1
|
Lindner C, Friemel A, Schwegler N, Timmermann L, Pham TL, Reusche V, Kovermann M, Thomas F. Thermostable WW-Domain Scaffold to Design Functional β-Sheet Miniproteins. J Am Chem Soc 2024. [PMID: 38853610 DOI: 10.1021/jacs.4c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There has been a recent surge in the design of miniproteins for medicinal chemistry, biomaterial design, or synthetic biology. In particular, there is an interest in peptide scaffolds that fold reliably, predictably, and with solid stability. In this article, we present the design of a highly thermostable WW domain, a three-stranded β-sheet motif, with a superior melting temperature of about 90 °C to serve as a core scaffold onto which receptor-like properties can be grafted. We have performed specific rounds of sequence iteration on a WW-domain consensus sequence to decipher sequence positions that affect structural and, thus, thermal stability. We identified a sequence-structure relationship that yields a highly thermostable WW-domain scaffold. High-resolution NMR spectroscopy was applied, which enabled the identification of structural features at the atomic scale that contribute to this high thermostability. Finally, we grafted the binding motifs of the three WW-domain groups─Group I, Group II/III, and Group IV─and organophosphate and metal binding onto the highly thermostable WW-domain scaffold and obtained thermostable de novo WW domains that indeed display the different binding modes that were intended. The organophosphate-binding WW domains exhibit melting temperatures that are up to 34 K higher than previously reported top-down designs. These results impressively demonstrate that the highly thermostable WW-domain core scaffold is a solid platform for the design of discrete and reliably folding functional β-sheet peptide miniproteins, providing an essential addition to the toolbox of peptide scaffolds previously used in synthetic biology and material design.
Collapse
Affiliation(s)
- Christina Lindner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Anke Friemel
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Niklas Schwegler
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Lisa Timmermann
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Vanessa Reusche
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Kovermann
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Neitz H, Paul NB, Häge FR, Lindner C, Graebner R, Kovermann M, Thomas F. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains. Chem Sci 2022; 13:9079-9090. [PMID: 36091217 PMCID: PMC9365081 DOI: 10.1039/d2sc01078j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
β-Sheet motifs such as the WW domain are increasingly being explored as building blocks for synthetic biological applications. Since the sequence-structure relationships of β-sheet motifs are generally complex compared to the well-studied α-helical coiled coil (CC), other approaches such as combinatorial screening should be included to vary the function of the peptide. In this study, we present a combinatorial approach to identify novel functional mini-proteins based on the WW-domain scaffold, which takes advantage of the successful reconstitution of the fragmented WW domain of hPin1 (hPin1WW) by CC association. Fragmentation of hPin1WW was performed in both loop 1 (CC-hPin1WW-L1) and loop 2 (CC-hPin1WW-L2), and the respective fragments were linked to the strands of an antiparallel heterodimeric CC. Structural analysis by CD and NMR spectroscopy revealed structural reconstitution of the WW-domain scaffold only in CC-hPin1WW-L1, but not in CC-hPin1WW-L2. Furthermore, by using 1H-15N HSQC NMR, fluorescence and CD spectroscopy, we demonstrated that binding properties of fragmented hPin1WW in CC-hPin1WW-L1 were fully restored by CC association. To demonstrate the power of this approach as a combinatorial screening platform, we synthesized a four-by-six library of N- and C-terminal hPin1WW-CC peptide fragments that was screened for a WW domain that preferentially binds to ATP over cAMP, phophocholine, or IP6. Using this screening platform, we identified one WW domain, which specifically binds ATP, and a phosphorylcholine-specific WW-based mini-receptor, both having binding dissociation constants in the lower micromolar range.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg Am Hubland Würzburg 97074 Germany
| | - Niels Benjamin Paul
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Tammannstr. 2 Göttingen 37077 Germany
| | - Florian R Häge
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Christina Lindner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Roman Graebner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz Universitätsstraße 10 Konstanz 78457 Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| |
Collapse
|
5
|
Rosa E Silva I, Binó L, Johnson CM, Rutherford TJ, Neuhaus D, Andreeva A, Čajánek L, van Breugel M. Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure 2022; 30:114-128.e9. [PMID: 34499853 PMCID: PMC8752127 DOI: 10.1016/j.str.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Cilia formation is essential for human life. One of the earliest events in the ciliogenesis program is the recruitment of tau-tubulin kinase 2 (TTBK2) by the centriole distal appendage component CEP164. Due to the lack of high-resolution structural information on this complex, it is unclear how it is affected in human ciliopathies such as nephronophthisis. Furthermore, it is poorly understood if binding to CEP164 influences TTBK2 activities. Here, we present a detailed biochemical, structural, and functional analysis of the CEP164-TTBK2 complex and demonstrate how it is compromised by two ciliopathic mutations in CEP164. Moreover, we also provide insights into how binding to CEP164 is coordinated with TTBK2 activities. Together, our data deepen our understanding of a crucial step in cilia formation and will inform future studies aimed at restoring CEP164 functionality in a debilitating human ciliopathy.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lucia Binó
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Christopher M Johnson
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Neuhaus
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Mark van Breugel
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
6
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
7
|
A WW Tandem-Mediated Dimerization Mode of SAV1 Essential for Hippo Signaling. Cell Rep 2021; 32:108118. [PMID: 32905778 PMCID: PMC7494017 DOI: 10.1016/j.celrep.2020.108118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical mammalian Hippo pathway contains a core kinase signaling cascade requiring upstream MST to form a stable complex with SAV1 in order to phosphorylate the downstream LATS/MOB complex. Though SAV1 dimerization is essential for the trans-activation of MST, the molecular mechanism underlying SAV1 dimerization is unclear. Here, we discover that the SAV1 WW tandem containing a short Pro-rich extension immediately following the WW tandem (termed as "WW12ex") forms a highly stable homodimer. The crystal structure of SAV1 WW12ex reveals that the Pro-rich extension of one subunit binds to both WW domains from the other subunit. Thus, SAV1 WW12ex forms a domain-swapped dimer instead of a WW2 homodimerization-mediated dimer. The WW12ex-mediated dimerization of SAV1 is required for the MST/SAV1 complex assembly and MST kinase activation. Finally, we show that several cancer-related SAV1 variants disrupt SAV1 dimer formation, and thus, these mutations may impair the tumor-suppression activity of SAV1.
Collapse
|
8
|
Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4. Life (Basel) 2021; 11:life11050379. [PMID: 33922228 PMCID: PMC8190631 DOI: 10.3390/life11050379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third β-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.
Collapse
|
9
|
Sjögren syndrome/scleroderma autoantigen 1 is a direct Tankyrase binding partner in cancer cells. Commun Biol 2020; 3:123. [PMID: 32170109 PMCID: PMC7070046 DOI: 10.1038/s42003-020-0851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Sjögren syndrome/scleroderma autoantigen 1 (SSSCA1) was first described as an auto-antigen over-expressed in Sjögren’s syndrome and in scleroderma patients. SSSCA1 has been linked to mitosis and centromere association and as a potential marker candidate in diverse solid cancers. Here we characterize SSSCA1 for the first time, to our knowledge, at the molecular, structural and subcellular level. We have determined the crystal structure of a zinc finger fold, a zinc ribbon domain type 2 (ZNRD2), at 2.3 Å resolution. We show that the C-terminal domain serves a dual function as it both behaves as the interaction site to Tankyrase 1 (TNKS1) and as a nuclear export signal. We identify TNKS1 as a direct binding partner of SSSCA1, map the binding site to TNKS1 ankyrin repeat cluster 2 (ARC2) and thus define a new binding sequence. We experimentally verify and map a new nuclear export signal sequence in SSSCA1. Perdreau-Dahl et al. systematically characterise Sjögren syndrome/scleroderma autoantigen 1 at the molecular, structural and subcellular level. They show that the C-terminal domain serves a dual function as it both behaves as the interaction site to Tankyrase 1 and as a nuclear export signal.
Collapse
|
10
|
Effects of the Pentapeptide P33 on Memory and Synaptic Plasticity in APP/PS1 Transgenic Mice: A Novel Mechanism Presenting the Protein Fe65 as a Target. Int J Mol Sci 2019; 20:ijms20123050. [PMID: 31234498 PMCID: PMC6627374 DOI: 10.3390/ijms20123050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Regulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) leads to the formation of fragments, among which the intracellular domain of APP (AICD) was also identified to be a causative of early pathological events. AICD-counteracting proteins, such as Fe65, may serve as alternative therapeutic targets of Alzheimer’s disease (AD). The detection of elevated levels of Fe65 in the brains of both human patients and APP transgenic mice may further strengthen the hypothesis that influencing the interaction between Fe65 and APP may have a beneficial effect on the course of AD. Based on a PXP motif, proven to bind to the WW domain of Fe65, a new pentapeptide was designed and tested. The impedimental effect of P33 on the production of beta amyloid (Aβ) (soluble fraction and aggregated plaques) and on the typical features of the AD pathology (decreased dendritic spine density, synaptic markers, elevated inflammatory reactions) was also demonstrated. Significant enhancements of both learning ability and memory function were observed in a Morris water maze paradigm. The results led us to formulate the theory that P33 acts by altering the conformation of Fe65 via binding to its WW domain, consequently hindering any interactions between Fe65 and key members involved in APP processing.
Collapse
|
11
|
Li Z, Liu H, Li J, Yang Q, Feng Z, Li Y, Yang H, Yu C, Wan J, Liu W, Zhang M. Homer Tetramer Promotes Actin Bundling Activity of Drebrin. Structure 2019; 27:27-38.e4. [DOI: 10.1016/j.str.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022]
|
12
|
Pietrzyk-Brzezinska AJ, Absmeier E, Klauck E, Wen Y, Antelmann H, Wahl MC. Crystal Structure of the Escherichia coli DExH-Box NTPase HrpB. Structure 2018; 26:1462-1473.e4. [PMID: 30174149 DOI: 10.1016/j.str.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Eukaryotic DExH-box proteins are important post-transcriptional gene regulators, many of which employ RNA-stimulated nucleoside triphosphatase activity to remodel RNAs or ribonucleoprotein complexes. However, bacterial DExH-box proteins are structurally and functionally poorly characterized. We report the crystal structure of the Escherichia coli DExH-box protein HrpB. A globular head is composed of dual RecA, winged-helix, helical bundle and oligonucleotide/oligosaccharide-binding domains, resembling a compact version of eukaryotic DExH-box proteins. Additionally, HrpB harbors a C-terminal region not found in proteins with known structure, which bestows the protein with unique interaction potential. Interaction and activity assays showed that the protein binds RNA but not DNA, hydrolyzes all nucleoside triphosphates in an RNA-stimulated manner, but does not unwind diverse model RNAs in vitro. These observations can be rationalized by detailed comparisons with structurally characterized eukaryotic DExH-box proteins. Comparative phenotypic analyses of an E. coli hrpB knockout mutant suggested diverse functions of HrpB homologs in different bacteria.
Collapse
Affiliation(s)
| | - Eva Absmeier
- Freie Universität Berlin, Laboratory of Structural Biochemistry, 14195 Berlin, Germany
| | - Eberhard Klauck
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Yanlin Wen
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, 12489 Berlin, Germany.
| |
Collapse
|
13
|
Li T, Chen X, Cai Y, Dai J. Artificial Protein Scaffold System (AProSS): An efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab Eng 2018; 49:13-20. [PMID: 30010058 DOI: 10.1016/j.ymben.2018.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
Scaffold proteins influence cellular signaling by orchestrating multiple enzymes, receptors or ion channels, and could be tailored to enhance the efficiency of biochemical reactions by positioning related enzymes physically together. However, the number of applicable domains remains small, and the construction of scaffold proteins with optimal domain ratio could be tedious and time-consuming. In this study, we outlined a modular design to quickly assemble scaffold proteins using protein interaction domains, which have been constructed into a standardized vector. We generated multiple protein interaction domains and ligands for making artificial scaffold proteins. At the same time, we developed a robust Golden-Gate-based molecular toolkit for the construction of artificial scaffold proteins, allowing a variance of domain types, number, and positions. The synthesized domain-ligand interaction was verified by yeast two-hybrid and split-GFP assays. Using synthetic scaffolds, we demonstrated an increase in the yield of two target products by 29% and 63% respectively. Moreover, we demonstrated that the synthetic scaffold could be applied to rewire the metabolic flux. Our system could be a useful tool for metabolic engineering and beyond.
Collapse
Affiliation(s)
- Tianyi Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuqi Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biology, Johns Hopkins University, 3400N. Charles Street, Baltimore, MD, USA
| | - Yizhi Cai
- Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK.
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Stanfield RL, Haakenson J, Deiss TC, Criscitiello MF, Wilson IA, Smider VV. The Unusual Genetics and Biochemistry of Bovine Immunoglobulins. Adv Immunol 2018; 137:135-164. [PMID: 29455846 DOI: 10.1016/bs.ai.2017.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies are the key circulating molecules that have evolved to fight infection by the adaptive immune system of vertebrates. Typical antibodies of most species contain six complementarity-determining regions (CDRs), where the third CDR of the heavy chain (CDR H3) has the greatest diversity and often makes the most significant contact with antigen. Generally, the process of V(D)J recombination produces a vast repertoire of antibodies; multiple V, D, and J gene segments recombine with additional junctional diversity at the V-D and D-J joints, and additional combinatorial possibilities occur through heavy- and light-chain pairing. Despite these processes, the overall structure of the resulting antibody is largely conserved, and binding to antigen occurs predominantly through the CDR loops of the immunoglobulin V domains. Bovines have deviated from this general paradigm by having few VH regions and thus little germline combinatorial diversity, but their antibodies contain long CDR H3 regions, with substantial diversity generated through somatic hypermutation. A subset of the repertoire comprises antibodies with ultralong CDR H3s, which can reach over 70 amino acids in length. Structurally, these unusual antibodies form a β-ribbon "stalk" and disulfide-bonded "knob" that protrude far from the antibody surface. These long CDR H3s allow cows to mount a particularly robust immune response when immunized with viral antigens, particularly to broadly neutralizing epitopes on a stabilized HIV gp140 trimer, which has been a challenge for other species. The unusual genetics and structural biology of cows provide for a unique paradigm for creation of immune diversity and could enable generation of antibodies against especially challenging targets and epitopes.
Collapse
Affiliation(s)
| | | | - Thaddeus C Deiss
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F Criscitiello
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Ian A Wilson
- The Scripps Research Institute, La Jolla, CA, United States
| | - Vaughn V Smider
- The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
15
|
Yan B, Ye L, Xu W, Liu L. Recent advances in racemic protein crystallography. Bioorg Med Chem 2017; 25:4953-4965. [DOI: 10.1016/j.bmc.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
16
|
Feilen LP, Haubrich K, Strecker P, Probst S, Eggert S, Stier G, Sinning I, Konietzko U, Kins S, Simon B, Wild K. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction. Front Mol Neurosci 2017; 10:140. [PMID: 28553201 PMCID: PMC5425604 DOI: 10.3389/fnmol.2017.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.
Collapse
Affiliation(s)
- Lukas P Feilen
- Heidelberg University Biochemistry Center (BZH), University of HeidelbergHeidelberg, Germany
| | - Kevin Haubrich
- Heidelberg University Biochemistry Center (BZH), University of HeidelbergHeidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Structural and Computational BiologyHeidelberg, Germany
| | - Paul Strecker
- Division of Human Biology and Human Genetics, University of KaiserslauternKaiserslautern, Germany
| | - Sabine Probst
- Institute for Regenerative Medicine (IREM), University of ZurichZurich, Switzerland
| | - Simone Eggert
- Division of Human Biology and Human Genetics, University of KaiserslauternKaiserslautern, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), University of HeidelbergHeidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), University of HeidelbergHeidelberg, Germany
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of ZurichZurich, Switzerland
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of KaiserslauternKaiserslautern, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Structural and Computational BiologyHeidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), University of HeidelbergHeidelberg, Germany
| |
Collapse
|
17
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
18
|
Koistinen NA, Edlund AK, Menon PK, Ivanova EV, Bacanu S, Iverfeldt K. Nuclear localization of amyloid-β precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis. PLoS One 2017; 12:e0173888. [PMID: 28323844 PMCID: PMC5360310 DOI: 10.1371/journal.pone.0173888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
Fe65 is an adaptor protein involved in both processing and signaling of the Alzheimer-associated amyloid-β precursor protein, APP. Here, the subcellular localization was further investigated using TAP-tagged Fe65 constructs expressed in human neuroblastoma cells. Our results indicate that PTB2 rather than the WW domain is important for the nuclear localization of Fe65. Electrophoretic mobility shift of Fe65 caused by phosphorylation was not detected in the nuclear fraction, suggesting that phosphorylation could restrict nuclear localization of Fe65. Furthermore, both ADAM10 and γ-secretase inhibitors decreased nuclear Fe65 in a similar way indicating an important role also of α-secretase in regulating nuclear translocation.
Collapse
Affiliation(s)
- Niina A Koistinen
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Anna K Edlund
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Preeti K Menon
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Elena V Ivanova
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Smaranda Bacanu
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Kerstin Iverfeldt
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| |
Collapse
|
19
|
Stanfield RL, Wilson IA, Smider VV. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Sci Immunol 2016; 1:aaf7962. [PMID: 27574710 PMCID: PMC5000368 DOI: 10.1126/sciimmunol.aaf7962] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A subset of bovine antibodies have an exceptionally long third heavy-chain complementarity determining region (CDR H3) that is highly variable in sequence and includes multiple cysteines. These long CDR H3s (up to 69 residues) fold into a long stalk atop which sits a knob domain that is located far from the antibody surface. Three new bovine Fab crystal structures have been determined to decipher the conserved and variable features of ultralong CDR H3s that lead to diversity in antigen recognition. Despite high sequence variability, the stalks adopt a conserved β-ribbon structure, while the knob regions share a conserved β-sheet that serves as a scaffold for two connecting loops of variable length and conformation, as well as one conserved disulfide. Variation in patterns and connectivity of the remaining disulfides contribute to the knob structural diversity. The unusual architecture of these ultralong bovine CDR H3s for generating diversity is unique in adaptive immune systems.
Collapse
Affiliation(s)
- Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The
Scripps Research Institute, La Jolla, California, 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The
Scripps Research Institute, La Jolla, California, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research
Institute, La Jolla, California, 92037, USA
| | - Vaughn V. Smider
- Department of Cell and Molecular Biology, The Scripps Research
Institute, La Jolla, California, 92037, USA
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121,
USA
| |
Collapse
|
20
|
Mizuguchi M, Obita T, Kajiyama A, Kozakai Y, Nakai T, Nabeshima Y, Okazawa H. Allosteric modulation of the binding affinity between PQBP1 and the spliceosomal protein U5-15kD. FEBS Lett 2016; 590:2221-31. [PMID: 27314904 DOI: 10.1002/1873-3468.12256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
Abstract
Polyglutamine tract-binding protein 1 (PQBP1) is an intrinsically disordered protein composed of a small folded WW domain and a long disordered region. PQBP1 binds to spliceosomal proteins WBP11 and U5-15kD through its N-terminal WW domain and C-terminal region, respectively. Here, we reveal that the binding between PQBP1 and WBP11 reduces the binding affinity between PQBP1 and U5-15kD. Our results suggest that the interaction between PQBP1 and WBP11 negatively modulates the U5-15kD binding of PQBP1 by an allosteric mechanism.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Asagi Kajiyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yuki Kozakai
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Tsuyoshi Nakai
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
21
|
Abstract
FE65 is a brain-enriched, developmentally regulated adaptor protein that was first identified as a binding partner of amyloid precursor protein (APP), an important molecule in Alzheimer's disease. FE65 possesses three protein interaction domains, including an N-terminal WW domain and two C-terminal phosphotyrosine-binding (PTB) domains. It is capable of mediating the assembly of multimolecular complexes. Although initial work reveals its roles in APP processing and gene transactivation, increasing evidence suggests that FE65 participates in more diverse biological processes than originally anticipated. This article discusses the role of FE65 in signal transduction during cell stress and protein turnover through the ubiquitin-proteasome system and in various neuronal processes, including neurogenesis, neuronal migration and positioning, neurite outgrowth, synapse formation and synaptic plasticity, learning, and memory.
Collapse
|
22
|
Phosphorylation of Fe65 amyloid precursor protein-binding protein in response to neuronal differentiation. Neurosci Lett 2015; 613:54-9. [PMID: 26742640 DOI: 10.1016/j.neulet.2015.12.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/12/2023]
Abstract
Fe65 is a brain enriched multi domain adaptor protein involved in diverse cellular functions. One of its binding partners is the amyloid-β (Aβ) precursor protein (APP), which after sequential proteolytic processing by secretases gives rise to the Alzheimer's Aβ peptide. Fe65 binds to the APP intracellular domain (AICD). Several studies have indicated that Fe65 binding promotes the amyloidogenic processing of APP. It has previously been shown that expression of APP increases concomitantly with a shift of its processing to the non-amyloidogenic pathway during neuronal differentiation. In this study we wanted to investigate the effects of neuronal differentiation on Fe65 expression. We observed that differentiation of SH-SY5Y human neuroblastoma cells induced by retinoic acid (RA), the phorbol ester PMA, or the γ-secretase inhibitor DAPT resulted in an electrophoretic mobility shift of Fe65. Similar effects were observed in rat PC6.3 cells treated with nerve growth factor. The electrophoretic mobility shift was shown to be due to phosphorylation. Previous studies have shown that Fe65 phosphorylation can prevent the APP-Fe65 interaction. We propose that phosphorylation is a way to modify the functions of Fe65 and to promote the non-amyloidogenic processing of APP during neuronal differentiation.
Collapse
|
23
|
Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A. Crystal structure of the first WW domain of human YAP2 isoform. J Struct Biol 2015; 191:381-7. [DOI: 10.1016/j.jsb.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
|
24
|
Zotti MD, Formaggio F, Crisma M, Peggion C, Moretto A, Toniolo C. Handedness preference and switching of peptide helices. Part I: Helices based on protein amino acids. J Pept Sci 2014; 20:307-22. [DOI: 10.1002/psc.2638] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Marta De Zotti
- Department of Chemistry; University of Padua; Padua Italy
| | | | | | | | | | - Claudio Toniolo
- Department of Chemistry; University of Padua; Padua Italy
- ICB, Padua Unit; CNR; Italy
| |
Collapse
|
25
|
Qi S, O'Hayre M, Gutkind JS, Hurley JH. Structural and biochemical basis for ubiquitin ligase recruitment by arrestin-related domain-containing protein-3 (ARRDC3). J Biol Chem 2013; 289:4743-52. [PMID: 24379409 DOI: 10.1074/jbc.m113.527473] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After protracted stimulation, the β2-adrenergic receptor and many other G-protein-coupled receptors are ubiquitinated and down-regulated. Arrestin-related domain-containing protein-3 (ARRDC3) has been proposed to recruit the ubiquitin ligase Nedd4 to the β2-adrenergic receptor. ARRDC3 contains two PPXY motifs that could potentially interact with any of the four WW domains of Nedd4. Here we dissect the interaction determinants. ARRDC3 PPXY-Nedd4 WW dissociation constants vary from unmeasurable to Kd = 3 μM for the third WW domain of Nedd4 binding to the first PPXY motif of ARRDC3. Structures of the uncomplexed and PPXY1-bound WW3 domain were determined at 1.1 and 1.7 Å resolution. The structures revealed conformational changes upon binding and the hydrogen bonding network in exquisite detail. Tight packing of ARRDC3 Val-352', part of a 310 helix at the C terminus of PPXY1, is important for high affinity binding to WW3. Although no single WW domain is strictly essential for the binding of Nedd4 and ARRDC3 expressed in HEK293 cells, high affinity binding of full-length ARRDC3 and Nedd4 is driven by the avid interaction of both PPXY motifs with either the WW2-WW3 or WW3-WW4 combinations, with Kd values as low as 300 nM.
Collapse
Affiliation(s)
- Shiqian Qi
- From the Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720 and
| | | | | | | |
Collapse
|
26
|
Mortenson DE, Kreitler DF, Yun HG, Gellman SH, Forest KT. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2506-12. [PMID: 24311591 PMCID: PMC3852655 DOI: 10.1107/s090744491302444x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
The human Pin1 WW domain is a small autonomously folding protein that has been useful as a model system for biophysical studies of β-sheet folding. This domain has resisted previous attempts at crystallization for X-ray diffraction studies, perhaps because of intrinsic conformational flexibility that interferes with the formation of a crystal lattice. Here, the crystal structure of the human Pin1 WW domain has been obtained via racemic crystallization in the presence of small-molecule additives. Both enantiomers of a 36-residue variant of the Pin1 WW domain were synthesized chemically, and the L- and D-polypeptides were combined to afford diffracting crystals. The structural data revealed packing interactions of small carboxylic acids, either achiral citrate or a D,L mixture of malic acid, with a mobile loop region of the WW-domain fold. These interactions with solution additives may explain our success in crystallization of this protein racemate. Molecular-dynamics simulations starting from the structure of the Pin1 WW domain suggest that the crystal structure closely resembles the conformation of this domain in solution. The structural data presented here should provide a basis for further studies of this important model system.
Collapse
Affiliation(s)
- David E. Mortenson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale F. Kreitler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hyun Gi Yun
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Patel S, Mathonet P, Jaulent AM, Ullman CG. Selection of a high-affinity WW domain against the extracellular region of VEGF receptor isoform-2 from a combinatorial library using CIS display. Protein Eng Des Sel 2013; 26:307-15. [PMID: 23378640 DOI: 10.1093/protein/gzt003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
WW domains are small β-sheet motifs that are involved in intracellular signalling through the recognition of proline-rich or phosphorylated linear peptide sequences. Here, we describe modification of this motif to provide a framework for engineering the side chains exposed on its concave surface. This non-natural scaffold incorporates an additional tryptophan, has a shorter loop 1 and supports modification of 25% of the natural protein to form a novel affinity reagent. We demonstrate the utility of this structure by selecting a high-affinity binder to the extracellular region of human vascular endothelial growth factor receptor isoform 2 (VEGFR-2) from a library of modifications, using a cell-free molecular display platform, CIS display. The isolate has low nanomolar affinity to VEGFR-2 and inhibits binding of human VEGF to its receptor with nanomolar activity. The structure is amenable to cyclisation to improve its proteolytic stability and has advantages over larger protein scaffolds in that it can be synthesised chemically to high yields offering potential for therapeutic and non-therapeutic applications.
Collapse
Affiliation(s)
- Seema Patel
- Isogenica Ltd, Little Chesterford, Essex CB10 1XL, UK
| | | | | | | |
Collapse
|
28
|
Degradation of mutant huntingtin via the ubiquitin/proteasome system is modulated by FE65. Biochem J 2012; 443:681-9. [PMID: 22352297 DOI: 10.1042/bj20112175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An unstable expansion of the polyglutamine repeat within exon 1 of the protein Htt (huntingtin) causes HD (Huntington's disease). Mounting evidence shows that accumulation of N-terminal mutant Htt fragments is the source of disruption of normal cellular processes which ultimately leads to neuronal cell death. Understanding the degradation mechanism of mutant Htt and improving its clearance has emerged as a new direction in developing therapeutic approaches to treat HD. In the present study we show that the brain-enriched adaptor protein FE65 is a novel interacting partner of Htt. The binding is mediated through WW-polyproline interaction and is dependent on the length of the polyglutamine tract. Interestingly, a reduction in mutant Htt protein level was observed in FE65-knockdown cells, and the process requires the UPS (ubiquitin/proteasome system). Moreover, the ubiquitination level of mutant Htt was found to be enhanced when FE65 is knocked down. Immunofluroescence staining revealed that FE65 associates with mutant Htt aggregates. Additionally, we demonstrated that overexpression of FE65 increases mutant Htt-induced cell death both in vitro and in vivo. These results suggest that FE65 facilitates the accumulation of mutant Htt in cells by preventing its degradation via the UPS, and thereby enhances the toxicity of mutant Htt.
Collapse
|
29
|
Interfacial water molecules in SH3 interactions: a revised paradigm for polyproline recognition. Biochem J 2012; 442:443-51. [DOI: 10.1042/bj20111089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In spite of its biomedical relevance, polyproline recognition is still not fully understood. The disagreement between the current description of SH3 (Src homology 3) complexes and their thermodynamic behaviour calls for a revision of the SH3-binding paradigm. Recently, Abl-SH3 was demonstrated to recognize its ligands by a dual binding mechanism involving a robust network of water-mediated hydrogen bonds that complements the canonical hydrophobic interactions. The systematic analysis of the SH3 structural database in the present study reveals that this dual binding mode is universal to SH3 domains. Tightly bound buried-interfacial water molecules were found in all SH3 complexes studied mediating the interaction between the peptide ligand and the domain. Moreover, structural waters were also identified in a high percentage of the free SH3 domains. A detailed analysis of the pattern of water-mediated interactions enabled the identification of conserved hydration sites in the polyproline-recognition region and the establishment of relationships between hydration profiles and the sequence of both ligands and SH3 domains. Water-mediated interactions were also systematically observed in WW (protein–protein interaction domain containing two conserved tryptophan residues), UEV (ubiquitin-conjugating enzyme E2 variant) and EVH-1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] structures. The results of the present study clearly indicate that the current description of proline-rich sequence recognition by protein–protein interaction modules is incomplete and insufficient for a correct understanding of these systems. A new binding paradigm is required that includes interfacial water molecules as relevant elements in polyproline recognition.
Collapse
|
30
|
Wu R, Li S, He S, Waßmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. THE PLANT CELL 2011; 23:3392-411. [PMID: 21954461 PMCID: PMC3203440 DOI: 10.1105/tpc.111.088625] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 05/19/2023]
Abstract
Plants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH.
Collapse
Affiliation(s)
- Renhong Wu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Shibai Li
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Shan He
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Friedrich Waßmann
- Institut für Zelluläre and Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Caihong Yu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lukas Schreiber
- Institut für Zelluläre and Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| |
Collapse
|
31
|
Jowitt TA, Murdoch AD, Baldock C, Berry R, Day JM, Hardingham TE. Order within disorder: aggrecan chondroitin sulphate-attachment region provides new structural insights into protein sequences classified as disordered. Proteins 2010; 78:3317-27. [PMID: 20806220 PMCID: PMC3546398 DOI: 10.1002/prot.22839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 01/12/2023]
Abstract
Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)-attachment region of human aggrecan (CS-peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS-peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS-peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small-angle X-ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2-G3 construct. The semiordered structure identified in CS-peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins.
Collapse
Affiliation(s)
- Thomas A Jowitt
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Das D, Grishin NV, Kumar A, Carlton D, Bakolitsa C, Miller MD, Abdubek P, Astakhova T, Axelrod HL, Burra P, Chen C, Chiu HJ, Chiu M, Clayton T, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grzechnik A, Grzechnik SK, Grant JC, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kozbial P, Krishna SS, Marciano D, McMullan D, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1174-81. [PMID: 20944208 PMCID: PMC2954202 DOI: 10.1107/s1744309109022672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/12/2009] [Indexed: 11/23/2022]
Abstract
Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The crystal structure of a member of this family, NGO1945 from Neisseria gonorrhoeae, has been determined and reveals that the N-terminal DUF2063 domain is likely to be a DNA-binding domain. In conjunction with the rest of the protein, NGO1945 is likely to be involved in transcriptional regulation, which is consistent with genomic neighborhood analysis. Of the 216 currently known proteins that contain a DUF2063 domain, the most significant sequence homologs of NGO1945 (∼40-99% sequence identity) are from various Neisseria and Haemophilus species. As these are important human pathogens, NGO1945 represents an interesting candidate for further exploration via biochemical studies and possible therapeutic intervention.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nick V. Grishin
- The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Prasad Burra
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Michelle Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Dustin Ernst
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Slawomir K. Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hope A. Johnson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Silvya Oommachen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jessica Paulsen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Natasha Sefcovic
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
33
|
Abstract
ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Köhler SD, Weber A, Howard SP, Welte W, Drescher M. The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria. Protein Sci 2010; 19:625-30. [PMID: 20095050 DOI: 10.1002/pro.345] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron-Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria.
Collapse
|
35
|
Cool BH, Zitnik G, Martin GM, Hu Q. Structural and functional characterization of a novel FE65 protein product up-regulated in cognitively impaired FE65 knockout mice. J Neurochem 2009; 112:410-9. [PMID: 19860855 DOI: 10.1111/j.1471-4159.2009.06456.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FE65 is a multi-modular adaptor protein that binds the cytoplasmic tail of the beta-amyloid precursor protein (APP). Genetic evidence suggests that APP is intimately involved in the pathogenesis of dementias of the Alzheimer type, neurodegenerative disorders that affect multiple cognitive domains, including learning and memory. Evidence from p97FE65-specific knockout mice (lacking the 97 kDa full-length FE65 protein, p97FE65) suggests an important role for FE65 in learning and memory. Interpretation of the learning and memory phenotype, however, is complicated by the up-regulation (compared with wild-type mice) of a novel 60 kDa FE65 isoform (p60FE65). Here, we report an evidence that p60FE65 is translated from an alternative methionine, M261, on the p97FE65 transcript. Thus, p60FE65 has a shortened N-terminus, lacking part of the WW domain that is considered important for nuclear translocation and transactivation of gene expression. Consistently, p60FE65 exhibits an attenuated ability for APP-Gal4-mediated transcription as compared with p97FE65. Similar to p97FE65, however, both transfected and endogenous p60FE65 are able to translocate to the nucleus in cultured cells and in neurons. These results are consistent with earlier evidence from our laboratory that reduced FE65 nuclear signaling may contribute, in part, to the phenotypes observed in p97FE65 knockout mice.
Collapse
Affiliation(s)
- Bethany H Cool
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
36
|
Huang X, Beullens M, Zhang J, Zhou Y, Nicolaescu E, Lesage B, Hu Q, Wu J, Bollen M, Shi Y. Structure and function of the two tandem WW domains of the pre-mRNA splicing factor FBP21 (formin-binding protein 21). J Biol Chem 2009; 284:25375-87. [PMID: 19592703 DOI: 10.1074/jbc.m109.024828] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human FBP21 (formin-binding protein 21) contains a matrin-type zinc finger and two tandem WW domains. It is a component of the spliceosomes and interacts with several established splicing factors. Here we demonstrate for the first time that FBP21 is an activator of pre-mRNA splicing in vivo and that its splicing activation function and interaction with the splicing factor SIPP1 (splicing factor that interacts with PQBP1 and PP1) are both mediated by the two tandem WW domains of group III. We determined the solution structure of the tandem WW domains of FBP21 and found that the WW domains recognize peptide ligands containing either group II (PPLP) or group III (PPR) motifs. The binding interfaces involve both the XP and XP2 grooves of the two WW domains. Significantly, the tandem WW domains of FBP21 are connected by a highly flexible region, enabling their simultaneous interaction with two proline-rich motifs of SIPP1. The strong interaction between SIPP1 and FBP21 can be explained by the conjugation of two low affinity interactions with the tandem WW domains. Our study provides a structural basis for understanding the molecular mechanism underlying the functional implication of FBP21 and the biological specificity of tandem WW domains.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
38
|
Radzimanowski J, Simon B, Sattler M, Beyreuther K, Sinning I, Wild K. Structure of the intracellular domain of the amyloid precursor protein in complex with Fe65-PTB2. EMBO Rep 2008; 9:1134-40. [PMID: 18833287 DOI: 10.1038/embor.2008.188] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 11/09/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.
Collapse
Affiliation(s)
- Jens Radzimanowski
- Heidelberg University Biochemistry Center, University of Heidelberg, INF328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Biedermannova L, E Riley K, Berka K, Hobza P, Vondrasek J. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys Chem Chem Phys 2008; 10:6350-9. [PMID: 18972023 DOI: 10.1039/b805087b] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proline-tryptophan complexes derived from experimental structures are investigated by quantum chemical procedures known to properly describe the London dispersion energy. We study two geometrical arrangements: the "L-shaped", stabilized by an H-bond, and the "stacked-like", where the two residues are in parallel orientation without any H-bond. Interestingly, the interaction energies in both cases are comparable and very large ( approximately 7 kcal mol(-1)). The strength of stabilization in the stacked arrangement is rather surprising considering the fact that only one partner has an aromatic character. The interaction energy decomposition using the SAPT method further demonstrates the very important role of dispersion energy in such arrangement. To elucidate the structural features responsible for this unexpectedly large stabilization we examined the role of the nitrogen heteroatom and the importance of the cyclicity of the proline residue. We show that the electrostatic interaction due to the presence of the dipole, caused by the nitrogen heteroatom, contributes largely to the strength of the interaction. Nevertheless, the cyclic arrangement of proline, which allows for the largest amount of dispersive contact with the aromatic partner, also has a notable-effect. Geometry optimizations carried out for the "stacked-like" complexes show that the arrangements derived from protein structure are close to their gas phase optimum geometry, suggesting that the environment has only a minor effect on the geometry of the interaction. We conclude that the strength of proline non-covalent interactions, combined with this residue's rigidity, might be the explanation for its prominent role in protein stabilization and recognition processes.
Collapse
Affiliation(s)
- Lada Biedermannova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Radzimanowski J, Beyreuther K, Sinning I, Wild K. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:409-12. [PMID: 18453713 PMCID: PMC2376414 DOI: 10.1107/s1744309108009524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/07/2008] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid beta peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 A resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.
Collapse
Affiliation(s)
- Jens Radzimanowski
- Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg, Germany
| | - Konrad Beyreuther
- Center for Molecular Biology, University Heidelberg, INF282, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg, Germany
| |
Collapse
|
41
|
Bader S, Kühner S, Gavin AC. Interaction networks for systems biology. FEBS Lett 2008; 582:1220-4. [PMID: 18282471 DOI: 10.1016/j.febslet.2008.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/08/2008] [Indexed: 01/01/2023]
Abstract
Cellular functions are almost always the result of the coordinated action of several proteins, interacting in protein complexes, pathways or networks. Progress made in devising suitable tools for analysis of protein-protein interactions, have recently made it possible to chart interaction networks on a large-scale. The aim of this review is to provide a short overview of the most promising contributions of interaction networks to human biology, structural biology and human genetics.
Collapse
Affiliation(s)
- Samuel Bader
- EMBL, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|