1
|
Madsen AV, Mejias-Gomez O, Pedersen LE, Preben Morth J, Kristensen P, Jenkins TP, Goletz S. Structural trends in antibody-antigen binding interfaces: a computational analysis of 1833 experimentally determined 3D structures. Comput Struct Biotechnol J 2024; 23:199-211. [PMID: 38161735 PMCID: PMC10755492 DOI: 10.1016/j.csbj.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Antibodies are attractive therapeutic candidates due to their ability to bind cognate antigens with high affinity and specificity. Still, the underlying molecular rules governing the antibody-antigen interface remain poorly understood, making in silico antibody design inherently difficult and keeping the discovery and design of novel antibodies a costly and laborious process. This study investigates the characteristics of antibody-antigen binding interfaces through a computational analysis of more than 850,000 atom-atom contacts from the largest reported set of antibody-antigen complexes with 1833 nonredundant, experimentally determined structures. The analysis compares binding characteristics of conventional antibodies and single-domain antibodies (sdAbs) targeting both protein- and peptide antigens. We find clear patterns in the number antibody-antigen contacts and amino acid frequencies in the paratope. The direct comparison of sdAbs and conventional antibodies helps elucidate the mechanisms employed by sdAbs to compensate for their smaller size and the fact that they harbor only half the number of complementarity-determining regions compared to conventional antibodies. Furthermore, we pinpoint antibody interface hotspot residues that are often found at the binding interface and the amino acid frequencies at these positions. These findings have direct potential applications in antibody engineering and the design of improved antibody libraries.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J. Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Górniak I, Stephens Z, Erramilli SK, Gawda T, Kossiakoff AA, Zimmer J. Structural insights into translocation and tailored synthesis of hyaluronan. Nat Struct Mol Biol 2024:10.1038/s41594-024-01389-1. [PMID: 39322765 DOI: 10.1038/s41594-024-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.
Collapse
Affiliation(s)
- Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachery Stephens
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
4
|
DasGupta S. Synthetic antibodies for accelerated RNA crystallography. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1869. [PMID: 39187256 DOI: 10.1002/wrna.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
RNA structure is crucial to a wide range of cellular processes. The intimate relationship between macromolecular structure and function necessitates the determination of high-resolution structures of functional RNA molecules. X-ray crystallography is the predominant technique used for macromolecular structure determination; however, solving RNA structures has been more challenging than their protein counterparts, as reflected in their poor representation in the Protein Data Bank (<1%). Antibody-assisted RNA crystallography is a relatively new technique that promises to accelerate RNA structure determination by employing synthetic antibodies (Fabs) as crystallization chaperones that are specifically raised against target RNAs. Antibody chaperones facilitate the formation of ordered crystal lattices by minimizing RNA flexibility and replacing unfavorable RNA-RNA contacts with contacts between chaperone molecules. Atomic coordinates of these antibody fragments can also be used as search models to obtain phase information during structure determination. Antibody-assisted RNA crystallography has enabled the structure determination of 15 unique RNA targets, including 11 in the last 6 years. In this review, I cover the historical development of antibody fragments as crystallization chaperones and their application to diverse RNA targets. I discuss how the first structures of antibody-RNA complexes informed the design of second-generation antibodies and led to the development of portable crystallization modules that have greatly reduced the uncertainties associated with RNA crystallography. Finally, I outline unexplored avenues that can increase the impact of this technology in structural biology research and discuss potential applications of antibodies as affinity reagents for interrogating RNA biology outside of their use in crystallography. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Lan T, Slezak T, Pu J, Zinkus-Boltz J, Adhikari S, Pekow JR, Taneja V, Zuniga J, Gómez-García IA, Regino-Zamarripa N, Ahmed M, Khader SA, Rubin DT, Kossiakoff AA, Dickinson BC. Development of Luminescent Biosensors for Calprotectin. ACS Chem Biol 2024; 19:1250-1259. [PMID: 38843544 DOI: 10.1021/acschembio.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Calprotectin, a metal ion-binding protein complex, plays a crucial role in the innate immune system and has gained prominence as a biomarker for various intestinal and systemic inflammatory and infectious diseases, including inflammatory bowel disease (IBD) and tuberculosis (TB). Current clinical testing methods rely on enzyme-linked immunosorbent assays (ELISAs), limiting accessibility and convenience. In this study, we introduce the Fab-Enabled Split-luciferase Calprotectin Assay (FESCA), a novel quantitative method for calprotectin measurement. FESCA utilizes two new fragment antigen binding proteins (Fabs), CP16 and CP17, that bind to different epitopes of the calprotectin complex. These Fabs are fused with split NanoLuc luciferase fragments, enabling the reconstitution of active luciferase upon binding to calprotectin either in solution or in varied immobilized assay formats. FESCA's output luminescence can be measured with standard laboratory equipment as well as consumer-grade cell phone cameras. FESCA can detect physiologically relevant calprotectin levels across various sample types, including serum, plasma, and whole blood. Notably, FESCA can detect abnormally elevated native calprotectin from TB patients. In summary, FESCA presents a convenient, low-cost, and quantitative method for assessing calprotectin levels in various biological samples, with the potential to improve the diagnosis and monitoring of inflammatory diseases, especially in at-home or point-of-care settings.
Collapse
Affiliation(s)
- Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinyue Pu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Julia Zinkus-Boltz
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sarbani Adhikari
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Joel R Pekow
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Vibha Taneja
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Itzel A Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Nora Regino-Zamarripa
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 01389, Mexico
| | - Mushtaq Ahmed
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shabaana A Khader
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - David T Rubin
- Section of Gastroenterology, Hepatology & Nutrition, University of Chicago Medicine Inflammatory Bowel Disease Center, Chicago, Illinois 60637 United States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Rezhdo A, Hershman RL, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596443. [PMID: 38853888 PMCID: PMC11160716 DOI: 10.1101/2024.05.29.596443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photo-reactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multi-modal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Rebecca L. Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
8
|
Frazier CL, Deb D, Weeks AM. Engineered reactivity of a bacterial E1-like enzyme enables ATP-driven modification of protein C termini. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593989. [PMID: 38798401 PMCID: PMC11118369 DOI: 10.1101/2024.05.13.593989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In biological systems, ATP provides an energetic driving force for peptide bond formation, but protein chemists lack tools that emulate this strategy. Inspired by the eukaryotic ubiquitination cascade, we developed an ATP-driven platform for C-terminal activation and peptide ligation based on E. coli MccB, a bacterial ancestor of ubiquitin-activating (E1) enzymes that natively catalyzes C-terminal phosphoramidate bond formation. We show that MccB can act on non-native substrates to generate an O-AMPylated electrophile that can react with exogenous nucleophiles to form diverse C-terminal functional groups including thioesters, a versatile class of biological intermediates that have been exploited for protein semisynthesis. To direct this activity towards specific proteins of interest, we developed the Thioesterification C-terminal Handle (TeCH)-tag, a sequence that enables high-yield, ATP-driven protein bioconjugation via a thioester intermediate. By mining the natural diversity of the MccB family, we developed two additional MccB/TeCH-tag pairs that are mutually orthogonal to each other and to the E. coli system, facilitating the synthesis of more complex bioconjugates. Our method mimics the chemical logic of peptide bond synthesis that is widespread in biology for high-yield in vitro manipulation of protein structure with molecular precision.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Debashrito Deb
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| |
Collapse
|
9
|
Zhu N, Smallwood PM, Rattner A, Chang TH, Williams J, Wang Y, Nathans J. Utility of protein-protein binding surfaces composed of anti-parallel alpha-helices and beta-sheets selected by phage display. J Biol Chem 2024; 300:107283. [PMID: 38608728 PMCID: PMC11107207 DOI: 10.1016/j.jbc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past 3 decades, a diverse collection of small protein domains have been used as scaffolds to generate general purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from reversion-inducing Cysteine-rich Protein with Kazal Motifs and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and next generation sequencing, we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low μM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were inserted into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general purpose protein-binding reagents.
Collapse
Affiliation(s)
- Ningyu Zhu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tao-Hsin Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
10
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
11
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Zhou L, Cai F, Li Y, Gao X, Wei Y, Fedorova A, Kirchhofer D, Hannoush RN, Zhang Y. Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform. PLoS One 2024; 19:e0300135. [PMID: 38547109 PMCID: PMC10977697 DOI: 10.1371/journal.pone.0300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Peptides present an alternative modality to immunoglobulin domains or small molecules for developing therapeutics to either agonize or antagonize cellular pathways associated with diseases. However, peptides often suffer from poor chemical and physical stability, limiting their therapeutic potential. Disulfide-constrained peptides (DCP) are naturally occurring and possess numerous desirable properties, such as high stability, that qualify them as drug-like scaffolds for peptide therapeutics. DCPs contain loop regions protruding from the core of the molecule that are amenable to peptide engineering via direct evolution by use of phage display technology. In this study, we have established a robust platform for the discovery of peptide therapeutics using various DCPs as scaffolds. We created diverse libraries comprising seven different DCP scaffolds, resulting in an overall diversity of 2 x 1011. The effectiveness of this platform for functional hit discovery has been extensively evaluated, demonstrating a hit rate comparable to that of synthetic antibody libraries. By utilizing chemically synthesized and in vitro folded peptides derived from selections of phage displayed DCP libraries, we have successfully generated functional inhibitors targeting the HtrA1 protease. Through affinity maturation strategies, we have transformed initially weak binders against Notch2 with micromolar Kd values to high-affinity ligands in the nanomolar range. This process highlights a viable hit-to-lead progression. Overall, our platform holds significant potential to greatly enhance the discovery of peptide therapeutics.
Collapse
Affiliation(s)
- Lijuan Zhou
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Fei Cai
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yanjie Li
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Xinxin Gao
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Yuehua Wei
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Anna Fedorova
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Daniel Kirchhofer
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Rami N. Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yingnan Zhang
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
13
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Structural analysis and conformational dynamics of a holo-adhesion GPCR reveal interplay between extracellular and transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581807. [PMID: 38464178 PMCID: PMC10925191 DOI: 10.1101/2024.02.25.581807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.
Collapse
|
15
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
16
|
Dübel S. Can antibodies be "vegan"? A guide through the maze of today's antibody generation methods. MAbs 2024; 16:2343499. [PMID: 38634488 PMCID: PMC11028021 DOI: 10.1080/19420862.2024.2343499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
There is no doubt that today's life sciences would look very different without the availability of millions of research antibody products. Nevertheless, the use of antibody reagents that are poorly characterized has led to the publication of false or misleading results. The use of laboratory animals to produce research antibodies has also been criticized. Surprisingly, both problems can be addressed with the same technology. This review charts today's maze of different antibody formats and the various methods for antibody production and their interconnections, ultimately concluding that sequence-defined recombinant antibodies offer a clear path to both improved quality of experimental data and reduced use of animals.
Collapse
Affiliation(s)
- Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
17
|
Xu B, Chen Y, Xue W. Computational Protein Design - Where it goes? Curr Med Chem 2024; 31:2841-2854. [PMID: 37272467 DOI: 10.2174/0929867330666230602143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 06/06/2023]
Abstract
Proteins have been playing a critical role in the regulation of diverse biological processes related to human life. With the increasing demand, functional proteins are sparse in this immense sequence space. Therefore, protein design has become an important task in various fields, including medicine, food, energy, materials, etc. Directed evolution has recently led to significant achievements. Molecular modification of proteins through directed evolution technology has significantly advanced the fields of enzyme engineering, metabolic engineering, medicine, and beyond. However, it is impossible to identify desirable sequences from a large number of synthetic sequences alone. As a result, computational methods, including data-driven machine learning and physics-based molecular modeling, have been introduced to protein engineering to produce more functional proteins. This review focuses on recent advances in computational protein design, highlighting the applicability of different approaches as well as their limitations.
Collapse
Affiliation(s)
- Binbin Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
18
|
Blanchard PL, Knick BJ, Whelan SA, Hackel BJ. Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds. ACS Synth Biol 2023; 12:3608-3622. [PMID: 38010428 PMCID: PMC10822706 DOI: 10.1021/acssynbio.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Small, single-domain protein scaffolds are compelling sources of molecular binding ligands with the potential for efficient physiological transport, modularity, and manufacturing. Yet, mini-proteins require a balance between biophysical robustness and diversity to enable new functions. We tested the developability and evolvability of millions of variants of 43 designed libraries of synthetic 40-amino acid βαββ proteins with diversified sheet, loop, or helix paratopes. We discovered a scaffold library that yielded hundreds of binders to seven targets while exhibiting high stability and soluble expression. Binder discovery yielded 6-122 nM affinities without affinity maturation and Tms averaging ≥78 °C. Broader βαββ libraries exhibited varied developability and evolvability. Sheet paratopes were the most consistently developable, and framework 1 was the most evolvable. Paratope evolvability was dependent on target, though several libraries were evolvable across many targets while exhibiting high stability and soluble expression. Select βαββ proteins are strong starting points for engineering performant binders.
Collapse
Affiliation(s)
- Paul L. Blanchard
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Brandon J. Knick
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sarah A. Whelan
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
19
|
Ravn-Boess N, Roy N, Hattori T, Bready D, Donaldson H, Lawson C, Lapierre C, Korman A, Rodrick T, Liu E, Frenster JD, Stephan G, Wilcox J, Corrado AD, Cai J, Ronnen R, Wang S, Haddock S, Sabio Ortiz J, Mishkit O, Khodadadi-Jamayran A, Tsirigos A, Fenyö D, Zagzag D, Drube J, Hoffmann C, Perna F, Jones DR, Possemato R, Koide A, Koide S, Park CY, Placantonakis DG. The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability. Cell Rep 2023; 42:113374. [PMID: 37938973 PMCID: PMC10841603 DOI: 10.1016/j.celrep.2023.113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.
Collapse
Affiliation(s)
- Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nainita Roy
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hayley Donaldson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Lawson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cathryn Lapierre
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Aryeh Korman
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tori Rodrick
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Enze Liu
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alexis D Corrado
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Sabio Ortiz
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Orin Mishkit
- Preclinical Imaging Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aris Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Zagzag
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Drube
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | | | - Drew R Jones
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Y Park
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Chung DH, Kong S, Young NJ, Chuo SW, Shiah JV, Connelly EJ, Rohweder PJ, Born A, Manglik A, Grandis JR, Johnson DE, Craik CS. Rare antibody phage isolation and discrimination (RAPID) biopanning enables identification of high-affinity antibodies against challenging targets. Commun Biol 2023; 6:1036. [PMID: 37828150 PMCID: PMC10570357 DOI: 10.1038/s42003-023-05390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
In vitro biopanning platforms using synthetic phage display antibody libraries have enabled the identification of antibodies against antigens that were once thought to be beyond the scope of immunization. Applying these methods against challenging targets remains a critical challenge. Here, we present a new biopanning pipeline, RAPID (Rare Antibody Phage Isolation and Discrimination), for the identification of rare high-affinity antibodies against challenging targets. RAPID biopanning uses fluorescent labeled phage displayed fragment antigen-binding (Fab) antibody libraries for the isolation of high-affinity binders with fluorescent activated sorting. Subsequently, discriminatory hit screening is performed with a biolayer interferometry (BLI) method, BIAS (Biolayer Interferometry Antibody Screen), where candidate binders are ranked and prioritized according to their estimated kinetic off rates. Previously reported antibodies were used to develop the methodology, and the RAPID biopanning pipeline was applied to three challenging targets (CHIP, Gαq, and CS3D), enabling the identification of high-affinity antibodies.
Collapse
Affiliation(s)
- Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sophie Kong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas J Young
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jamie V Shiah
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Emily J Connelly
- The Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alexandra Born
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.
- The Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
21
|
Peng Y, Zhang C, Deng M, Jiang H, Huang H, Li Y, Lai W, Lin YP, Yu J. A cell hybridization-based method of generating recombinant rabbit monoclonal antibodies for detecting cytokines. Biotechniques 2023; 75:150-156. [PMID: 37671637 DOI: 10.2144/btn-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Recombinant rabbit monoclonal antibodies (rabbit rAbs) have shown promise in various biomedical fields. However, it is challenging and costly to generate rabbit rAbs using traditional techniques. Here we describe a convenient and cost-effective method. Using this method, we generated rabbit rAbs against mouse soluble IL-6 receptor α with affinities in the range of 10-9 to 10-12 M. The presented method is suitable for industrial and academic scientists looking to customize rabbit rAbs for their research.
Collapse
Affiliation(s)
- Yu Peng
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Chun'e Zhang
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Minyan Deng
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Haijuan Jiang
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Huishu Huang
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Yue Li
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Weiping Lai
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Yu-Pin Lin
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| | - Jun Yu
- Bio-Rad (Shanghai) Life Science Research and Development Co., Ltd, Shanghai, China
| |
Collapse
|
22
|
Ciută AD, Nosol K, Kowal J, Mukherjee S, Ramírez AS, Stieger B, Kossiakoff AA, Locher KP. Structure of human drug transporters OATP1B1 and OATP1B3. Nat Commun 2023; 14:5774. [PMID: 37723174 PMCID: PMC10507018 DOI: 10.1038/s41467-023-41552-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
The organic anion transporting polypeptides OATP1B1 and OATP1B3 are membrane proteins that mediate uptake of drugs into the liver for subsequent conjugation and biliary excretion, a key step in drug elimination from the human body. Polymorphic variants of these transporters can cause reduced drug clearance and adverse drug effects such as statin-induced rhabdomyolysis, and co-administration of OATP substrates can lead to damaging drug-drug interaction. Despite their clinical relevance in drug disposition and pharmacokinetics, the structure and mechanism of OATPs are unknown. Here we present cryo-EM structures of human OATP1B1 and OATP1B3 bound to synthetic Fab fragments and in functionally distinct states. A single estrone-3-sulfate molecule is bound in a pocket located in the C-terminal half of OATP1B1. The shape and chemical nature of the pocket rationalize the preference for diverse organic anions and allow in silico docking of statins. The structure of OATP1B3 is determined in a drug-free state but reveals a bicarbonate molecule bound to the conserved signature motif and a histidine residue that is prevalent in OATPs exhibiting pH-dependent activity.
Collapse
Affiliation(s)
- Anca-Denise Ciută
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
23
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific Synthetic Antibodies Discriminate Multiple Functional States of the Ion Channel CorA. J Mol Biol 2023; 435:168192. [PMID: 37394032 PMCID: PMC10529903 DOI: 10.1016/j.jmb.2023.168192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Blazej M Skrobek
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
McConnell A, Hackel BJ. Protein engineering via sequence-performance mapping. Cell Syst 2023; 14:656-666. [PMID: 37494931 PMCID: PMC10527434 DOI: 10.1016/j.cels.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Discovery and evolution of new and improved proteins has empowered molecular therapeutics, diagnostics, and industrial biotechnology. Discovery and evolution both require efficient screens and effective libraries, although they differ in their challenges because of the absence or presence, respectively, of an initial protein variant with the desired function. A host of high-throughput technologies-experimental and computational-enable efficient screens to identify performant protein variants. In partnership, an informed search of sequence space is needed to overcome the immensity, sparsity, and complexity of the sequence-performance landscape. Early in the historical trajectory of protein engineering, these elements aligned with distinct approaches to identify the most performant sequence: selection from large, randomized combinatorial libraries versus rational computational design. Substantial advances have now emerged from the synergy of these perspectives. Rational design of combinatorial libraries aids the experimental search of sequence space, and high-throughput, high-integrity experimental data inform computational design. At the core of the collaborative interface, efficient protein characterization (rather than mere selection of optimal variants) maps sequence-performance landscapes. Such quantitative maps elucidate the complex relationships between protein sequence and performance-e.g., binding, catalytic efficiency, biological activity, and developability-thereby advancing fundamental protein science and facilitating protein discovery and evolution.
Collapse
Affiliation(s)
- Adam McConnell
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Leonhardt SA, Purdy MD, Grover JR, Yang Z, Poulos S, McIntire WE, Tatham EA, Erramilli SK, Nosol K, Lai KK, Ding S, Lu M, Uchil PD, Finzi A, Rein A, Kossiakoff AA, Mothes W, Yeager M. Antiviral HIV-1 SERINC restriction factors disrupt virus membrane asymmetry. Nat Commun 2023; 14:4368. [PMID: 37474505 PMCID: PMC10359404 DOI: 10.1038/s41467-023-39262-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
The host proteins SERINC3 and SERINC5 are HIV-1 restriction factors that reduce infectivity when incorporated into the viral envelope. The HIV-1 accessory protein Nef abrogates incorporation of SERINCs via binding to intracellular loop 4 (ICL4). Here, we determine cryoEM maps of full-length human SERINC3 and an ICL4 deletion construct, which reveal that hSERINC3 is comprised of two α-helical bundles connected by a ~ 40-residue, highly tilted, "crossmember" helix. The design resembles non-ATP-dependent lipid transporters. Consistently, purified hSERINCs reconstituted into proteoliposomes induce flipping of phosphatidylserine (PS), phosphatidylethanolamine and phosphatidylcholine. Furthermore, SERINC3, SERINC5 and the scramblase TMEM16F expose PS on the surface of HIV-1 and reduce infectivity, with similar results in MLV. SERINC effects in HIV-1 and MLV are counteracted by Nef and GlycoGag, respectively. Our results demonstrate that SERINCs are membrane transporters that flip lipids, resulting in a loss of membrane asymmetry that is strongly correlated with changes in Env conformation and loss of infectivity.
Collapse
Grants
- P01 AI150471 NIAID NIH HHS
- P41 GM103311 NIGMS NIH HHS
- G20 RR031199 NCRR NIH HHS
- R01 GM117372 NIGMS NIH HHS
- U54 AI170856 NIAID NIH HHS
- S10 OD018149 NIH HHS
- U24 GM129539 NIGMS NIH HHS
- S10 RR025067 NCRR NIH HHS
- This work was supported by the National Institutes of Health (NIH) grants P50 AI15046 and U54 AI170856-01 (M.Y., W.M. and A.K.K.), R01 AI154092 (M.Y.), R01 GM117372 (A.A.K.) and P01 AI150471 (W.M.)., by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and in part by the NIH Intramural AIDS Targeted Antiviral Program. S.D. and A.F. were supported by the CIHR grant 352417 and a Canada Research Chair. Some molecular graphics and analyses were performed with the University of California, San Francisco Chimera package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by the National Institute of General Medical Sciences Grant P41 GM103311).
Collapse
Affiliation(s)
- Susan A Leonhardt
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Molecular Electron Microscopy Core, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ziwei Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sandra Poulos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - William E McIntire
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Elizabeth A Tatham
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 535, Frederick, MD, 21702, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, TX, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 535, Frederick, MD, 21702, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA.
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
26
|
Mizunuma M, Suzuki M, Kobayashi T, Hara Y, Kaneko A, Furukawa K, Chuman Y. Development of Mn 2+-Specific Biosensor Using G-Quadruplex-Based DNA. Int J Mol Sci 2023; 24:11556. [PMID: 37511324 PMCID: PMC10380348 DOI: 10.3390/ijms241411556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are used in various situations in living organisms and as a part of functional materials. Since the excessive intake of metal ions can cause health hazards and environmental pollution, the development of new molecules that can monitor metal ion concentrations with high sensitivity and selectivity is strongly desired. DNA can form various structures, and these structures and their properties have been used in a wide range of fields, including materials, sensors, and drugs. Guanine-rich sequences respond to metal ions and form G-quadruplex structures and G-wires, which are the self-assembling macromolecules of G-quadruplex structures. Therefore, guanine-rich DNA can be applied to a metal ion-detection sensor and functional materials. In this study, the IRDAptamer library originally designed based on G-quadruplex structures was used to screen for Mn2+, which is known to induce neurodegenerative diseases. Circular dichroism and fluorescence analysis using Thioflavin T showed that the identified IRDAptamer sequence designated MnG4C1 forms a non-canonical G-quadruplex structure in response to low concentrations of Mn2+. A serum resistance and thermostability analysis revealed that MnG4C1 acquired stability in a Mn2+-dependent manner. A Förster resonance energy transfer (FRET) system using fluorescent molecules attached to the termini of MnG4C1 showed that FRET was effectively induced based on Mn2+-dependent conformational changes, and the limit of detection (LOD) was 0.76 µM for Mn2+. These results suggested that MnG4C1 can be used as a novel DNA-based Mn2+-detecting molecule.
Collapse
Affiliation(s)
- Masataka Mizunuma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Mirai Suzuki
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Tamaki Kobayashi
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yuki Hara
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Atsushi Kaneko
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
27
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of a synthetic antibody against 22 kDa claudin-4 reveal its complex with Clostridium perfringens enterotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544689. [PMID: 37398044 PMCID: PMC10312657 DOI: 10.1101/2023.06.12.544689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Claudins are a family of ∼25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. Humans have 27 subtypes, which homo- and hetero-oligomerize to impart distinct properties and physiological functions to tissues and organs. As the structural and functional backbone of tight junctions, claudins are attractive targets for therapeutics capable of modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. We have developed a synthetic antibody fragment (sFab) that binds human claudin-4 and used it to resolve structures of its complex with Clostridium perfringens enterotoxin (CpE) using cryogenic electron microscopy (cryo-EM). The resolution of the structures reveals the architectures of 22 kDa claudin-4, the 14 kDa C-terminal domain of CpE, and the mechanism by which this sFab binds claudins. Further, we elucidate the biochemical and biophysical bases of sFab binding and demonstrate that this molecule exhibits subtype-selectivity by assaying homologous claudins. Our results provide a framework for developing sFabs against hard-to-target claudins and establishes the utility of sFabs as fiducial markers for determining cryo-EM structures of this small membrane protein family at resolutions that surpass X-ray crystallography. Taken together, this work highlights the ability of sFabs to elucidate claudin structure and function and posits their potential as therapeutics for modulating tight junctions by targeting specific claudin subtypes.
Collapse
|
28
|
Erramilli SK, Dominik PK, Deneka D, Tokarz P, Kim SS, Reddy BG, Skrobek BM, Dalmas O, Perozo E, Kossiakoff AA. Conformation-specific synthetic antibodies discriminate multiple functional states of the ion channel CorA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539746. [PMID: 37205530 PMCID: PMC10187328 DOI: 10.1101/2023.05.07.539746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg 2+ , and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg 2+ . Two sABs from these selections, C12 and C18, showed different degrees of Mg 2+ -sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg 2+ -depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg 2+ -depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg 2+ ] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.
Collapse
|
29
|
Choi HL, Yang HR, Shin HG, Hwang K, Kim JW, Lee JH, Ryu T, Jung Y, Lee S. Generation and Next-Generation Sequencing-Based Characterization of a Large Human Combinatorial Antibody Library. Int J Mol Sci 2023; 24:ijms24066011. [PMID: 36983085 PMCID: PMC10057307 DOI: 10.3390/ijms24066011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyusang Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
30
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
31
|
Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder. Nat Commun 2023; 14:635. [PMID: 36746957 PMCID: PMC9902482 DOI: 10.1038/s41467-023-36312-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1. The LK30/ADGRL3 complex structure revealed that the LK30 binding site on ADGRL3 overlaps with the binding site for an ADGRL3 ligand - teneurin. In cellular-adhesion assays, LK30 specifically broke the trans-cellular interaction of ADGRL3 with teneurin, but not with another ADGRL3 ligand - FLRT3. Our work provides proof of concept for the modulation of isoform- and ligand-specific aGPCR functions using unique tools, and thus establishes a foundation for the development of fine-tuned aGPCR-targeted therapeutics.
Collapse
|
32
|
Tresnak DT, Hackel BJ. Deep Antimicrobial Activity and Stability Analysis Inform Lysin Sequence-Function Mapping. ACS Synth Biol 2023; 12:249-264. [PMID: 36599162 PMCID: PMC10822705 DOI: 10.1021/acssynbio.2c00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic-resistant infectious disease is a critical challenge to human health. Antimicrobial proteins offer a compelling solution if engineered for potency, selectivity, and physiological stability. Lysins, which lyse cells via degradation of cell wall peptidoglycans, have significant potential to fill this role. Yet, the functional complexity of antimicrobial activity has hindered high-throughput characterization for discovery and design. To dramatically expand knowledge of the sequence-function landscape of lysins, we developed a depletion-based assay for library-scale measurement of lysin inhibitory activity. We coupled this platform with a high-throughput proteolytic stability assay to assess the activity and stability of ∼5 × 104 lysin catalytic domain variants, resulting in the discovery of a variant with increased activity (70 ± 20%) and stability (7.2 ± 0.4 °C increased midpoint of thermal denaturation). Ridge regression of the resulting data set demonstrated that libraries with a higher average Hamming distance better informed pairwise models and that coupling activity and stability assays enabled better prediction of catalytically active lysins. The best models achieved Pearson's correlation coefficients of 0.87 ± 0.01 and 0.61 ± 0.04 for predicting catalytic domain stability and activity, respectively. Our work provides an efficient strategy for constructing protein sequence-function landscapes, drastically increases screening throughput for engineering lysins, and yields promising lysins for further development.
Collapse
Affiliation(s)
- Daniel T Tresnak
- Department of Chemical Engineering and Materials Science, University of Minnesota─Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota─Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
33
|
Mejias-Gomez O, Madsen AV, Skovgaard K, Pedersen LE, Morth JP, Jenkins TP, Kristensen P, Goletz S. A window into the human immune system: comprehensive characterization of the complexity of antibody complementary-determining regions in functional antibodies. MAbs 2023; 15:2268255. [PMID: 37876265 PMCID: PMC10601506 DOI: 10.1080/19420862.2023.2268255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
The human immune system uses antibodies to neutralize foreign antigens. They are composed of heavy and light chains, both with constant and variable regions. The variable region has six hypervariable loops, also known as complementary-determining regions (CDRs) that determine antibody diversity and antigen specificity. Knowledge of their significance, and certain residues present in these areas, is vital for antibody therapeutics development. This study includes an analysis of more than 11,000 human antibody sequences from the International Immunogenetics information system (IMGT). The analysis included parameters such as length distribution, overall amino acid diversity, amino acid frequency per CDR and residue position within antibody chains. Overall, our findings confirm existing knowledge, such as CDRH3's high length diversity and amino acid variability, increased aromatic residue usage, particularly tyrosine, charged and polar residues like aspartic acid, serine, and the flexible residue glycine. Specific residue positions within each CDR influence these occurrences, implying a unique amino acid type distribution pattern. We compared amino acid type usage in CDRs and non-CDR regions, both in globular and transmembrane proteins, which revealed distinguishing features, such as increased frequency of tyrosine, serine, aspartic acid, and arginine. These findings should prove useful for future optimization, improvement of affinity, synthetic antibody library design, or the creation of antibodies de-novo in silico.
Collapse
Affiliation(s)
- Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - J. Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
34
|
Targeted degradation via direct 26S proteasome recruitment. Nat Chem Biol 2023; 19:55-63. [PMID: 36577875 PMCID: PMC9797404 DOI: 10.1038/s41589-022-01218-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2022] [Indexed: 12/29/2022]
Abstract
Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.
Collapse
|
35
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Veggiani G, Villaseñor R, Martyn GD, Tang JQ, Krone MW, Gu J, Chen C, Waters ML, Pearce KH, Baubec T, Sidhu SS. High-affinity chromodomains engineered for improved detection of histone methylation and enhanced CRISPR-based gene repression. Nat Commun 2022; 13:6975. [PMID: 36379931 PMCID: PMC9666628 DOI: 10.1038/s41467-022-34269-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone methylation is an important post-translational modification that plays a crucial role in regulating cellular functions, and its dysregulation is implicated in cancer and developmental defects. Therefore, systematic characterization of histone methylation is necessary to elucidate complex biological processes, identify biomarkers, and ultimately, enable drug discovery. Studying histone methylation relies on the use of antibodies, but these suffer from lot-to-lot variation, are costly, and cannot be used in live cells. Chromatin-modification reader domains are potential affinity reagents for methylated histones, but their application is limited by their modest affinities. We used phage display to identify key residues that greatly enhance the affinities of Cbx chromodomains for methylated histone marks and develop a general strategy for enhancing the affinity of chromodomains of the human Cbx protein family. Our strategy allows us to develop powerful probes for genome-wide binding analysis and live-cell imaging. Furthermore, we use optimized chromodomains to develop extremely potent CRISPR-based repressors for tailored gene silencing. Our results highlight the power of engineered chromodomains for analyzing protein interaction networks involving chromatin and represent a modular platform for efficient gene silencing.
Collapse
Affiliation(s)
- G Veggiani
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - R Villaseñor
- Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - G D Martyn
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - J Q Tang
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - M W Krone
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - J Gu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - C Chen
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada
| | - M L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - K H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - T Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
- Division of Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584, Utrecht, The Netherlands
| | - S S Sidhu
- The Anvil Institute, Kitchener, ON, N2G 1H6, Canada.
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
37
|
In Silico Maturation of a Nanomolar Antibody against the Human CXCR2. Biomolecules 2022; 12:biom12091285. [PMID: 36139124 PMCID: PMC9496334 DOI: 10.3390/biom12091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The steady increase in computational power in the last 50 years is opening unprecedented opportunities in biology, as computer simulations of biological systems have become more accessible and can reproduce experimental results more accurately. Here, we wanted to test the ability of computer simulations to replace experiments in the limited but practically useful scope of improving the biochemical characteristics of the abN48 antibody, a nanomolar antagonist of the CXC chemokine receptor 2 (CXCR2) that was initially selected from a combinatorial antibody library. Our results showed a good correlation between the computed binding energies of the antibody to the peptide target and the experimental binding affinities. Moreover, we showed that it is possible to design new antibody sequences in silico with a higher affinity to the desired target using a Monte Carlo Metropolis algorithm. The newly designed sequences had an affinity comparable to the best ones obtained using in vitro affinity maturation and could be obtained within a similar timeframe. The methodology proposed here could represent a valid alternative for improving antibodies in cases in which experiments are too expensive or technically tricky and could open an opportunity for designing antibodies for targets that have been elusive so far.
Collapse
|
38
|
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, Vecchio AJ. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J Biol Chem 2022; 298:102357. [PMID: 35952760 PMCID: PMC9463536 DOI: 10.1016/j.jbc.2022.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE’s C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via β-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin–CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs’ mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4–cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab’s targeting mechanism. From these insights, we generated a model for CpE’s claudin-bound β-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824 USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA.
| |
Collapse
|
39
|
Maruthachalam BV, Barreto K, Hogan D, Kusalik A, Geyer CR. Generation of synthetic antibody fragments with optimal complementarity determining region lengths for Notch-1 recognition. Front Microbiol 2022; 13:931307. [PMID: 35992693 PMCID: PMC9381698 DOI: 10.3389/fmicb.2022.931307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic antibodies have been engineered against a wide variety of antigens with desirable biophysical, biochemical, and pharmacological properties. Here, we describe the generation and characterization of synthetic antigen-binding fragments (Fabs) against Notch-1. Three single-framework synthetic Fab libraries, named S, F, and modified-F, were screened against the recombinant human Notch-1 extracellular domain using phage display. These libraries were built on a modified trastuzumab framework, containing two or four diversified complementarity-determining regions (CDRs) and different CDR diversity designs. In total, 12 Notch-1 Fabs were generated with 10 different CDRH3 lengths. These Fabs possessed a high affinity for Notch-1 (sub-nM to mid-nM KDapp values) and exhibited different binding profiles (mono-, bi-or tri-specific) toward Notch/Jagged receptors. Importantly, we showed that screening focused diversity libraries, implementing next-generation sequencing approaches, and fine-tuning the CDR length diversity provided improved binding solutions for Notch-1 recognition. These findings have implications for antibody library design and antibody phage display.
Collapse
Affiliation(s)
| | - Kris Barreto
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Clarence Ronald Geyer,
| |
Collapse
|
40
|
Niu Z, Luo Z, Sun P, Ning L, Jin X, Chen G, Guo C, Zhi L, Chang W, Zhu W. In Vitro Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. BIODESIGN RESEARCH 2022; 2022:9823578. [PMID: 37850144 PMCID: PMC10521727 DOI: 10.34133/2022/9823578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/09/2022] [Indexed: 10/19/2023] Open
Abstract
Camelid single-domain antibody fragments (nanobodies) are an emerging force in therapeutic biopharmaceuticals and clinical diagnostic reagents in recent years. Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting the large-scale application of nanobodies. In this study, we developed three kinds of gene designated-region pan-editing (GDP) technologies to introduce multiple mutations in complementarity-determining regions (CDRs) of nanobodies in vitro. Including the integration of G-quadruplex fragments in CDRs, which induces the spontaneous multiple mutations in CDRs; however, these mutant sequences are highly similar, resulting in a lack of sequences diversity in the CDRs. We also used CDR-targeting traditional gRNA-guided base-editors, which effectively diversify the CDRs. And most importantly, we developed the self-assembling gRNAs, which are generated by reprogrammed tracrRNA hijacking of endogenous mRNAs as crRNAs. Using base-editors guided by self-assembling gRNAs, we can realize the iteratively diversify the CDRs. And we believe the last GDP technology is highly promising in immunization-free nanobody library construction, and the full development of this novel nanobody discovery platform can realize the synthetic evolution of nanobodies in vitro.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Zhixia Luo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Pengyang Sun
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Linwei Ning
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Xinru Jin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Guanxu Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Wei Chang
- Department of Oncology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang 453000China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| |
Collapse
|
41
|
Ura M, Mukherjee S, Marcon E, Koestler SA, Kossiakoff AA. Synthetic Antibodies Detect Distinct Cellular States of Chromosome Passenger Complex Proteins. J Mol Biol 2022; 434:167602. [PMID: 35469831 PMCID: PMC9862951 DOI: 10.1016/j.jmb.2022.167602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
High performance affinity reagents are essential tools to enable biologists to profile the cellular location and composition of macromolecular complexes undergoing dynamic reorganization. To support further development of such tools, we have assembled a high-throughput phage display pipeline to generate Fab-based affinity reagents that target different dynamic forms of a large macromolecular complex, using the Chromosomal Passenger Complex (CPC), as an example. The CPC is critical for the maintenance of chromosomal and cytoskeleton processes during cell division. The complex contains 4 protein components: Aurora B kinase, survivin, borealin and INCENP. The CPC acts as a node to dynamically organize other partnering subcomplexes to build multiple functional structures during mitotic progression. Using phage display mutagenesis, a cohort of synthetic antibodies (sABs) were generated against different domains of survivin, borealin and INCENP. Immunofluorescence established that a set of these sABs can discriminate between the form of the CPC complex in the midbody versus the spindle. Others localize to targets, which appear to be less organized, in the nucleus or cytoplasm. This differentiation suggests that different CPC epitopes have dynamic accessibility depending upon the mitotic state of the cell. An Immunoprecipitation/Mass Spectrometry analysis was performed using sABs that bound specifically to the CPC in either the midbody or MT spindle macromolecular assemblies. Thus, sABs can be exploited as high performance reagents to profile the accessibility of different components of the CPC within macromolecular assemblies during different stages of mitosis suggesting this high throughput approach will be applicable to other complex macromolecular systems.
Collapse
Affiliation(s)
- Marcin Ura
- Department of Biochemistry and Molecular Biology. The University of Chicago, United States
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology. The University of Chicago, United States
| | - Edyta Marcon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, ON, Canada
| | - Stefan A. Koestler
- Department of Physiology, Development and Neuroscience. University of Cambridge, UK
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology. The University of Chicago, United States,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, United States,Correspondence to Anthony A. Kossiakoff: Department of Biochemistry and Molecular Biology. The University of Chicago, United States. (A.A. Kossiakoff)
| |
Collapse
|
42
|
Veggiani G, Yates BP, Martyn GD, Manczyk N, Singer AU, Kurinov I, Sicheri F, Sidhu SS. Panel of Engineered Ubiquitin Variants Targeting the Family of Human Ubiquitin Interacting Motifs. ACS Chem Biol 2022; 17:941-956. [PMID: 35385646 PMCID: PMC9305627 DOI: 10.1021/acschembio.2c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub)-binding domains embedded in intracellular proteins act as readers of the complex Ub code and contribute to regulation of numerous eukaryotic processes. Ub-interacting motifs (UIMs) are short α-helical modular recognition elements whose role in controlling proteostasis and signal transduction has been poorly investigated. Moreover, impaired or aberrant activity of UIM-containing proteins has been implicated in numerous diseases, but targeting modular recognition elements in proteins remains a major challenge. To overcome this limitation, we developed Ub variants (UbVs) that bind to 42 UIMs in the human proteome with high affinity and specificity. Structural analysis of a UbV:UIM complex revealed the molecular determinants of enhanced affinity and specificity. Furthermore, we showed that a UbV targeting a UIM in the cancer-associated Ub-specific protease 28 potently inhibited catalytic activity. Our work demonstrates the versatility of UbVs to target short α-helical Ub receptors with high affinity and specificity. Moreover, the UbVs provide a toolkit to investigate the role of UIMs in regulating and transducing Ub signals and establish a general strategy for the systematic development of probes for Ub-binding domains.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Bradley P. Yates
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Gregory D. Martyn
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Noah Manczyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alex U. Singer
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, NE-CAT, Cornell University, Argonne, Illinois 60439, United States
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Rohaim A, Slezak T, Koh YH, Blachowicz L, Kossiakoff AA, Roux B. Engineering of a synthetic antibody fragment for structural and functional studies of K+ channels. J Gen Physiol 2022; 154:e202112965. [PMID: 35234830 PMCID: PMC8924934 DOI: 10.1085/jgp.202112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Engineered antibody fragments (Fabs) have made major impacts on structural biology research, particularly to aid structural determination of membrane proteins. Nonetheless, Fabs generated by traditional monoclonal technology suffer from challenges of routine production and storage. Starting from the known IgG paratopes of an antibody that binds to the "turret loop" of the KcsA K+ channel, we engineered a synthetic Fab (sFab) based upon the highly stable Herceptin Fab scaffold, which can be recombinantly expressed in Escherichia coli and purified with single-step affinity chromatography. This synthetic Fab was used as a crystallization chaperone to obtain crystals of the KcsA channel that diffracted to a resolution comparable to that from the parent Fab. Furthermore, we show that the turret loop can be grafted into the unrelated voltage-gated Kv1.2-Kv2.1 channel and still strongly bind the engineered sFab, in support of the loop grafting strategy. Macroscopic electrophysiology recordings show that the sFab affects the activation and conductance of the chimeric voltage-gated channel. These results suggest that straightforward engineering of antibodies using recombinant formats can facilitate the rapid and scalable production of Fabs as structural biology tools and functional probes. The impact of this approach is expanded significantly based on the potential portability of the turret loop to a myriad of other K+ channels.
Collapse
Affiliation(s)
- Ahmed Rohaim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Young Hoon Koh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
44
|
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, Mancia F. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 2022; 604:371-376. [PMID: 35388216 PMCID: PMC9884178 DOI: 10.1038/s41586-022-04555-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
Collapse
Affiliation(s)
- Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas H McConville
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Vasileios I Petrou
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael Loukeris
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - David I Roper
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol 2022; 18:706-712. [PMID: 35361990 PMCID: PMC9246859 DOI: 10.1038/s41589-022-00994-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.
Collapse
|
46
|
Guzman KM, Khosla C. Fragment antigen binding domains (F abs) as tools to study assembly-line polyketide synthases. Synth Syst Biotechnol 2022; 7:506-512. [PMID: 34977395 PMCID: PMC8683866 DOI: 10.1016/j.synbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
The crystallization of proteins remains a bottleneck in our fundamental understanding of their functions. Therefore, discovering tools that aid crystallization is crucial. In this review, the versatility of fragment-antigen binding domains (Fabs) as protein crystallization chaperones is discussed. Fabs have aided the crystallization of membrane-bound and soluble proteins as well as RNA. The ability to bind three Fabs onto a single protein target has demonstrated their potential for crystallization of challenging proteins. We describe a high-throughput workflow for identifying Fabs to aid the crystallization of a protein of interest (POI) by leveraging phage display technologies and differential scanning fluorimetry (DSF). This workflow has proven to be especially effective in our structural studies of assembly-line polyketide synthases (PKSs), which harbor flexible domains and assume transient conformations. PKSs are of interest to us due to their ability to synthesize an unusually broad range of medicinally relevant compounds. Despite years of research studying these megasynthases, their overall topology has remained elusive. One Fab in particular, 1B2, has successfully enabled X-ray crystallographic and single particle cryo-electron microscopic (cryoEM) analyses of multiple modules from distinct assembly-line PKSs. Its use has not only facilitated multidomain protein crystallization but has also enhanced particle quality via cryoEM, thereby enabling the visualization of intact PKS modules at near-atomic (3-5 Å) resolution. The identification of PKS-binding Fabs can be expected to continue playing a key role in furthering our knowledge of polyketide biosynthesis on assembly-line PKSs.
Collapse
Affiliation(s)
- Katarina M. Guzman
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Liu B, Yang D. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Int J Mol Sci 2022; 23:ijms23031482. [PMID: 35163405 PMCID: PMC8835997 DOI: 10.3390/ijms23031482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Nanobodies, or VHHs, refer to the antigen-binding domain of heavy-chain antibodies (HCAbs) from camelids. They have been widely used as research tools for protein purification and structure determination due to their small size, high specificity, and high stability, overcoming limitations with conventional antibody fragments. However, animal immunization and subsequent retrieval of antigen-specific nanobodies are expensive and complicated. Construction of synthetic nanobody libraries using DNA oligonucleotides is a cost-effective alternative for immunization libraries and shows great potential in identifying antigen-specific or even conformation-specific nanobodies. This review summarizes and analyses synthetic nanobody libraries in the current literature, including library design and biopanning methods, and further discusses applications of antigen-specific nanobodies obtained from synthetic libraries to research.
Collapse
|
48
|
Davydova EK. Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S146-S110. [PMID: 35501993 PMCID: PMC8802281 DOI: 10.1134/s0006297922140127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Functional Protein Engineering became the hallmark in biomolecule manipulation in the new millennium, building on and surpassing the underlying structural DNA manipulation and recombination techniques developed and employed in the last decades of 20th century. Because of their prominence in almost all biological processes, proteins represent extremely important targets for engineering enhanced or altered properties that can lead to improvements exploitable in healthcare, medicine, research, biotechnology, and industry. Synthetic protein structures and functions can now be designed on a computer and/or evolved using molecular display or directed evolution methods in the laboratory. This review will focus on the recent trends in protein engineering and the impact of this technology on recent progress in science, cancer- and immunotherapies, with the emphasis on the current achievements in basic protein research using synthetic antibody (sABs) produced by phage display pipeline in the Kossiakoff laboratory at the University of Chicago (KossLab). Finally, engineering of the highly specific binding modules, such as variants of Streptococcal protein G with ultra-high orthogonal affinity for natural and engineered antibody scaffolds, and their possible applications as a plug-and-play platform for research and immunotherapy will be described.
Collapse
Affiliation(s)
- Elena K Davydova
- The University of Chicago, Department of Biochemistry and Molecular Biology, Chicago, IL 60637, USA.
| |
Collapse
|
49
|
Ye X, Gaucher JF, Vidal M, Broussy S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021; 26:6759. [PMID: 34833851 PMCID: PMC8625919 DOI: 10.3390/molecules26226759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.
Collapse
Affiliation(s)
- Xiaoqing Ye
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| | - Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, 75006 Paris, France;
| | - Michel Vidal
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
- Service Biologie du Médicament, Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Sylvain Broussy
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| |
Collapse
|
50
|
Fedele C, Li S, Teng KW, Foster CJR, Peng D, Ran H, Mita P, Geer MJ, Hattori T, Koide A, Wang Y, Tang KH, Leinwand J, Wang W, Diskin B, Deng J, Chen T, Dolgalev I, Ozerdem U, Miller G, Koide S, Wong KK, Neel BG. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J Exp Med 2021; 218:211451. [PMID: 33045063 PMCID: PMC7549316 DOI: 10.1084/jem.20201414] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site-specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
Collapse
Affiliation(s)
- Carmine Fedele
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kai Wen Teng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Connor J R Foster
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - David Peng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Mitchell J Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Medicine, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Yubao Wang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Jiehui Deng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|