1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Garg P, Satheesh T, Ganji M, Dutta S. Cryo-EM Reveals the Mechanism of DNA Compaction by Mycobacterium smegmatis Dps2. J Mol Biol 2024; 436:168806. [PMID: 39349276 DOI: 10.1016/j.jmb.2024.168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
DNA binding protein from starved cells (Dps) is a miniature ferritin complex, which plays a vital role in protecting bacterial DNA during starvation to maintain the integrity of bacteria under hostile conditions. Several approaches, including cryo-electron tomography, have been previously implemented by other research groups to decipher the structure of the Dps protein bound to DNA. However, none of the structures of the Dps-DNA complex was resolved to high resolution to identify the DNA binding residues. Like other bacteria, Mycobacterium smegmatis also expresses Dps2 (called MsDps2), which binds DNA to protect it under oxidative stress conditions. In this study, we implemented various biochemical and biophysical studies to characterize the DNA protein interactions of Dps2 protein from Mycobacterium smegmatis. We employed single-particle cryo-EM-based structural analysis of MsDps2-DNA complexes and identified that the region close to the N-terminus confers the DNA binding property. Based on cryo-EM data, we also pinpointed several arginine residues, proximal to the DNA binding region, responsible for DNA binding. We also performed mutations of these residues, which dramatically reduced the MsDps2-DNA interaction. In addition, we proposed a model that elucidates the mechanism of DNA compaction, which adapts a lattice-like structure. We performed single-molecule imaging of MsDps2-DNA interactions that corroborate well with our structural studies. Taken together, our results delineate the specific MsDps2 residues that play an important role in DNA binding and compaction, providing new insights into Mycobacterial DNA compaction mechanisms under stress conditions.
Collapse
Affiliation(s)
- Priyanka Garg
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Thejas Satheesh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
3
|
Kar U, Khaleeq S, Garg P, Bhat M, Reddy P, Vignesh VS, Upadhyaya A, Das M, Chakshusmathi G, Pandey S, Dutta S, Varadarajan R. Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens. Front Immunol 2022; 13:890622. [PMID: 35720346 PMCID: PMC9204493 DOI: 10.3389/fimmu.2022.890622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Current influenza vaccines need to be updated annually due to mutations in the globular head of the viral surface protein, hemagglutinin (HA). To address this, vaccine candidates have been designed based on the relatively conserved HA stem domain and have shown protective efficacy in animal models. Oligomerization of the antigens either by fusion to oligomerization motifs or display on self-assembling nanoparticle scaffolds, can induce more potent immune responses compared to the corresponding monomeric antigen due to multivalent engagement of B-cells. Since nanoparticle display can increase manufacturing complexity, and often involves one or more mammalian cell expressed components, it is important to characterize and compare various display and oligomerization scaffolds. Using a structure guided approach, we successfully displayed multiple copies of a previously designed soluble, trimeric influenza stem domain immunogen, pH1HA10, on the ferritin like protein, MsDps2 (12 copies), Ferritin (24 copies) and Encapsulin (180 copies). All proteins were expressed in Escherichia coli. The nanoparticle fusion immunogens were found to be well folded and bound to the influenza stem directed broadly neutralizing antibodies with high affinity. An 8.5 Å Cryo-EM map of Msdps2-pH1HA10 confirmed the successful design of the nanoparticle fusion immunogen. Mice immunization studies with the soluble trimeric stem and nanoparticle fusion constructs revealed that all of them were immunogenic, and protected mice against homologous (A/Belgium/145-MA/2009) and heterologous (A/Puerto Rico/8/1934) challenge with 10MLD50 mouse adapted virus. Although nanoparticle display conferred a small but statistically significant improvement in protection relative to the soluble trimer in a homologous challenge, heterologous protection was similar in both nanoparticle-stem immunized and trimeric stem immunized groups. Such rapidly producible, bacterially expressed antigens and nanoparticle scaffolds are useful modalities to tackle future influenza pandemics.
Collapse
Affiliation(s)
- Uddipan Kar
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Priyanka Garg
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Madhuraj Bhat
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Poorvi Reddy
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | | | - Aditya Upadhyaya
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Mili Das
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Ghadiyaram Chakshusmathi
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Suman Pandey
- Mynvax Private Limited, ES12, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bengaluru, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
4
|
Chesnokov Y, Mozhaev A, Kamyshinsky R, Gordienko A, Dadinova L. Structural Insights into Iron Ions Accumulation in Dps Nanocage. Int J Mol Sci 2022; 23:ijms23105313. [PMID: 35628121 PMCID: PMC9140674 DOI: 10.3390/ijms23105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/05/2023] Open
Abstract
Dps (DNA-binding protein from starved cells) is well known for the structural protection of bacterial DNA by the formation of highly ordered intracellular assemblies under stress conditions. Moreover, this ferritin-like protein can perform fast oxidation of ferrous ions and subsequently accumulate clusters of ferric ions in its nanocages, thus providing the bacterium with physical and chemical protection. Here, cryo-electron microscopy was used to study the accumulation of iron ions in the nanocage of a Dps protein from Escherichia coli. We demonstrate that Fe2+ concentration in the solution and incubation time have an insignificant effect on the volume and the morphology of iron minerals formed in Dps nanocages. However, an increase in the Fe2+ level leads to an increase in the proportion of larger clusters and the clusters themselves are composed of discrete ~1-1.5 nm subunits.
Collapse
Affiliation(s)
- Yury Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Roman Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Alexander Gordienko
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia; (Y.C.); (A.M.); (R.K.); (A.G.)
- Correspondence: ; Tel.: +7-(499)-135-62-00
| |
Collapse
|
5
|
The Conformation of the N-Terminal Tails of Deinococcus grandis Dps Is Modulated by the Ionic Strength. Int J Mol Sci 2022; 23:ijms23094871. [PMID: 35563263 PMCID: PMC9103930 DOI: 10.3390/ijms23094871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.
Collapse
|
6
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
7
|
Small Prokaryotic DNA-Binding Proteins Protect Genome Integrity throughout the Life Cycle. Int J Mol Sci 2022; 23:ijms23074008. [PMID: 35409369 PMCID: PMC8999374 DOI: 10.3390/ijms23074008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.
Collapse
|
8
|
|
9
|
Malladi S, Patel UR, Rajmani RS, Singh R, Pandey S, Kumar S, Khaleeq S, van Vuren PJ, Riddell S, Goldie S, Gayathri S, Chakraborty D, Kalita P, Pramanick I, Agarwal N, Reddy P, Girish N, Upadhyaya A, Khan MS, Kanjo K, Bhat M, Mani S, Bhattacharyya S, Siddiqui S, Tyagi A, Jha S, Pandey R, Tripathi S, Dutta S, McAuley AJ, Singanallur N, Vasan SS, Ringe RP, Varadarajan R. Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infect Dis 2021; 7:2546-2564. [PMID: 34260218 PMCID: PMC8996237 DOI: 10.1021/acsinfecdis.1c00276] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 02/07/2023]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.
Collapse
Affiliation(s)
- Sameer
Kumar Malladi
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Unnatiben Rajeshbhai Patel
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Raju S. Rajmani
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Randhir Singh
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Suman Pandey
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Sahil Kumar
- Virology
Unit, Institute of Microbial Technology,
Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Sara Khaleeq
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Petrus Jansen van Vuren
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
| | - Shane Riddell
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
| | - Sarah Goldie
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
| | - Savitha Gayathri
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Debajyoti Chakraborty
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Parismita Kalita
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Ishika Pramanick
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Nupur Agarwal
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Poorvi Reddy
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Nidhi Girish
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Aditya Upadhyaya
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Mohammad Suhail Khan
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Kawkab Kanjo
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Madhuraj Bhat
- Mynvax
Private Limited, ES12, Entrepreneurship Centre, SID, Indian Institute of Science, Bengaluru 560012, India
| | - Shailendra Mani
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Gurugram-Faridabad
Expressway, Faridabad 121001, India
| | - Sankar Bhattacharyya
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Gurugram-Faridabad
Expressway, Faridabad 121001, India
| | - Samreen Siddiqui
- Max Super
Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 1100017, India
| | - Akansha Tyagi
- Max Super
Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 1100017, India
| | - Sujeet Jha
- Max Super
Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 1100017, India
| | - Rajesh Pandey
- Integrative
Genomics of Host-Pathogen (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Shashank Tripathi
- Department
of Microbiology & Cell Biology, Indian
Institute of Science, Bengaluru 560012, India
- Centre
for Infectious Disease Research, Indian
Institute of Science, Bengaluru 560012, India
| | - Somnath Dutta
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| | - Alexander J. McAuley
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
| | - Nagendrakumar
Balasubramanian Singanallur
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
| | - Seshadri S. Vasan
- Australian
Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, Geelong 3220, Victoria, Australia
- Department
of Health Sciences, University of York, York YO10 5DD, United Kingdom
| | - Rajesh P. Ringe
- Virology
Unit, Institute of Microbial Technology,
Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh 160036, India
| | - Raghavan Varadarajan
- Molecular
Biophysics Unit (MBU), Indian Institute
of Science, Bengaluru 560012, India
| |
Collapse
|
10
|
Feyh R, Waeber NB, Prinz S, Giammarinaro PI, Bange G, Hochberg G, Hartmann RK, Altegoer F. Structure and mechanistic features of the prokaryotic minimal RNase P. eLife 2021; 10:70160. [PMID: 34180399 PMCID: PMC8266387 DOI: 10.7554/elife.70160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.
Collapse
Affiliation(s)
- Rebecca Feyh
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nadine B Waeber
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pietro Ivan Giammarinaro
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg Hochberg
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Ming T, Huan H, Su C, Huo C, Wu Y, Jiang Q, Qiu X, Lu C, Zhou J, Li Y, Su X. Structural comparison of two ferritins from the marine invertebrate Phascolosoma esculenta. FEBS Open Bio 2021; 11:793-803. [PMID: 33448656 PMCID: PMC7931202 DOI: 10.1002/2211-5463.13080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022] Open
Abstract
For marine invertebrates with no adaptive immune system, ferritin is a major intracellular iron-storage protein with a critical role in innate immunity. Here, we present the crystal structures of two novel ferritins [Fer147 and Phascolosoma esculenta ferritin (PeFer)] from the marine invertebrate P. esculenta, which resides in muddy-bottom coastal regions. Fer147 and PeFer exhibit the 4-3-2 symmetry of cage-like hollow shells containing 24 subunits, similar to other known ferritins. Fer147 and PeFer contain both the conserved ferroxidase center and threefold channels. Subtle structural differences in the putative nucleation sites suggest possible routes of metal ion movement in the protein shells. However, the marked variation in the electrostatic potential of the threefold channels in Fer147 and the fourfold channels in PeFer suggests significant diversity between Fer147 and PeFer in terms of metal ion aggregation and cation exclusion. In summary, the presented crystal structures may serve as references for studies of the iron-storage mechanism of additional ferritins from marine invertebrates.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, China.,School of Marine Sciences, Ningbo University, China
| |
Collapse
|
12
|
Minato T, Teramoto T, Kakuta Y, Ogo S, Yoon KS. Biochemical and structural characterization of a thermostable Dps protein with His-type ferroxidase centers and outer metal-binding sites. FEBS Open Bio 2020; 10:1219-1229. [PMID: 32170832 PMCID: PMC7327923 DOI: 10.1002/2211-5463.12837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The DNA‐binding protein from starved cells (Dps) is found in a wide range of microorganisms, and it has been well characterized. However, little is known about Dps proteins from nonheterocystous filamentous cyanobacteria. In this study, a Dps protein from the thermophilic nonheterocystous filamentous cyanobacterium Thermoleptolyngbya sp. O‐77 (TlDps1) was purified and characterized. PAGE and CD analyses of TlDps1 demonstrated that it had higher thermostability than previously reported Dps proteins. X‐ray crystallographic analysis revealed that TlDps1 possessed His‐type ferroxidase centers within the cavity and unique metal‐binding sites located on the surface of the protein, which presumably contributed to its exceedingly high thermostability.
Collapse
Affiliation(s)
- Takuo Minato
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.,Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
de Alcântara NR, de Oliveira FM, Garcia W, Dos Santos OAL, Junqueira-Kipnis AP, Kipnis A. Dps protein is related to resistance of Mycobacterium abscessus subsp. massiliense against stressful conditions. Appl Microbiol Biotechnol 2020; 104:5065-5080. [PMID: 32253472 DOI: 10.1007/s00253-020-10586-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) belongs to the Mycobacterium abscessus complex and is a rapidly growing non-tuberculous mycobacterium. The chronic pulmonary, skin, and soft tissue infections that it causes may be difficult to treat due to its intrinsic resistance to the commonly used antimicrobial drugs, making it a serious world public health problem. Iron is an essential nutrient for the growth of microorganisms; nonetheless, it can be toxic when in excess. Thus, bacteria require an iron homeostasis mechanism to succeed in different environments. DNA-binding proteins from starved cells (Dps) are miniferritins with the property to act as additional iron storage proteins but also can bind to DNA, protecting it against hydroxyl radical. Annotation of the Mycma genome revealed the gene mycma_03135 with 79% sequential identity when compared to MSMEG_3242 gene from M. smegmatis mc2 155, which codifies for a known Dps. Recombinant Dps from M. abscessus (rMaDps) was produced in Escherichia coli, purified in soluble form and shown to form high mass oligomers in solution with ferroxidase activity, DNA binding, and protection against damage. The expression of the mycma_03135 gene was induced during Mycma growth in the presence of hydrogen peroxide (H2O2). Additionally, the expression of rMaDps by E. coli conferred greater resistance to H2O2. Thus, this study is the first to identify and characterize a Dps from M. abscessus. KEY POINTS: Mycobacterium abscessus subsp. massiliense express a miniferritin protein (Dps). Mycma Dps binds to DNA and protects against oxidative stress.
Collapse
Affiliation(s)
| | - Fábio Muniz de Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | | | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Kamyshinsky R, Chesnokov Y, Dadinova L, Mozhaev A, Orlov I, Petoukhov M, Orekhov A, Shtykova E, Vasiliev A. Polymorphic Protective Dps-DNA Co-Crystals by Cryo Electron Tomography and Small Angle X-Ray Scattering. Biomolecules 2019; 10:biom10010039. [PMID: 31888079 PMCID: PMC7023142 DOI: 10.3390/biom10010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/01/2022] Open
Abstract
Rapid increase of intracellular synthesis of specific histone-like Dps protein that binds DNA to protect the genome against deleterious factors leads to in cellulo crystallization—one of the most curious processes in the area of life science at the moment. However, the actual structure of the Dps–DNA co-crystals remained uncertain in the details for more than two decades. Cryo-electron tomography and small-angle X-ray scattering revealed polymorphous modifications of the co-crystals depending on the buffer parameters. Two different types of the Dps–DNA co-crystals are formed in vitro: triclinic and cubic. Three-dimensional reconstruction revealed DNA and Dps molecules in cubic co-crystals, and the unit cell parameters of cubic lattice were determined consistently by both methods.
Collapse
Affiliation(s)
- Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; (Y.C.); (A.O.); (A.V.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
- Moscow Institute of Physics and Technology, Institutsky lane 9, 141700 Dolgoprudny, Moscow Region, Russia
- Correspondence: ; Tel.: +7-916-356-3963
| | - Yury Chesnokov
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; (Y.C.); (A.O.); (A.V.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
| | - Liubov Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
| | - Andrey Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Ivan Orlov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
| | - Maxim Petoukhov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect, 31, 119071 Moscow, Russia
| | - Anton Orekhov
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; (Y.C.); (A.O.); (A.V.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
- Moscow Institute of Physics and Technology, Institutsky lane 9, 141700 Dolgoprudny, Moscow Region, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
| | - Alexander Vasiliev
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; (Y.C.); (A.O.); (A.V.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (L.D.); (A.M.); (I.O.); (M.P.); (E.S.)
- Moscow Institute of Physics and Technology, Institutsky lane 9, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
15
|
Howe C, Moparthi VK, Ho FM, Persson K, Stensjö K. The Dps4 from Nostoc punctiforme ATCC 29133 is a member of His-type FOC containing Dps protein class that can be broadly found among cyanobacteria. PLoS One 2019; 14:e0218300. [PMID: 31369577 PMCID: PMC6675082 DOI: 10.1371/journal.pone.0218300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022] Open
Abstract
Dps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium. This uncommonly high number of Dps proteins implies a sophisticated machinery for maintaining complex iron homeostasis and for protection against oxidative stress. Functional analyses and structural information on cyanobacterial Dps proteins are rare, but essential for understanding the function of each of the NpDps proteins. In this study, we present the crystal structure of NpDps4 in its metal-free, iron- and zinc-bound forms. The FOC coordinates either two iron atoms or one zinc atom. Spectroscopic analyses revealed that NpDps4 could oxidize Fe2+ utilizing O2, but no evidence for its use of the oxidant H2O2 could be found. We identified Zn2+ to be an effective inhibitor of the O2-mediated Fe2+ oxidation in NpDps4. NpDps4 exhibits a FOC that is very different from canonical Dps, but structurally similar to the atypical one from DpsA of Thermosynechococcus elongatus. Sequence comparisons among Dps protein homologs to NpDps4 within the cyanobacterial phylum led us to classify a novel FOC class: the His-type FOC. The features of this special FOC have not been identified in Dps proteins from other bacterial phyla and it might be unique to cyanobacterial Dps proteins.
Collapse
Affiliation(s)
- Christoph Howe
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Vamsi K. Moparthi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Felix M. Ho
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail: (KS); (KP)
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (KS); (KP)
| |
Collapse
|
16
|
Williams SM, Chatterji D. Flexible aspartates propel iron to the ferroxidation sites along pathways stabilized by a conserved arginine in Dps proteins from Mycobacterium smegmatis. Metallomics 2018; 9:685-698. [PMID: 28418062 DOI: 10.1039/c7mt00008a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA-binding proteins under starvation (Dps) are dodecameric nano-compartments for iron oxidation and storage in bacterial cells. These proteins have roughly spherical structures with a hollow interior where iron is stored. Through mutational analysis of a conserved arginine residue in the second Dps protein from Mycobacterium smegmatis, we have identified residues which stabilize the interfaces between the iron entry and ferroxidation sites. Also, we have used X-ray crystallography to determine the structures of co-crystals of iron and Dps in varying proportions and compare the changes in these ligand-bound forms with respect to the apo-protein. The iron-loaded proteins of low, medium and high iron-bound forms were found to exhibit aspartate residues with alternate conformations, some of which could be directly linked to the sites of ferroxidation and iron entry. We conclude that the increased flexibility of aspartates in the presence of iron facilitates its movement from the entry site to the ferroxidaton site, and the two active sites are stabilized by the interactions of a conserved arginine residue R73.
Collapse
|
17
|
Antipov S, Turishchev S, Purtov Y, Shvyreva U, Sinelnikov A, Semov Y, Preobrazhenskaya E, Berezhnoy A, Shusharina N, Novolokina N, Vakhtel V, Artyukhov V, Ozoline O. The Oligomeric Form of the Escherichia coli Dps Protein Depends on the Availability of Iron Ions. Molecules 2017; 22:molecules22111904. [PMID: 29113077 PMCID: PMC6150300 DOI: 10.3390/molecules22111904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
The Dps protein of Escherichia coli, which combines ferroxidase activity and the ability to bind DNA, is effectively used by bacteria to protect their genomes from damage. Both activities depend on the integrity of this multi-subunit protein, which has an inner cavity for iron oxides; however, the diversity of its oligomeric forms has only been studied fragmentarily. Here, we show that iron ions stabilize the dodecameric form of Dps. This was found by electrophoretic fractionation and size exclusion chromatography, which revealed several oligomers in highly purified protein samples and demonstrated their conversion to dodecamers in the presence of 1 mM Mohr’s salt. The transmission electron microscopy data contradicted the assumption that the stabilizing effect is given by the optimal core size formed in the inner cavity of Dps. The charge state of iron ions was evaluated using Mössbauer spectroscopy, which showed the presence of Fe3O4, rather than the expected Fe2O3, in the sample. Assuming that Fe2+ can form additional inter-subunit contacts, we modeled the interaction of FeO and Fe2O3 with Dps, but the binding sites with putative functionality were predicted only for Fe2O3. The question of how the dodecameric form can be stabilized by ferric oxides is discussed.
Collapse
Affiliation(s)
- Sergey Antipov
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Sergey Turishchev
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Yuriy Purtov
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Uliana Shvyreva
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Alexander Sinelnikov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Yuriy Semov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | | | - Andrey Berezhnoy
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Natalia Shusharina
- School of Life Sciences, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Natalia Novolokina
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Viktor Vakhtel
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Valeriy Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia.
| | - Olga Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia.
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, 142290 Pushchino, Russia.
- Department of Structural and Functional genomics, Pushchino Scientific Center, 142290 Pushchino, Russia.
| |
Collapse
|
18
|
Antipov SS, Tutukina MN, Preobrazhenskaya EV, Kondrashov FA, Patrushev MV, Toshchakov SV, Dominova I, Shvyreva US, Vrublevskaya VV, Morenkov OS, Sukharicheva NA, Panyukov VV, Ozoline ON. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. PLoS One 2017; 12:e0182800. [PMID: 28800583 PMCID: PMC5553809 DOI: 10.1371/journal.pone.0182800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase or, vice versa, competing with inhibitors to activate transcription.
Collapse
Affiliation(s)
- S. S. Antipov
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Biophysics and Biotechnology, Voronezh State University, Voronezh, Russian Federation
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - M. N. Tutukina
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - E. V. Preobrazhenskaya
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - F. A. Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - M. V. Patrushev
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - S. V. Toshchakov
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - I. Dominova
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - U. S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Vrublevskaya
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. S. Morenkov
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - N. A. Sukharicheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Panyukov
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Bioinformatics, Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. N. Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| |
Collapse
|
19
|
Arif SM, Varshney U, Vijayan M. Hydrolysis of diadenosine polyphosphates. Exploration of an additional role of Mycobacterium smegmatis MutT1. J Struct Biol 2017; 199:165-176. [PMID: 28705712 DOI: 10.1016/j.jsb.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
Abstract
Diadenosine polyphosphates (ApnA, n=2-6), particularly Ap4A, are involved in several important physiological processes. The substantial sequence identity of the Nudix hydrolase domain (domain 1) of Mycobacterium smegmatis MutT1 (MsMutT1) with a known Ap4A hydrolase suggested that MsMutT1 could also hydrolyse diadenosine polyphosphates. Biochemical experiments yielded results in conformity with this suggestion, with Ap4A as the best among the substrates. ATP is a product in all experiments; small amounts of ADP were also observed in the experiments involving Ap4A and Ap6A. Hydrolysis was inhibited by fluoride ions in all cases. The mechanism of action and its inhibition in relation to ApnA were explored through the X-ray analysis of the crystals of the MsMutT1 complexes with Ap5A; Ap5A and MnCl2; Ap4A; ATP; and ATP.NaF.MgCl2. The aggregation pattern of molecules in the first four crystals is similar to that found in a majority of MsMutT1-NTP crystals. Substrate molecules occupy the primary binding site and ATP occupies a site at an intermolecular interface, in the first two. ATP occupies both the sites in the third and fourth crystal. The protein-ligand interactions observed in these crystal structures lead to an explanation of the molecular mechanism of hydrolysis of ApnA by MsMutT1. The fifth crystal exhibits a new packing arrangement. The structure of the complex provides an explanation for the fluoride inhibition of the activity of the enzyme. It would thus appear that MutT1 has a major role involving the hydrolysis of diadenosine polyphosphates, which could be elucidated at the molecular level.
Collapse
Affiliation(s)
- S M Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - U Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
20
|
Chandran AV, Jayanthi S, Vijayan M. Structure and interactions of RecA: plasticity revealed by molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:98-111. [PMID: 28049371 DOI: 10.1080/07391102.2016.1268975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from Mycobacterium tuberculosis, Mycobacterium smegmatis and Escherichia coli and their Adenosine triphosphate (ATP) complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural framework within which RecA molecules from different eubacteria function. Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the 'switch' residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins.
Collapse
Affiliation(s)
- Anu V Chandran
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - S Jayanthi
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - M Vijayan
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
21
|
Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K, Vijayan M. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. J Biosci 2015; 40:13-30. [PMID: 25740138 DOI: 10.1007/s12038-014-9497-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the 'switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.
Collapse
Affiliation(s)
- Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012
| | | | | | | | | | | |
Collapse
|
22
|
Santos SP, Mitchell EP, Franquelim HG, Castanho MARB, Abreu IA, Romão CV. Dps fromDeinococcus radiodurans: oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. FEBS J 2015; 282:4307-27. [DOI: 10.1111/febs.13420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/14/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Sandra P. Santos
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | | | - Henri G. Franquelim
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Portugal
| | | | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
23
|
Melekhov VV, Shvyreva US, Timchenko AA, Tutukina MN, Preobrazhenskaya EV, Burkova DV, Artiukhov VG, Ozoline ON, Antipov SS. Modes of Escherichia coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy. PLoS One 2015; 10:e0126504. [PMID: 25978038 PMCID: PMC4433220 DOI: 10.1371/journal.pone.0126504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.
Collapse
Affiliation(s)
- Vladislav V. Melekhov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Uliana S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander A. Timchenko
- Department of Physics of Nucleoproteids, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Maria N. Tutukina
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | | | - Diana V. Burkova
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Valiriy G. Artiukhov
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Olga N. Ozoline
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| | - Sergey S. Antipov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| |
Collapse
|
24
|
Hitchings MD, Townsend P, Pohl E, Facey PD, Jones DH, Dyson PJ, Del Sol R. A tale of tails: deciphering the contribution of terminal tails to the biochemical properties of two Dps proteins from Streptomyces coelicolor. Cell Mol Life Sci 2014; 71:4911-26. [PMID: 24915944 PMCID: PMC11113173 DOI: 10.1007/s00018-014-1658-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Dps proteins are members of an extensive family of proteins that oxidise and deposit iron in the form of ferric oxide, and are also able to bind DNA. Ferroxidation centres are formed at the interface of anti-parallel dimers, which further assemble into dodecameric nanocages with a hollow core where ferric oxide is deposited. Streptomyces coelicolor encodes three Dps-like proteins (DpsA, B and C). Despite sharing the conserved four-helix bundle organisation observed in members of the Dps family, they display significant differences in the length of terminal extensions, or tails. DpsA possess both N- and C-terminal tails of different lengths, and their removal affects quaternary structure assembly to varying degrees. DpsC quaternary structure, on the other hand, is heavily dependent on its N-terminal tail as its removal abolishes correct protein folding. Analysis of the crystal structure of dodecamers from both proteins revealed remarkable differences in the position of tails and interface surface area; and provides insight to explain the differences in biochemical behaviour observed while comparing DpsA and DpsC.
Collapse
Affiliation(s)
| | - Philip Townsend
- Department of Chemistry, School of Biological and Biomedical Sciences, University Science Laboratories, Durham University, South Road, Durham, DH1 3LE UK
| | - Ehmke Pohl
- Department of Chemistry, School of Biological and Biomedical Sciences, University Science Laboratories, Durham University, South Road, Durham, DH1 3LE UK
| | - Paul D. Facey
- College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - D. Hugh Jones
- College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Paul J. Dyson
- College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Ricardo Del Sol
- College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| |
Collapse
|
25
|
Selvaraj M, Govindan A, Seshadri A, Dubey B, Varshney U, Vijayan M. Molecular flexibility of Mycobacterium tuberculosis ribosome recycling factor and its functional consequences: an exploration involving mutants. J Biosci 2014; 38:845-55. [PMID: 24296887 DOI: 10.1007/s12038-013-9381-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal mobility of the two domain molecule of ribosome recycling factor (RRF) is known to be important for its action. Mycobacterium tuberculosis RRF does not complement E. coli for its deficiency of RRF (in the presence of E. coli EF-G alone). Crystal structure had revealed higher rigidity of the M. tuberculosis RRF due to the presence of additional salt bridges between domains. Two inter-domain salt bridges and one between the linker region and the domain containing C-terminal residues were disrupted by appropriate mutations. Except for a C-terminal deletion mutant, all mutants showed RRF activity in E. coli when M. tuberculosis EF-G was also co-expressed. The crystal structures of the point mutants, that of the C-terminal deletion mutant and that of the protein grown in the presence of a detergent, were determined. The increased mobility resulting from the disruption of the salt bridge involving the hinge region allows the appropriate mutant to weakly complement E. coli for its deficiency of RRF even in the absence of simultaneous expression of the mycobacterial EF-G. The loss of activity of the C-terminal deletion mutant appears to be partly due to the rigidification of the molecule consequent to changes in the hinge region.
Collapse
Affiliation(s)
- M Selvaraj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
26
|
Patra D, Mishra P, Surolia A, Vijayan M. Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis. Glycobiology 2014; 24:956-65. [DOI: 10.1093/glycob/cwu059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Williams SM, Chandran AV, Vijayabaskar MS, Roy S, Balaram H, Vishveshwara S, Vijayan M, Chatterji D. A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. J Biol Chem 2014; 289:11042-11058. [PMID: 24573673 PMCID: PMC4036245 DOI: 10.1074/jbc.m113.524421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.
Collapse
Affiliation(s)
| | - Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Mahalingam S Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom, and
| | - Sourav Roy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | | | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,; Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
28
|
Arif SM, Sang PB, Varshney U, Vijayan M. Crystallization and preliminary X-ray characterization of MutT2, MSMEG_5148 from Mycobacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2014; 70:190-2. [PMID: 24637753 PMCID: PMC3936434 DOI: 10.1107/s2053230x13033906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/15/2013] [Indexed: 11/10/2022] Open
Abstract
Crystallization of MutT2, MSMEG_5148 from Mycobacterium smegmatis, has been carried out and the crystals have been characterized using X-ray diffraction. Matthews coefficient calculation suggests the possibility of one protein molecule in the asymmetric unit of the orthorhombic unit cell, space group P2(1)2(1)2 or P2(1)22. Solution of the structure of the protein by molecular replacement using the known three-dimensional structure of a bacterial Nudix hydrolase is envisaged.
Collapse
Affiliation(s)
- S. M. Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - P. B. Sang
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - U. Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
29
|
Paul A, Mishra A, Surolia A, Vijayan M. Cloning, expression, purification, crystallization and preliminary X-ray studies of argininosuccinate lyase (Rv1659) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1422-4. [PMID: 24316845 PMCID: PMC3855735 DOI: 10.1107/s1744309113031138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022]
Abstract
The last enzyme in the arginine-biosynthesis pathway, argininosuccinate lyase, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized, and preliminary X-ray studies have been carried out on the crystals. The His-tagged tetrameric enzyme with a subunit molecular weight of 50.9 kDa crystallized with two tetramers in the asymmetric unit of the orthorhombic unit cell, space group P2(1)2(1)2(1). Molecular-replacement calculations and self-rotation calculations confirmed the space group and the tetrameric nature of the molecule.
Collapse
Affiliation(s)
- A. Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - A. Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - A. Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
30
|
Shu JC, Soo PC, Chen JC, Hsu SH, Chen LC, Chen CY, Liang SH, Buu LM, Chen CC. Differential regulation and activity against oxidative stress of Dps proteins in Bacillus cereus. Int J Med Microbiol 2013; 303:662-73. [DOI: 10.1016/j.ijmm.2013.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Facey PD, Hitchings MD, Williams JS, Skibinski DOF, Dyson PJ, Del Sol R. The evolution of an osmotically inducible dps in the genus Streptomyces. PLoS One 2013; 8:e60772. [PMID: 23560105 PMCID: PMC3613396 DOI: 10.1371/journal.pone.0060772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/02/2013] [Indexed: 11/25/2022] Open
Abstract
Dps proteins are found almost ubiquitously in bacterial genomes and there is now an appreciation of their multifaceted roles in various stress responses. Previous studies have shown that this family of proteins assemble into dodecamers and their quaternary structure is entirely critical to their function. Moreover, the numbers of dps genes per bacterial genome is variable; even amongst closely related species - however, for many genera this enigma is yet to be satisfactorily explained. We reconstruct the most probable evolutionary history of Dps in Streptomyces genomes. Typically, these bacteria encode for more than one Dps protein. We offer the explanation that variation in the number of dps per genome among closely related Streptomyces can be explained by gene duplication or lateral acquisition, and the former preceded a subsequent shift in expression patterns for one of the resultant paralogs. We show that the genome of S. coelicolor encodes for three Dps proteins including a tailless Dps. Our in vivo observations show that the tailless protein, unlike the other two Dps in S. coelicolor, does not readily oligomerise. Phylogenetic and bioinformatic analyses combined with expression studies indicate that in several Streptomyces species at least one Dps is significantly over-expressed during osmotic shock, but the identity of the ortholog varies. In silico analysis of dps promoter regions coupled with gene expression studies of duplicated dps genes shows that paralogous gene pairs are expressed differentially and this correlates with the presence of a sigB promoter. Lastly, we identify a rare novel clade of Dps and show that a representative of these proteins in S. coelicolor possesses a dodecameric quaternary structure of high stability.
Collapse
Affiliation(s)
- Paul D Facey
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 2013; 195:1970-8. [PMID: 23435977 DOI: 10.1128/jb.00059-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Collapse
|
33
|
Ardini M, Fiorillo A, Fittipaldi M, Stefanini S, Gatteschi D, Ilari A, Chiancone E. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1830:3745-55. [PMID: 23396000 DOI: 10.1016/j.bbagen.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. METHODS The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. RESULTS In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. CONCLUSIONS Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. GENERAL SIGNIFICANCE The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abhinav KV, Sharma A, Vijayan M. Identification of mycobacterial lectins from genomic data. Proteins 2012. [DOI: 10.1002/prot.24219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J Biosci 2012; 37:953-63. [DOI: 10.1007/s12038-012-9276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Arif SM, Patil AG, Varshney U, Vijayan M. Crystallization and preliminary X-ray studies of MutT1 (MSMEG_2390) from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1214-6. [PMID: 23027750 PMCID: PMC3497982 DOI: 10.1107/s1744309112035804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022]
Abstract
MutT1 (MSMEG_2390) from Mycobacterium smegmatis has been crystallized and the crystals have been characterized using X-ray diffraction. The crystals belonged to space group P2(1)2(1)2(1). The Matthews coefficient suggested the possibility of one protein molecule in the asymmetric unit of the orthorhombic unit cell. Solution of the structure using the known three-dimensional structure of a bacterial MutT1 is anticipated.
Collapse
Affiliation(s)
- S. M. Arif
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - A. G. Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - U. Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
37
|
Ping L, Platzer M, Wen G, Delaroque N. Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis. ScientificWorldJournal 2012; 2012:504905. [PMID: 22454608 PMCID: PMC3289904 DOI: 10.1100/2012/504905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/14/2011] [Indexed: 11/17/2022] Open
Abstract
A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell) but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.
Collapse
Affiliation(s)
- Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
38
|
Chetnani B, Kumar P, Abhinav KV, Chhibber M, Surolia A, Vijayan M. Location and conformation of pantothenate and its derivatives in Mycobacterium tuberculosis pantothenate kinase: insights into enzyme action. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:774-83. [PMID: 21904030 DOI: 10.1107/s0907444911024462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/22/2011] [Indexed: 11/10/2022]
Abstract
Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and nonhydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.
Collapse
Affiliation(s)
- Bhaskar Chetnani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | | | | | | | | | |
Collapse
|
39
|
Patra D, Sharma A, Chandran D, Vijayan M. Cloning, expression, purification, crystallization and preliminary X-ray studies of the mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:596-9. [PMID: 21543870 PMCID: PMC3087649 DOI: 10.1107/s1744309111009547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 03/13/2011] [Indexed: 11/10/2022]
Abstract
The mannose-binding lectin domain of MSMEG_3662 from Mycobacterium smegmatis has been cloned, expressed, purified and crystallized and the crystals have been characterized using X-ray diffraction. The Matthews coefficient suggests the possibility of two lectin domains in the triclinic cell. The amino-acid sequence of the domain indicates structural similarity to well characterized β-prism II fold lectins.
Collapse
Affiliation(s)
- Dhabaleswar Patra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Alok Sharma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Divya Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
40
|
Khare G, Gupta V, Nangpal P, Gupta RK, Sauter NK, Tyagi AK. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity. PLoS One 2011; 6:e18570. [PMID: 21494619 PMCID: PMC3072985 DOI: 10.1371/journal.pone.0018570] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
Ferritins are recognized as key players in the iron storage and detoxification processes. Iron acquisition in the case of pathogenic bacteria has long been established as an important virulence mechanism. Here, we report a 3.0 Å crystal structure of a ferritin, annotated as Bacterioferritin B (BfrB), from Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis that continues to be one of the world's deadliest diseases. Similar to the other members of ferritin family, the Mtb BfrB subunit exhibits the characteristic fold of a four-helical bundle that possesses the ferroxidase catalytic centre. We compare the structure of Mtb BfrB with representatives of the ferritin family belonging to the archaea, eubacteria and eukarya. Unlike most other ferritins, Mtb BfrB has an extended C-terminus. To dissect the role of this extended C-terminus, truncated Mtb BfrB was purified and biochemical studies implicate this region in ferroxidase activity and iron release in addition to providing stability to the protein. Functionally important regions in a protein of known 3D-structure can be determined by estimating the degree of conservation of the amino-acid sites with its close homologues. Based on the comparative studies, we identify the slowly evolving conserved sites as well as the rapidly evolving variable sites and analyze their role in relation to structure and function of Mtb BfrB. Further, electrostatic computations demonstrate that although the electrostatic environment of catalytic residues is preserved within the family, extensive variability is exhibited by residues defining the channels and pores, in all likelihood keeping up with the diverse functions executed by these ferritins in varied environments.
Collapse
Affiliation(s)
- Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prachi Nangpal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Nicholas K. Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
41
|
Ghatak P, Karmakar K, Kasetty S, Chatterji D. Unveiling the role of Dps in the organization of mycobacterial nucleoid. PLoS One 2011; 6:e16019. [PMID: 21283627 PMCID: PMC3026007 DOI: 10.1371/journal.pone.0016019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/03/2010] [Indexed: 02/03/2023] Open
Abstract
In order to preserve genetic information in stress conditions, bacterial DNA is organized into higher order nucleoid structure. In this paper, with the help of Atomic Force Microscopy, we show the different structural changes in mycobacterial nucleoid at different points of growth in the presence of different concentrations of glucose in the medium. We also observe that in Mycobacterium smegmatis, two different Dps proteins (Dps1 and Dps2) promote two types of nucleoid organizations. At the late stationary phase, under low glucose availability, Dps1 binds to DNA to form a very stable toroid structure. On the other hand, under the same condition, Dps2-DNA complex forms an incompletely condensed toroid and finally forms a further stable coral reef structure in the presence of RNA. This coral reef structure is stable in high concentration of bivalent ion like Mg2+.
Collapse
Affiliation(s)
- Payel Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
42
|
Chandran AV, Prabu JR, Manjunath GP, Patil KN, Muniyappa K, Vijayan M. Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1093-5. [PMID: 20823535 PMCID: PMC2935236 DOI: 10.1107/s174430911003068x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/01/2010] [Indexed: 11/10/2022]
Abstract
The C-terminal domain of Mycobacterium tuberculosis LexA has been crystallized in two different forms. The form 1 and form 2 crystals belonged to space groups P3(1)21 and P3(1), respectively. Form 1 contains one domain in the asymmetric unit, while form 2 contains six crystallographically independent domains. The structures have been solved by molecular replacement.
Collapse
Affiliation(s)
- Anu V. Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - J. Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - G. P. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Chetnani B, Kumar P, Surolia A, Vijayan M. M. tuberculosis pantothenate kinase: dual substrate specificity and unusual changes in ligand locations. J Mol Biol 2010; 400:171-85. [PMID: 20451532 DOI: 10.1016/j.jmb.2010.04.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 12/19/2022]
Abstract
Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action, observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometry of the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity.
Collapse
Affiliation(s)
- Bhaskar Chetnani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
44
|
Chowdhury RP, Saraswathi R, Chatterji D. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. IUBMB Life 2010; 62:67-77. [PMID: 20014234 DOI: 10.1002/iub.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Collapse
|
45
|
Chiancone E, Ceci P. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta Gen Subj 2010; 1800:798-805. [PMID: 20138126 DOI: 10.1016/j.bbagen.2010.01.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND The widely expressed Dps proteins, so named after the DNA-binding properties of the first characterized member of the family in Escherichia coli, are considered major players in the bacterial response to stress. SCOPE OF REVIEW The review describes the distinctive features of the "ferritin-like" ferroxidation reaction, which uses hydrogen peroxide as physiological iron oxidant and therefore permits the concomitant removal of the two reactants that give rise to hydroxyl radicals via Fenton chemistry. It also illustrates the structural elements identified to date that render the interaction of some Dps proteins with DNA possible and outlines briefly the significance of Dps-DNA complex formation and of the Dps interaction with other DNA-binding proteins in relation to the organization of the nucleoid and microbial survival. GENERAL SIGNIFICANCE Understanding in molecular terms the distinctive role of Dps proteins in bacterial resistance to general and specific stress conditions. MAJOR CONCLUSIONS The state of the art is that the response to oxidative and peroxide-mediated stress is mediated directly by Dps proteins via their ferritin-like activity. In contrast, the response to other stress conditions derives from the concerted interplay of diverse interactions that Dps proteins may establish with DNA and with other DNA-binding proteins.
Collapse
Affiliation(s)
- Emilia Chiancone
- Department of Biochemical Sciences 'A. Rossi Fanelli', "Sapienza" University of Rome, Rome, Italy.
| | | |
Collapse
|
46
|
Saraswathi R, Pait Chowdhury R, Williams SM, Ghatak P, Chatterji D. The mycobacterial MsDps2 protein is a nucleoid-forming DNA binding protein regulated by sigma factors sigma and sigma. PLoS One 2009; 4:e8017. [PMID: 19956571 PMCID: PMC2779847 DOI: 10.1371/journal.pone.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.
Collapse
Affiliation(s)
| | | | | | - Payel Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
47
|
Facey PD, Hitchings MD, Saavedra-Garcia P, Fernandez-Martinez L, Dyson PJ, Del Sol R. Streptomyces coelicolor Dps-like proteins: differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Mol Microbiol 2009; 73:1186-202. [PMID: 19719512 DOI: 10.1111/j.1365-2958.2009.06848.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Dps protein, a member of the ferritin family, contributes to DNA protection during oxidative stress and plays a central role in nucleoid condensation during stationary phase in unicellular eubacteria. Genome searches revealed the presence of three Dps-like orthologues within the genome of the Gram-positive bacterium Streptomyces coelicolor. Disruption of the S. coelicolor dpsA, dpsB and dpsC genes resulted in irregular condensation of spore nucleoids in a gene-specific manner. These irregularities are correlated with changes to the spacing between sporulation septa. This is the first example of these proteins playing a role in bacterial cell division. Translational fusions provided evidence for both developmental control of DpsA and DpsC expression and their localization to sporogenic compartments of aerial hyphae. In addition, various stress conditions induced expression of the Dps proteins in a stimulus-dependent manner in vegetative hyphae, suggesting stress-induced, protein-specific protective functions in addition to their role during reproductive cell division. Unlike in other bacteria, the S. coelicolor Dps proteins are not induced in response to oxidative stress.
Collapse
Affiliation(s)
- P D Facey
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, UK
| | | | | | | | | | | |
Collapse
|
48
|
Fan R, Boyle AL, Cheong VV, Ng SL, Orner BP. A Helix Swapping Study of Two Protein Cages. Biochemistry 2009; 48:5623-30. [DOI: 10.1021/bi900387t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rongli Fan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Aimee L. Boyle
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Vee Vee Cheong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore 637371
| | - Brendan P. Orner
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|