1
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
2
|
Tabata S, Jevtic M, Kurashige N, Fuchida H, Kido M, Tani K, Zenmyo N, Uchinomiya S, Harada H, Itakura M, Hamachi I, Shigemoto R, Ojida A. Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling. iScience 2019; 22:256-268. [PMID: 31786521 PMCID: PMC6906691 DOI: 10.1016/j.isci.2019.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
Electron microscopy (EM) is a technology that enables visualization of single proteins at a nanometer resolution. However, current protein analysis by EM mainly relies on immunolabeling with gold-particle-conjugated antibodies, which is compromised by large size of antibody, precluding precise detection of protein location in biological samples. Here, we develop a specific chemical labeling method for EM detection of proteins at single-molecular level. Rational design of α-helical peptide tag and probe structure provided a complementary reaction pair that enabled specific cysteine conjugation of the tag. The developed chemical labeling with gold-nanoparticle-conjugated probe showed significantly higher labeling efficiency and detectability of high-density clusters of tag-fused G protein-coupled receptors in freeze-fracture replicas compared with immunogold labeling. Furthermore, in ultrathin sections, the spatial resolution of the chemical labeling was significantly higher than that of antibody-mediated labeling. These results demonstrate substantial advantages of the chemical labeling approach for single protein visualization by EM.
Collapse
Affiliation(s)
- Shigekazu Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marijo Jevtic
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nobutaka Kurashige
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Munetsugu Kido
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kazushi Tani
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Naoki Zenmyo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Shohei Uchinomiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Harumi Harada
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
3
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
4
|
Gupta A, Pandey T, Kumar B, Tripathi T. Preferential regeneration of thioredoxin from parasitic flatworm Fasciola gigantica using glutathione system. Int J Biol Macromol 2015; 81:983-90. [DOI: 10.1016/j.ijbiomac.2015.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
|
5
|
Tang Y, Zhang J, Yu J, Xu L, Wu J, Zhou CZ, Shi Y. Structure-Guided Activity Enhancement and Catalytic Mechanism of Yeast Grx8. Biochemistry 2014; 53:2185-96. [DOI: 10.1021/bi401293s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- YaJun Tang
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Jiang Yu
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Ling Xu
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Jihui Wu
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yunyu Shi
- Hefei National Laboratory
for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
6
|
Zeida A, Guardia CM, Lichtig P, Perissinotti LL, Defelipe LA, Turjanski A, Radi R, Trujillo M, Estrin DA. Thiol redox biochemistry: insights from computer simulations. Biophys Rev 2014; 6:27-46. [PMID: 28509962 PMCID: PMC5427810 DOI: 10.1007/s12551-013-0127-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022] Open
Abstract
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.
Collapse
Affiliation(s)
- Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Carlos M Guardia
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Pablo Lichtig
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Laura L Perissinotti
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 2N4
| | - Lucas A Defelipe
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Karshikoff A, Nilsson L, Foloppe N. Understanding the −C–X1–X2–C– Motif in the Active Site of the Thioredoxin Superfamily: E. coli DsbA and Its Mutants as a Model System. Biochemistry 2013; 52:5730-45. [DOI: 10.1021/bi400500e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrey Karshikoff
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str.,
bl. 21, Sofia 1113, Bulgaria
| | - Lennart Nilsson
- Department of Biosciences and
Nutrition, Center for Biosciences, Karolinska Institutet, S-141 83 Huddinge, Sweden
| | | |
Collapse
|
8
|
Yoon JY, Kim J, An DR, Lee SJ, Kim HS, Im HN, Yoon HJ, Kim JY, Kim SJ, Han BW, Suh SW. Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:735-46. [PMID: 23633582 DOI: 10.1107/s0907444913001236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roos G, Foloppe N, Messens J. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 2013; 18:94-127. [PMID: 22746677 DOI: 10.1089/ars.2012.4521] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many cellular functions involve cysteine chemistry via thiol-disulfide exchange pathways. The nucleophilic cysteines of the enzymes involved are activated as thiolate. A thiolate is much more reactive than a neutral thiol. Therefore, determining and understanding the pK(a)s of functional cysteines are important aspects of biochemistry and molecular biology with direct implications for redox signaling. Here, we describe the experimental and theoretical methods to determine cysteine pK(a) values, and we examine the factors that control these pK(a)s. Drawing largely on experience gained with the thioredoxin superfamily, we examine the roles of solvation, charge-charge, helix macrodipole, and hydrogen bonding interactions as pK(a)-modulating factors. The contributions of these factors in influencing cysteine pK(a)s and the associated chemistry, including the relevance for the reaction kinetics and thermodynamics, are discussed. This analysis highlights the critical role of direct hydrogen bonding to the cysteine sulfur as a key factor modulating the equilibrium between thiol S-H and thiolate S(-). This role is easily understood intuitively and provides a framework for biochemical functional insights.
Collapse
Affiliation(s)
- Goedele Roos
- General Chemistry, Vrije University Brussel, Brussels, Belgium
| | | | | |
Collapse
|
10
|
Madzelan P, Labunska T, Wilson MA. Influence of peptide dipoles and hydrogen bonds on reactive cysteine pKa values in fission yeast DJ-1. FEBS J 2012; 279:4111-20. [PMID: 22971103 DOI: 10.1111/febs.12004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
Cysteine residues with depressed pK(a) values are critical for the functions of many proteins. Several types of interactions can stabilize cysteine thiolate anions, including hydrogen bonds between thiol(ate)s and nearby residues as well as electrostatic interactions involving charged residues or dipoles. Dipolar stabilization of thiolates by peptide groups has been suggested to play a particularly important role near the N-termini of α-helices. Using a combination of X-ray crystallography, site-directed mutagenesis and spectroscopic methods, we show that the reactive cysteine residue (Cys111) in Schizosaccharomyces pombe DJ-1 experiences a 0.6 unit depression of its thiol pK(a) as a consequence of a hydrogen bond donated by a threonine side chain (Thr114) to a nearby peptide carbonyl oxygen at the N-terminus of an α-helix. This extended hydrogen bonded interaction is consistent with a sum of dipoles model whereby the distal hydrogen bond polarizes and strengthens the direct hydrogen bond between the proximal amide hydrogen and the cysteine thiol(ate). Therefore, our results suggest that the local dipolar enhancement of hydrogen bonds can appreciably stabilize cysteine thiolate formation. However, the substitution of a valine residue with a proline at the i + 3 position has only a minor effect (0.3 units) on the pK(a) of Cys111. As proline has a reduced peptide dipole moment, this small effect suggests that a more extended helix macrodipolar effect does not play a major role in this system.
Collapse
Affiliation(s)
- Peter Madzelan
- Department of Biochemistry, University of Nebraska, Lincoln, USA
| | | | | |
Collapse
|
11
|
Foloppe N, Vlamis-Gardikas A, Nilsson L. The -Cys-X1-X2-Cys- motif of reduced glutaredoxins adopts a consensus structure that explains the low pK(a) of its catalytic cysteine. Biochemistry 2012; 51:8189-207. [PMID: 22966829 DOI: 10.1021/bi3006576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The -Cys-X1-X2-Cys- active site motif is central to the function of enzymes of the thioredoxin superfamily, including glutaredoxins. Their chemistry depends on the lowered pK(a) of the N-terminal thiolate cysteine of the -Cys-X1-X2-Cys- sequence; therefore its structure, dynamics, and electrostatics matter. Much information about the glutaredoxin structures was obtained by nuclear magnetic resonance (NMR), yet these various NMR structures produced heterogeneous and discordant views of the -Cys-X1-X2-Cys- motifs. This study addresses these inconsistencies by a computational and experimental investigation of three diverse reduced -Cys-X1-X2-Cys- motifs, from human glutaredoxin 1 (hGrx1), Escherichia coli glutaredoxin 2 (EcGrx2), and T4 virus glutaredoxin (T4Grx). The NMR models do not account for the low pK(a) of the N-terminal cysteine. However, extensive investigations of the NMR conformers by simulations yielded consensus structures for the -Cys-X1-X2-Cys- motif, with well-defined orientations for the cysteines. pK(a) calculations indicated that the consensus structure stabilizes the thiolate by local hydrogen bonds. The consensus structures of EcGrx2 and T4Grx formed the basis for predicting low pK(a) values for their N-terminal cysteines. Subsequent experimental titrations showed that these pK(a) values are <5, supporting the validity of the consensus structure. The simulations also revisited the conformational dynamics of side chains around the -Cys-X1-X2-Cys- motif, which allowed reconciliation of calculated and measured pK(a) values for important hGrx1 mutants. The conformational spread of these side chains, which differs between NMR and molecular dynamics models, is likely to be relevant to substrate recognition. The new structural models determined in this work should prove to be valuable in future molecular studies of the glutaredoxins.
Collapse
|
12
|
Van Laer K, Buts L, Foloppe N, Vertommen D, Van Belle K, Wahni K, Roos G, Nilsson L, Mateos LM, Rawat M, van Nuland NAJ, Messens J. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria. Mol Microbiol 2012; 86:787-804. [DOI: 10.1111/mmi.12030] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Nicolas Foloppe
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge; SE-171 77; Sweden
| | - Didier Vertommen
- de Duve Institute; Université catholique de Louvain; Brussels; 1200; Belgium
| | | | | | | | - Lennart Nilsson
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge; SE-171 77; Sweden
| | - Luis M. Mateos
- Department of Molecular Biology; Area of Microbiology; University of León; León; 24006; Spain
| | - Mamta Rawat
- Department of Biology; California State University; Fresno; CA; 93740; USA
| | | | | |
Collapse
|
13
|
Garzón B, Oeste CL, Díez-Dacal B, Pérez-Sala D. Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. J Proteomics 2011; 74:2243-63. [DOI: 10.1016/j.jprot.2011.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
14
|
Henry LK, Iwamoto H, Field JR, Kaufmann K, Dawson ES, Jacobs MT, Adams C, Felts B, Zdravkovic I, Armstrong V, Combs S, Solis E, Rudnick G, Noskov SY, DeFelice LJ, Meiler J, Blakely RD. A conserved asparagine residue in transmembrane segment 1 (TM1) of serotonin transporter dictates chloride-coupled neurotransmitter transport. J Biol Chem 2011; 286:30823-30836. [PMID: 21730057 DOI: 10.1074/jbc.m111.250308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.
Collapse
Affiliation(s)
- L Keith Henry
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203.
| | - Hideki Iwamoto
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Julie R Field
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Kristian Kaufmann
- Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Eric S Dawson
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Miriam T Jacobs
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Chelsea Adams
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Bruce Felts
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Igor Zdravkovic
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vanessa Armstrong
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Steven Combs
- Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Ernesto Solis
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Sergei Y Noskov
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Louis J DeFelice
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Jens Meiler
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D Blakely
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548.
| |
Collapse
|
15
|
Turpin ER, Bonev BB, Hirst JD. Stereoselective disulfide formation stabilizes the local peptide conformation in nisin mimics. Biochemistry 2011; 49:9594-603. [PMID: 20882989 DOI: 10.1021/bi101214t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nisin is a polymacrocyclic peptide antimicrobial with high activity against Gram-positive bacteria. Lanthionine and methyllanthionine bridges, closing the macrocycles, are stabilized by thioether bonds, formed between cysteines and dehydrated serine or threonine. The role of polypeptide backbone conformation in the formation of macrocycles A and B within cysteine mutants of nisin residues 1−12 is investigated here by molecular dynamics simulations. Enantiomeric combinational space of Cys3 and Cys7 and of Cys8 and Cys11 is examined for the preference of disulfide bond formation over helical turn formation within this region. A clear preference for spontaneous disulfide formation and closure of rings 3,7 and 8,11 is demonstrated for the D-Cys3, D-Cys7, L-Cys8, L-Cys11 nisin homologue, while interlinked rings A and B are obtained through disulfide bridges between L-Cys3 and D-Cys8 and between D-Cys7 and D-Cys11. This study offers a simple designer approach to solid phase synthesis of macrocyclic peptides and lantibiotic analogues.
Collapse
|
16
|
Li WF, Yu J, Ma XX, Teng YB, Luo M, Tang YJ, Zhou CZ. Structural basis for the different activities of yeast Grx1 and Grx2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1542-7. [DOI: 10.1016/j.bbapap.2010.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/24/2010] [Accepted: 04/13/2010] [Indexed: 01/01/2023]
|
17
|
Terada T, Okamoto KI, Nishikawa JI, Miura T, Nishinaka T, Nishihara T. Site-directed mutagenesis of rat thioltransferase: effects of essential cysteine residues for the protection against oxidative stress. J Biochem Mol Toxicol 2010; 24:60-5. [PMID: 20175144 DOI: 10.1002/jbt.20312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cDNA of rat liver thioltransferase was cloned and then expressed using pMAL-c expression vector in Escherichia coli. Recombinant rat liver thioltransferase was expressed as a fusion protein with maltose-binding protein and then purified by amylose resin column chromatography to be homogeneity on 12.5% SDS-polyacrylamide gel electrophoretic analysis. The expressed proteins were shown as two bands at around 53 and 41 kDa, suggesting that the high molecular one was a fusion protein of recombinant thioltransferase (11.7 plus 41 kDa) and the other (smaller one) was a maltose-binding protein (41 kDa). A recombinant thioltransferase catalyzed a thiol/disulfide exchange reaction in the same way as thioltransferases purified from various sources. Compared with wild type, the mutants C23A, C26A, C79A, and C83A showed 0%, 17%, 82%, and 86% in the enzymatic activity, respectively. In addition, wild-type-transfected bacteria expressed in bacterial cells showed a strong resistance to H(2)O(2) treatment as well as the case of active mutants (C79A and C83A), but inactive mutants (C23A and C26A) showed no resistance to H(2)O(2) treatment as same as mocktransfection. Thioltransferase can be important for survival of bacterial cells under oxidative stress.
Collapse
Affiliation(s)
- Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Shekhter T, Metanis N, Dawson PE, Keinan E. A residue outside the active site CXXC motif regulates the catalytic efficiency of Glutaredoxin 3. MOLECULAR BIOSYSTEMS 2010; 6:241-8. [PMID: 20024086 PMCID: PMC3820274 DOI: 10.1039/b912753d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutaredoxin (Grx) family of oxidoreductases has a conserved residue at position 8 that varies between Arginine in Grx1 and Lysine in Grx3. It has been proposed that this Arg/Lys change is the main cause for the 35 mV difference in redox potential between the two enzymes. To gain insights into the catalytic machinery of Grx3 and directly evaluate the role of residue 8 in the catalysis of thiol-disulfide exchange by this enzyme, we synthesized the "wild type" enzyme (sGrx3), and four analogues substituting the lysine at position 8 with arginine, ornithine (Orn), citrulline (Cit) and norvaline (Nva). The redox potential and equilibration kinetics with thioredoxin (Trx1) were determined for each enzyme by fluorescence intensity. While minor effects on redox potential were observed, we found that residue 8 had a more marked effect on the catalytic efficiency of this enzyme. Surprisingly, truncation of the functional group resulted in a more efficient enzyme, Lys8Nva, exhibiting rate constants that are an order of magnitude higher than sGrx3 for both forward and reverse reactions. These observations pose the question why would a residue that reduces the rate of enzyme turnover be evolutionarily conserved? The significant changes in the kinetic parameters suggest that this position plays an important role in the thiol-disulfide exchange reaction by affecting the nucleophilic thiolate through electrostatic or hydrogen bonding interactions. Since the reduced Grx has an exposed thiol that could easily be alkylated, either Arg or Lys could act as a gatekeeper that deters unwanted electrophiles from attacking the active site thiolate.
Collapse
Affiliation(s)
- Talia Shekhter
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Norman Metanis
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Philip E. Dawson
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, Cell Biology and Chemistry and 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ehud Keinan
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
19
|
Abstract
The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx. Thioredoxins are found in all types of cells and control several essential functions of life, including promotion of cell growth, inhibition of apoptosis, and modulation of inflammation. Thioredoxin has two ‘free’ cysteines in its active site, which are used to break disulfide bonds in oxidized substrate proteins. In the first step, an intermediate thioredoxin-protein complex is formed, which is broken in the second step, releasing the substrate protein in its reduced state. In other words, the disulfide is being transferred from the substrate protein to thioredoxin, or the electrons coming from thioredoxin are shuttled to the protein substrate. The exact reaction mechanism, i.e., the detailed succession of steps in which the reaction takes place, of how this mixed disulfide is broken is not known and has been debated over the last twenty years. With a multidisciplinary approach, combining computational and experimental work, we provide fresh insights into how conformational changes activate the catalytic cysteines with which this universal reduction mechanism is completed with the correct regioselectivity. This work illustrates the strengths of computational approaches in probing phenomena which are otherwise very difficult to investigate experimentally.
Collapse
|
20
|
Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 2009; 11:1059-81. [PMID: 19119916 PMCID: PMC2842129 DOI: 10.1089/ars.2008.2291] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glutaredoxins are small, heat-stable proteins that exhibit a characteristic thioredoxin fold and a CXXC/S active-site motif. A variety of glutathione (GSH)-dependent catalytic activities have been attributed to the glutaredoxins, including reduction of ribonucleotide reductase, arsenate, and dehydroascorbate; assembly of iron sulfur cluster complexes; and protein glutathionylation and deglutathionylation. Catalysis of reversible protein glutathionylation by glutaredoxins has been implicated in regulation of redox signal transduction and sulfhydryl homeostasis in numerous contexts in health and disease. This forum review is presented in two parts. Part I is focused primarily on the mechanism of the deglutathionylation reaction catalyzed by prototypical dithiol glutaredoxins, especially human Grx1 and Grx2. Grx-catalyzed protein deglutathionylation proceeds by a nucleophilic, double-displacement mechanism in which rate enhancement is attributed to special reactivity of the low pK(a) cysteine at its active site, and to increased nucleophilicity of the second substrate, GSH. Glutaredoxins (and Grx domains) have been identified in most organisms, and many exhibit deglutathionylation or other activities or both. Further characterization according to glutathionyl selectivity, physiological substrates, and intracellular roles may lead to subclassification of this family of enzymes. Part II presents potential mechanisms for in vivo regulation of Grx activity, providing avenues for future studies.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
21
|
Sotirchos IM, Hudson AL, Ellis J, Davey MW. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity. Free Radic Biol Med 2009; 46:579-85. [PMID: 19111609 DOI: 10.1016/j.freeradbiomed.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022]
Abstract
The dependency of parasites on the cellular redox systems has led to their investigation as novel drug targets. Defence against oxidative damage is through the thioredoxin and glutathione systems. The classic thioredoxin is identified by the active site Cys-Gly-Pro-Cys (CGPC). Here we describe the identification of a unique thioredoxin in the parasitic nematode, Haemonchus contortus. This thioredoxin-related protein, termed HcTrx5, has an arginine in its active site (Cys-Arg-Ser-Cys; CRSC) that is not found in any other organism. Recombinant HcTrx5 was able to reduce the disulfide bond in insulin, and be regenerated by mammalian thioredoxin reductase with a K(m) 2.19+/-1.5 microM, similar to the classic thioredoxins. However, it was also able to reduce insulin when glutathione and glutathione reductase replaced the thioredoxin reductase. When coupled with H. contortus peroxiredoxin, HcTrx5 was active using either the thioredoxin reductase or the glutathione and glutathione reductase. HcTrx5 is expressed through the life cycle, with highest expression in the adult stage. The unique activity of this thioredoxin makes it a potential drug target for the control of this parasite.
Collapse
Affiliation(s)
- Irene M Sotirchos
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway NSW, Australia
| | | | | | | |
Collapse
|
22
|
Melchers J, Diechtierow M, Fehér K, Sinning I, Tews I, Krauth-Siegel RL, Muhle-Goll C. Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase. J Biol Chem 2008; 283:30401-11. [PMID: 18684708 PMCID: PMC2662087 DOI: 10.1074/jbc.m803563200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/24/2008] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state. Here we report on the three-dimensional structures of oxidized T. brucei Px III at 1.4A resolution obtained by x-ray crystallography and of both the oxidized and the reduced protein determined by NMR spectroscopy. Px III is a monomeric protein unlike the homologous poplar thioredoxin peroxidase (TxP). The structures of oxidized and reduced Px III are essentially identical in contrast to what was recently found for TxP. In Px III, Cys(47), Gln(82), and Trp(137) do not form the catalytic triad observed in the selenoenzymes, and related proteins and the latter two residues are unaffected by the redox state of the protein. The mutational analysis of three conserved lysine residues in the vicinity of the catalytic cysteines revealed that exchange of Lys(107) against glutamate abrogates the reduction of hydrogen peroxide, whereas Lys(97) and Lys(99) play a crucial role in the interaction with tryparedoxin.
Collapse
Affiliation(s)
- Johannes Melchers
- Department of Structure and Biocomputing, EMBL, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Gallogly MM, Starke DW, Leonberg AK, Ospina SME, Mieyal JJ. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008; 47:11144-57. [PMID: 18816065 DOI: 10.1021/bi800966v] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaredoxin (Grx)-catalyzed deglutathionylation of protein-glutathione mixed disulfides (protein-SSG) serves important roles in redox homeostasis and signal transduction, regulating diverse physiological and pathophysiological events. Mammalian cells have two Grx isoforms: Grx1, localized to the cytosol and mitochondrial intermembrane space, and Grx2, localized primarily to the mitochondrial matrix [Pai, H. V., et al. (2007) Antioxid. Redox Signaling 9, 2027-2033]. The catalytic behavior of Grx1 has been characterized extensively, whereas Grx2 catalysis is less well understood. We observed that human Grx1 and Grx2 exhibit key catalytic similarities, including selectivity for protein-SSG substrates and a nucleophilic, double-displacement, monothiol mechanism exhibiting a strong commitment to catalysis. A key distinction between Grx1- and Grx2-mediated deglutathionylation is decreased catalytic efficiency ( k cat/ K M) of Grx2 for protein deglutathionylation (due primarily to a decreased k cat), reflecting a higher p K a of its catalytic cysteine, as well as a decreased enhancement of nucleophilicity of the second substrate, GSH. As documented previously for hGrx1 [Starke, D. W., et al. (2003) J. Biol. Chem. 278, 14607-14613], hGrx2 catalyzes glutathione-thiyl radical (GS (*)) scavenging, and it also mediates GS transfer (protein S-glutathionylation) reactions, where GS (*) serves as a superior glutathionyl donor substrate for formation of GAPDH-SSG, compared to GSNO and GSSG. In contrast to its lower k cat for deglutathionylation reactions, Grx2 promotes GS-transfer to the model protein substrate GAPDH at rates equivalent to those of Grx1. Estimation of Grx1 and Grx2 concentrations within mitochondria predicts comparable deglutathionylation activities within the mitochondrial subcompartments, suggesting localized regulatory functions for both isozymes.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 2109 Adelbert Road, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | |
Collapse
|
24
|
Narzi D, Siu SWI, Stirnimann CU, Grimshaw JPA, Glockshuber R, Capitani G, Böckmann RA. Evidence for proton shuffling in a thioredoxin-like protein during catalysis. J Mol Biol 2008; 382:978-86. [PMID: 18692066 DOI: 10.1016/j.jmb.2008.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Proteins of the thioredoxin (Trx) superfamily catalyze disulfide-bond formation, reduction and isomerization in substrate proteins both in prokaryotic and in eukaryotic cells. All members of the Trx family with thiol-disulfide oxidoreductase activity contain the characteristic Cys-X-X-Cys motif in their active site. Here, using Poisson-Boltzmann-based protonation-state calculations based on 100-ns molecular dynamics simulations, we investigate the catalytic mechanism of DsbL, the most oxidizing Trx-like protein known to date. We observed several correlated transitions in the protonation states of the buried active-site cysteine and a neighboring lysine coupled to the exposure of the active-site thiolate. These results support the view of an internal proton shuffling mechanism during oxidation crucial for the uptake of two electrons from the substrate protein. Intramolecular disulfide-bond formation is probably steered by the conformational switch facilitating interaction with the active-site thiolate. A consistent catalytic mechanism for DsbL, probably conferrable to other proteins of the same class, is presented. Our results suggest a functional role of hydration entropy of active-site groups.
Collapse
Affiliation(s)
- Daniele Narzi
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, Box 15 11 50, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Yu J, Zhang NN, Yin PD, Cui PX, Zhou CZ. Glutathionylation-triggered conformational changes of glutaredoxin Grx1 from the yeast Saccharomyces cerevisiae. Proteins 2008; 72:1077-83. [DOI: 10.1002/prot.22096] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|