O and the amide proton of I141, a residue in the partially disordered active site of the enzyme, suggests its proximity to the side chain of S147, an interaction seen in the DNA-bound form for a homologous integrase.
Collapse
Affiliation(s)
- Nicholas C Fitzkee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|
27
|
Labib M, Shipman PO, Martić S, Kraatz HB. Towards an early diagnosis of HIV infection: an electrochemical approach for detection ofHIV-1 reverse transcriptase enzyme. Analyst 2011; 136:708-15. [DOI: 10.1039/c0an00741b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Martić S, Labib M, Shipman PO, Kraatz HB. Ferrocene-peptido conjugates: From synthesis to sensory applications. Dalton Trans 2011; 40:7264-90. [DOI: 10.1039/c0dt01707h] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Suzuki S, Urano E, Hashimoto C, Tsutsumi H, Nakahara T, Tanaka T, Nakanishi Y, Maddali K, Han Y, Hamatake M, Miyauchi K, Pommier Y, Beutler JA, Sugiura W, Fuji H, Hoshino T, Itotani K, Nomura W, Narumi T, Yamamoto N, Komano JA, Tamamura H. Peptide HIV-1 integrase inhibitors from HIV-1 gene products. J Med Chem 2010; 53:5356-60. [PMID: 20586421 DOI: 10.1021/jm1003528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anti-HIV peptides with inhibitory activity against HIV-1 integrase (IN) have been found in overlapping peptide libraries derived from HIV-1 gene products. In a strand transfer assay using IN, inhibitory active peptides with certain sequential motifs related to Vpr- and Env-derived peptides were found. The addition of an octa-arginyl group to the inhibitory peptides caused a remarkable inhibition of the strand transfer and 3'-end-processing reactions catalyzed by IN and significant inhibition against HIV replication.
Collapse
Affiliation(s)
- Shintaro Suzuki
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
31
|
Peptidic HIV integrase inhibitors derived from HIV gene products: structure-activity relationship studies. Bioorg Med Chem 2010; 18:6771-5. [PMID: 20708407 DOI: 10.1016/j.bmc.2010.07.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022]
Abstract
Structure-activity relationship studies were conducted on HIV integrase (IN) inhibitory peptides which were found by the screening of an overlapping peptide library derived from HIV-1 gene products. Since these peptides located in the second helix of Vpr are considered to have an alpha-helical conformation, Glu-Lys pairs were introduced into the i and i+4 positions to increase the helicity of the lead compound possessing an octa-arginyl group. Ala-scan was also performed on the lead compound for the identification of the amino acid residues responsible for the inhibitory activity. The results indicated the importance of an alpha-helical structure for the expression of inhibitory activity, and presented a binding model of integrase and the lead compound.
Collapse
|
32
|
Ramkumar K, Serrao E, Odde S, Neamati N. HIV-1 integrase inhibitors: 2007-2008 update. Med Res Rev 2010; 30:890-954. [DOI: 10.1002/med.20194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Warrilow D, Tachedjian G, Harrich D. Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev Med Virol 2010; 19:324-37. [PMID: 19750561 DOI: 10.1002/rmv.627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon HIV attachment, fusion and entry into the host cell cytoplasm, the viral core undergoes rearrangement to become the mature reverse transcription complex (RTC). Reduced infectivity of viral deletion mutants of the core proteins, capsid and negative factor (Nef), can be complemented by vesicular stomatitis virus (VSV) pseudotyping suggesting a role for these viral proteins in a common event immediately post-entry. This event may be necessary for correct trafficking of the early complex. Enzymatic activation of the complex occurs either before or during RTC maturation, and may be dependent on the presence of deoxynucleotides in the host cell. The RTC initially becomes enlarged immediately after entry, which is followed by a decrease in its sedimentation rate consistent with core uncoating. Several HIV proteins associated with the RTC and recently identified host-cell proteins are important for reverse transcription while genome-wide siRNA knockdown studies have identified additional host cell factors that may be required for reverse transcription. Determining precisely how these proteins assist the RTC function needs to be addressed.
Collapse
Affiliation(s)
- David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia.
| | | | | |
Collapse
|
34
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
35
|
Nishitsuji H, Hayashi T, Takahashi T, Miyano M, Kannagi M, Masuda T. Augmentation of reverse transcription by integrase through an interaction with host factor, SIP1/Gemin2 Is critical for HIV-1 infection. PLoS One 2009; 4:e7825. [PMID: 19915660 PMCID: PMC2771899 DOI: 10.1371/journal.pone.0007825] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/16/2009] [Indexed: 11/23/2022] Open
Abstract
There has been accumulating evidence for the involvement of retroviral integrase (IN) in the reverse transcription of viral RNA. We previously identified a host factor, survival motor neuron-interacting protein 1 (SIP1/Gemin2) that binds to human immunodeficiency virus type 1 (HIV-1) IN and supports HIV-1 infection apparently at reverse transcription step. Here, we demonstrated that HIV-1 IN together with SIP1 augments reverse transcriptase (RT) activity by enhancing the assembly of RT on viral RNA in vitro. Synthetic peptides corresponding to the binding motifs within IN that inhibited the IN-SIP1 interaction abrogated reverse transcription in vitro and in vivo. Furthermore, knockdown of SIP1 reduced intracellular stability and multimer formation of IN through proteasome-mediated degradation machinery. Taken together, SIP1 appears to stabilize functional multimer forms of IN, thereby promoting the assembly of IN and RT on viral RNA to allow efficient reverse transcription, which is a prerequisite for efficient HIV-1 infection.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaya Hayashi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Takahashi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Miyano
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
Moebius K, Eichler J. HIV-derived peptide mimics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2009; 6:e1-e40. [PMID: 24128988 DOI: 10.1016/j.ddtec.2009.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
37
|
Kerman K, Kraatz HB. Electrochemical probing of HIV enzymes using ferrocene-conjugated peptides on surfaces. Analyst 2009; 134:2400-4. [DOI: 10.1039/b912083a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
39
|
Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases. Biochem J 2008; 412:163-70. [DOI: 10.1042/bj20071279] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.
Collapse
|
40
|
Avidan O, Hizi A. Expression and characterization of the integrase of bovine immunodeficiency virus. Virology 2008; 371:309-21. [DOI: 10.1016/j.virol.2007.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/21/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
|
41
|
Armon-Omer A, Levin A, Hayouka Z, Butz K, Hoppe-Seyler F, Loya S, Hizi A, Friedler A, Loyter A. Correlation between shiftide activity and HIV-1 integrase inhibition by a peptide selected from a combinatorial library. J Mol Biol 2007; 376:971-82. [PMID: 18201721 DOI: 10.1016/j.jmb.2007.11.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/24/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by "shiftides"--peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (K(d approximately )10 microM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.
Collapse
Affiliation(s)
- Ayelet Armon-Omer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|