1
|
Kohnehrouz BB, Ehsasatvatan M. Redesigning amino/carboxyl ends of DARPin G3 for high thermostability and production in tobacco transplastomic plants. PLANT CELL REPORTS 2024; 43:210. [PMID: 39126530 DOI: 10.1007/s00299-024-03307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.
Collapse
Affiliation(s)
- Bahram Baghban Kohnehrouz
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| | - Maryam Ehsasatvatan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| |
Collapse
|
2
|
Majumder S, Srivastava M, Alam P, Saha S, Kumari R, Chand AK, Asthana S, Sen S, Maiti TK. Hotspot site microenvironment in the deubiquitinase OTUB1 drives its stability and aggregation. J Biol Chem 2024; 300:107315. [PMID: 38663827 PMCID: PMC11154711 DOI: 10.1016/j.jbc.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.
Collapse
Affiliation(s)
- Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
3
|
Wang X, Ma S, Bai Y, Wu X, Ji F, Jia L. AQP4-DARPin1: A Chimeric Antigen Based on Scaffold Protein DARPin for Efficient Detection of AQP4-IgG in NMOSD. Biochemistry 2024; 63:855-864. [PMID: 38498694 DOI: 10.1021/acs.biochem.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.
Collapse
Affiliation(s)
- Xiaofei Wang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shubei Ma
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116000, P. R. China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian 116021, P. R. China
| | - Xinyang Wu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
4
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
5
|
Martinez Grundman JE, Johnson EA, Lecomte JTJ. Architectural digest: Thermodynamic stability and domain structure of a consensus monomeric globin. Biophys J 2023; 122:3117-3132. [PMID: 37353934 PMCID: PMC10432219 DOI: 10.1016/j.bpj.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Artificial proteins representing the consensus of a set of homologous sequences have attracted attention for their increased thermodynamic stability and conserved activity. Here, we applied the consensus approach to a b-type heme-binding protein to inspect the contribution of a dissociable cofactor to enhanced stability and the chemical consequences of creating a generic heme environment. We targeted the group 1 truncated hemoglobin (TrHb1) subfamily of proteins for their small size (∼120 residues) and ease of characterization. The primary structure, derived from a curated set of ∼300 representative sequences, yielded a highly soluble consensus globin (cGlbN) enriched in acidic residues. Optical and NMR spectroscopies revealed high-affinity heme binding in the expected site and in two orientations. At neutral pH, proximal and distal iron coordination was achieved with a pair of histidine residues, as observed in some natural TrHb1s, and with labile ligation on the distal side. As opposed to studied TrHb1s, which undergo additional folding upon heme binding, cGlbN displayed the same extent of secondary structure whether the heme was associated with the protein or not. Denaturation required guanidine hydrochloride and showed that apo- and holoprotein unfolded in two transitions-the first (occurring with a midpoint of ∼2 M) was shifted to higher denaturant concentration in the holoprotein (∼3.7 M) and reflected stabilization due to heme binding, while the second transition (∼6.2 M) was common to both forms. Thus, the consensus sequence stabilized the protein but exposed the existence of two separately cooperative subdomains within the globin architecture, masked as one single domain in TrHb1s with typical stabilities. The results suggested ways in which specific chemical or thermodynamic features may be controlled in artificial heme proteins.
Collapse
Affiliation(s)
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
6
|
Kulmala A, Lappalainen M, Lamminmäki U, Huovinen T. Synonymous Codons and Hydrophobicity Optimization of Post-translational Signal Peptide PelB Increase Phage Display Efficiency of DARPins. ACS Synth Biol 2022; 11:3174-3181. [PMID: 36178799 PMCID: PMC9594773 DOI: 10.1021/acssynbio.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DsbA leader peptide targets proteins for cotranslational translocation by signal recognition particle (SRP) pathway and has been the standard signal sequence for filamentous phage display of fast-folding Designed Ankyrin Repeat Proteins (DARPins). In contrast, translocation of DARPins via the post-translational pathway, for example, with the commonly used PelB leader, has been reported to be highly inefficient. In this study, two PelB signal sequence libraries were screened covering different regions of the leader peptide for identifying mutants with improved display of DARPins on phage. A PelB variant with the most favorable combination of synonymous mutations in the n-region and hydrophobic substitutions in the h-region increased the display efficiency of a DARPin library 44- and 12-fold compared to PelBWT and DsbA, respectively. Based on thioredoxin-1 (TrxA) export studies the triple valine mutant PelB DN5 V3 leader was capable of more efficient cotranslational translocation than PelBWT, but the overall display efficiency improvement over DsbA suggests that besides increased cotranslational translocation other factors contribute to the observed enhancement in DARPin display efficiency.
Collapse
Affiliation(s)
- Antti Kulmala
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Matias Lappalainen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Urpo Lamminmäki
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Tuomas Huovinen
- Department
of Life Technologies, University of Turku Kiinamyllynkatu 10, 20520 Turku, Finland,
| |
Collapse
|
7
|
Abstract
Repeat proteins are made with tandem copies of similar amino acid stretches that fold into elongated architectures. These proteins constitute excellent model systems to investigate how evolution relates to structure, folding, and function. Here, we propose a scheme to map evolutionary information at the sequence level to a coarse-grained model for repeat-protein folding and use it to investigate the folding of thousands of repeat proteins. We model the energetics by a combination of an inverse Potts-model scheme with an explicit mechanistic model of duplications and deletions of repeats to calculate the evolutionary parameters of the system at the single-residue level. These parameters are used to inform an Ising-like model that allows for the generation of folding curves, apparent domain emergence, and occupation of intermediate states that are highly compatible with experimental data in specific case studies. We analyzed the folding of thousands of natural Ankyrin repeat proteins and found that a multiplicity of folding mechanisms are possible. Fully cooperative all-or-none transitions are obtained for arrays with enough sequence-similar elements and strong interactions between them, while noncooperative element-by-element intermittent folding arose if the elements are dissimilar and the interactions between them are energetically weak. Additionally, we characterized nucleation-propagation and multidomain folding mechanisms. We show that the global stability and cooperativity of the repeating arrays can be predicted from simple sequence scores.
Collapse
|
8
|
Siegel PM, Przewosnik AS, Wrobel J, Heidt T, Moser M, Peter K, Bode C, Diehl P, Bojti I. An activation specific anti-Mac-1 designed ankyrin repeat protein improves survival in a mouse model of acute lung injury. Sci Rep 2022; 12:6296. [PMID: 35428807 PMCID: PMC9012056 DOI: 10.1038/s41598-022-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition. The number of ARDS cases has risen dramatically recently but specific treatment options are limited. ARDS is associated with an overshooting inflammatory response and neutrophils play a central role in its pathogenesis. Neutrophils express the integrin Mac-1 on their surface which adopts a resting and activated conformation depending on leukocyte activation. The aim of this study was to investigate the anti-inflammatory effects of the unique activation-specific anti-Mac-1 DARPin 'F7' in a mouse model of ARDS. ARDS was induced by intratracheal lipopolysaccharide (LPS) instillation and the acute (day 1-4) and chronic phase (day 5-10) were studied. After expression and purification, F7, a control DARPin and PBS, were applied daily via the intraperitoneal route. Survival and weight loss were recorded. Histological analysis of lung sections, flow cytometric leukocyte analysis of blood and bronchioalveolar lavage (BALF) were performed. Moreover, protein concentration and cytokine levels were determined in the BALF. Treatment with F7 improved survival and reduced weight loss significantly compared to treatment with the control DARPin or PBS. Neutrophil count in the BALF and peripheral blood were significantly reduced in mice treated with F7. Histology revealed significantly reduced pulmonary inflammation in the F7 treated group. Treatment with DARPin F7 inhibited neutrophil accumulation, reduced signs of local and systemic inflammation and improved survival in a mouse model of ARDS. F7 may be a novel anti-inflammatory drug candidate for the treatment of severe ARDS.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Anne-Sophie Przewosnik
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jan Wrobel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - István Bojti
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022. [PMID: 35258937 DOI: 10.1101/2021.03.27.437344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Pamela J E Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
10
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022; 16:3895-3905. [PMID: 35258937 PMCID: PMC8944806 DOI: 10.1021/acsnano.1c09162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rohan S. Eapen
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Albert Perez-Riba
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Pamela J. E. Rowling
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene
Center Munich, Ludwig-Maximilians-Universität
München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
11
|
Thermostable designed ankyrin repeat proteins (DARPins) as building blocks for innovative drugs. J Biol Chem 2021; 298:101403. [PMID: 34793836 PMCID: PMC8683736 DOI: 10.1016/j.jbc.2021.101403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.
Collapse
|
12
|
Becker L, Singh Badwal J, Brandl F, Verdurmen WPR, Plückthun A. Thermodynamic Stability Is a Strong Predictor for the Delivery of DARPins to the Cytosol via Anthrax Toxin. Pharmaceutics 2021; 13:pharmaceutics13081285. [PMID: 34452246 PMCID: PMC8401532 DOI: 10.3390/pharmaceutics13081285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxin has evolved to translocate its toxic cargo proteins to the cytosol of cells carrying its cognate receptor. Cargo molecules need to unfold to penetrate the narrow pore formed by its membrane-spanning subunit, protective antigen (PA). Various alternative cargo molecules have previously been tested, with some showing only limited translocation efficiency, and it may be assumed that these were too stable to be unfolded before passing through the anthrax pore. In this study, we systematically and quantitatively analyzed the correlation between the translocation of various designed ankyrin repeat proteins (DARPins) and their different sizes and thermodynamic stabilities. To measure cytosolic uptake, we used biotinylation of the cargo by cytosolic BirA, and we measured cargo equilibrium stability via denaturant-induced unfolding, monitored by circular dichroism (CD). Most of the tested DARPin cargoes, including target-binding ones, were translocated to the cytosol. Those DARPins, which remained trapped in the endosome, were confirmed by CD to show a high equilibrium stability. We could pinpoint a stability threshold up to which cargo DARPins still get translocated to the cytosol. These experiments have outlined the requirements for translocatable binding proteins, relevant stability measurements to assess translocatable candidates, and guidelines to further engineer this property if needed.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Jasleen Singh Badwal
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Fabian Brandl
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands;
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland; (L.B.); (J.S.B.); (F.B.)
- Correspondence:
| |
Collapse
|
13
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
14
|
Nemergut M, Škrabana R, Berta M, Plückthun A, Sedlák E. Purification of MBP fusion proteins using engineered DARPin affinity matrix. Int J Biol Macromol 2021; 187:105-112. [PMID: 34298044 DOI: 10.1016/j.ijbiomac.2021.07.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/20/2021] [Accepted: 07/18/2021] [Indexed: 11/15/2022]
Abstract
Maltose binding protein (MBP) has a long history as an expression tag with the ability to increase the solubility of fused proteins. A critical step for obtaining a sufficient amount of the MBP fusion protein is purification. Commercially available amylose matrix for the affinity purification of MBP fusion proteins has two main issues: (i) low (micromolar) affinity and (ii) the limited number of uses due to the cleavage of polysaccharide matrix by the amylases, present in the crude cell extract. Here, we present a new affinity purification approach based on the protein-protein interaction. We developed the affinity matrix which contains immobilized Designed Ankyrin Repeat Protein off7 (DARPin off7) - previously identified MBP binder with nanomolar affinity. The functionality of the DARPin affinity matrix was tested on the purification of MBP-tagged green fluorescent protein and flavodoxin. The affinity purification of the MBP fusion proteins, based on the MBP-DARPin off7 interaction, enables the purification of the fusion proteins in a simple two-steps procedure. The DARPin affinity matrix - easy to construct, resistant to amylase, insensitive to maltose contamination, and reusable for multiple purification cycles - provides an alternative approach to commercially available affinity matrices for purification of proteins containing the MBP tag.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, Technology and Innovation Park of P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia; Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park of P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
15
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
16
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
17
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
18
|
Siegel PM, Bojti I, Bassler N, Holien J, Flierl U, Wang X, Waggershauser P, Tonnar X, Vedecnik C, Lamprecht C, Stankova I, Li T, Helbing T, Wolf D, Anto-Michel N, Mitre LS, Ehrlich J, Orlean L, Bender I, Przewosnik A, Mauler M, Hollederer L, Moser M, Bode C, Parker MW, Peter K, Diehl P. A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction. Basic Res Cardiol 2021; 116:17. [PMID: 33721106 PMCID: PMC7960600 DOI: 10.1007/s00395-021-00849-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
The monocyte β2-integrin Mac-1 is crucial for leukocyte–endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte–endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.
Collapse
Affiliation(s)
- Patrick M Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicole Bassler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Ulrike Flierl
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Philipp Waggershauser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Tonnar
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Lamprecht
- BIOSS Centre for Biological Signalling Studies/Synthetic Biology of Signalling Processes, University of Freiburg, Freiburg, Germany
| | - Ivana Stankova
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tian Li
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Helbing
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Ehrlich
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Przewosnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Hollederer
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia. .,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia. .,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Abstract
Cooperativity is a hallmark of protein folding, but the thermodynamic origins of cooperativity are difficult to quantify. Tandem repeat proteins provide a unique experimental system to quantify cooperativity due to their internal symmetry and their tolerance of deletion, extension, and in some cases fragmentation into single repeats. Analysis of repeat proteins of different lengths with nearest-neighbor Ising models provides values for repeat folding ([Formula: see text]) and inter-repeat coupling (ΔGi-1,i). In this article, we review the architecture of repeat proteins and classify them in terms of ΔGi and ΔGi-1,i; this classification scheme groups repeat proteins according to their degree of cooperativity. We then present various statistical thermodynamic models, based on the 1D-Ising model, for analysis of different classes of repeat proteins. We use these models to analyze data for highly and moderately cooperative and noncooperative repeat proteins and relate their fitted parameters to overall structural features.
Collapse
Affiliation(s)
- Mark Petersen
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.,T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
20
|
Simeon RA, Zeng Y, Chonira V, Aguirre AM, Lasagna M, Baloh M, Sorg JA, Tommos C, Chen Z. Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel 2021; 34:gzab028. [PMID: 34882774 PMCID: PMC8861517 DOI: 10.1093/protein/gzab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.
Collapse
Affiliation(s)
- Rudo A Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | | | - Mauricio Lasagna
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Marko Baloh
- Department of Biology, Texas A&M University, 424 Nagle St, College Station, TX 77840, USA
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, 424 Nagle St, College Station, TX 77840, USA
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
21
|
Patasic L, Seifried J, Bezler V, Kaljanac M, Schneider IC, Schmitz H, Tondera C, Hartmann J, Hombach A, Buchholz CJ, Abken H, König R, Cichutek K. Designed Ankyrin Repeat Protein (DARPin) to target chimeric antigen receptor (CAR)-redirected T cells towards CD4 + T cells to reduce the latent HIV + cell reservoir. Med Microbiol Immunol 2020; 209:681-691. [PMID: 32918599 PMCID: PMC7568711 DOI: 10.1007/s00430-020-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/19/2020] [Indexed: 10/25/2022]
Abstract
Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.
Collapse
Affiliation(s)
- Lea Patasic
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
- Department for Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany.
| | - Valerie Bezler
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Marcell Kaljanac
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Irene C Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Heike Schmitz
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Hombach
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research (DZIF), Langen, Germany
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Klaus Cichutek
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.
- German Center for Infection Research (DZIF), Langen, Germany.
| |
Collapse
|
22
|
Marold JD, Sforza K, Geiger-Schuller K, Aksel T, Klein S, Petersen M, Poliakova-Georgantas E, Barrick D. A collection of programs for one-dimensional Ising analysis of linear repeat proteins with point substitutions. Protein Sci 2020; 30:168-186. [PMID: 33058322 DOI: 10.1002/pro.3977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/06/2022]
Abstract
A collection of programs is presented to analyze the thermodynamics of folding of linear repeat proteins using a 1D Ising model to determine intrinsic folding and interfacial coupling free energies. Expressions for folding transitions are generated for a series of constructs with different repeat numbers and are globally fitted to transitions for these constructs. These programs are designed to analyze Ising parameters for capped homopolymeric consensus repeat constructs as well as heteropolymeric constructs that contain point substitutions, providing a rigorous framework for analysis of the effects of mutation on intrinsic and directional (i.e., N- vs. C-terminal) interfacial coupling free-energies. A bootstrap analysis is provided to estimate parameter uncertainty as well as correlations among fitted parameters. Rigorous statistical analysis is essential for interpreting fits using the complex models required for Ising analysis of repeat proteins, especially heteropolymeric repeat proteins. Programs described here are available at https://github.com/barricklab-at-jhu/Ising_programs.
Collapse
Affiliation(s)
- Jacob D Marold
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin Sforza
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,US District Court for the District of Delaware, 844 N. King Street, Wilmington, Delaware, USA
| | - Kathryn Geiger-Schuller
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
| | - Tural Aksel
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Cellular and Molecular Pharmacology, University of California, 600 16th Street, San Francisco, California, 94143, USA
| | - Sean Klein
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,US Department of Health and Human Services, 200 Independence Ave. SW, Washington, District of Columbia, 20201, USA
| | - Mark Petersen
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ekaterina Poliakova-Georgantas
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,University of Maryland, College Park, Maryland, 20742, USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Hussain RM, Weng CY, Wykoff CC, Gandhi RA, Hariprasad SM. Abicipar pegol for neovascular age-related macular degeneration. Expert Opin Biol Ther 2020; 20:999-1008. [DOI: 10.1080/14712598.2020.1782379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Christina Y. Weng
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Charles C. Wykoff
- Retina Consultants of Houston, Blanton Eye Institute, Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, USA
| | | | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol 2020; 3:342. [PMID: 32620833 PMCID: PMC7335062 DOI: 10.1038/s42003-020-1072-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules. To develop a bacterial secretion system for cytosolic delivery of therapeutic macromolecules, Chabloz et al. improve an “effectorless” Salmonella strain and combine it with a plasmid modified to boost the secretion of proteins of interest. With this system, they demonstrate efficient translocation of functional DARPins and monobodies into the cytosol of different eukaryotic cells lines and successfully block the paradigmatic RAS pathway.
Collapse
|
25
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
26
|
Ferro Desideri L, Traverso CE, Nicolò M. Abicipar pegol: an investigational anti-VEGF agent for the treatment of wet age-related macular degeneration. Expert Opin Investig Drugs 2020; 29:651-658. [PMID: 32479126 DOI: 10.1080/13543784.2020.1772754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Several approaches have been investigated for the management of wet age-related macular degeneration (w-AMD); however, the first-line treatment option for w-AMD currently constitutes anti-VEGF agents. Abicipar pegol is a designed ankyrin repeat protein (DARPin), a novel, promising anti-VEGF agent for the treatment of w-AMD and is reviewed in this article. AREAS COVERED We discuss the pharmacokinetic, pharmacodynamic, clinical, and tolerability profile revealed by phase II REACH, CYPRESS, and BAMBOO and phase III CEDAR and SEQUOIA Trials. These two latter phase III trials revealed the non-inferiority of abicipar pegol administered with a bimonthly and quarterly regimen when compared with monthly ranibizumab. EXPERT OPINION Abicipar pegol has been proven to be an emerging, promising anti-VEGF agent in the management of w-AMD. The possibility of adopting a quarterly regimen would allow a decrease in treatment burden and improve patient compliance; however, further larger-scale studies should better characterize abicipar pegol clinical efficacy over longer follow-up periods.
Collapse
Affiliation(s)
| | - Carlo Enrico Traverso
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa , Genoa, Italy
| | - Massimo Nicolò
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa , Genoa, Italy.,Macula Onlus Foundation , Genoa, Italy
| |
Collapse
|
27
|
Knoff DS, Szczublewski H, Altamirano D, Cortes KAF, Kim M. Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity. Macromolecules 2020; 53:3464-3471. [PMID: 32601508 PMCID: PMC7323958 DOI: 10.1021/acs.macromol.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reducing topological network defects to enhance elasticity in polymeric materials remains a grand challenge. Efforts to control network topology, primarily focused on crosslinking junctions, continue to underperform compared to theoretical estimations from idealized networks using affine and phantom network theories. Here, artificial protein technology was adapted for the design of polymer-network hydrogels with precisely defined coil-like and rod-like strands to observe the impact of strand rigidity on the mechanical properties of polymeric materials. Cytoskeleton-inspired polymer-network hydrogels incorporated with rod-like protein strands nearly tripled the gel shear elastic modulus and relaxation time compared to coil-like protein strands, indicating an enhanced effective crosslinking density. Furthermore, asymmetric rod-coil protein designs in network strands with an optimal rod:coil ratio improved the hydrogel relaxation time, enhancing the stability of physical macromolecular associations by modulating crosslinker mobility. The careful design of strand rigidity presents a new direction to reduce topological defects for optimizing polymeric materials.
Collapse
Affiliation(s)
- David S. Knoff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | - Haley Szczublewski
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | - Dallas Altamirano
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
| | | | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
28
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
29
|
Gupta S, Kakkar V. DARPin based GMR Biosensor for the detection of ESAT-6 Tuberculosis Protein. Tuberculosis (Edinb) 2019; 118:101852. [DOI: 10.1016/j.tube.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
|
30
|
Li Q, Scholl ZN, Marszalek PE. Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase. Biophys J 2019; 115:46-58. [PMID: 29972811 DOI: 10.1016/j.bpj.2018.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/31/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphoglycerate kinase (PGK) is a highly conserved enzyme that is crucial for glycolysis. PGK is a monomeric protein composed of two similar domains and has been the focus of many studies for investigating interdomain interactions within the native state and during folding. Previous studies used traditional biophysical methods (such as circular dichroism, tryptophan fluorescence, and NMR) to measure signals over a large ensemble of molecules, which made it difficult to observe transient changes in stability or structure during unfolding and refolding of single molecules. Here, we unfold single molecules of PGK using atomic force spectroscopy and steered molecular dynamic computer simulations to examine the conformational dynamics of PGK during its unfolding process. Our results show that after the initial forced separation of its domains, yeast PGK (yPGK) does not follow a single mechanical unfolding pathway; instead, it stochastically follows two distinct pathways: unfolding from the N-terminal domain or unfolding from the C-terminal domain. The truncated yPGK N-terminal domain unfolds via a transient intermediate, whereas the structurally similar isolated C-terminal domain has no detectable intermediates throughout its mechanical unfolding process. The N-terminal domain in the full-length yPGK displays a strong unfolding intermediate 13% of the time, whereas the truncated domain (yPGKNT) transitions through the intermediate 81% of the time. This effect indicates that the mechanical properties of yPGK cannot be simply deduced from the mechanical properties of its constituents. We also find that Escherichia coli PGK is significantly less mechanically stable as compared to yPGK, contrary to bulk unfolding measurements. Our results support the growing body of observations that the folding behavior of multidomain proteins is difficult to predict based solely on the studies of isolated domains.
Collapse
Affiliation(s)
- Qing Li
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Zackary N Scholl
- Program in Computational Biology and Bioinformatics, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
31
|
Targeted delivery and endosomal cellular uptake of DARPin-siRNA bioconjugates: Influence of linker stability on gene silencing. Eur J Pharm Biopharm 2019; 141:37-50. [DOI: 10.1016/j.ejpb.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
|
32
|
Perez-Riba A, Lowe AR, Main ERG, Itzhaki LS. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins. Biophys J 2019; 114:2552-2562. [PMID: 29874606 PMCID: PMC6129472 DOI: 10.1016/j.bpj.2018.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Consensus-designed tetratricopeptide repeat proteins are highly stable, modular proteins that are strikingly amenable to rational engineering. They therefore have tremendous potential as building blocks for biomaterials and biomedicine. Here, we explore the possibility of extending the loops between repeats to enable further diversification, and we investigate how this modification affects stability and folding cooperativity. We find that extending a single loop by up to 25 residues does not disrupt the overall protein structure, but, strikingly, the effect on stability is highly context-dependent: in a two-repeat array, destabilization is relatively small and can be accounted for purely in entropic terms, whereas extending a loop in the middle of a large array is much more costly because of weakening of the interaction between the repeats. Our findings provide important and, to our knowledge, new insights that increase our understanding of the structure, folding, and function of natural repeat proteins and the design of artificial repeat proteins in biotechnology.
Collapse
Affiliation(s)
- Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Alan R Lowe
- London Centre for Nanotechnology, London, United Kingdom; Structural & Molecular Biology, University College London, London, United Kingdom; Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
33
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
34
|
Lowe AR, Perez-Riba A, Itzhaki LS, Main ERG. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins. Biophys J 2019; 114:516-521. [PMID: 29414697 DOI: 10.1016/j.bpj.2017.11.3779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/25/2022] Open
Abstract
For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams.
Collapse
Affiliation(s)
- Alan R Lowe
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom.
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
35
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
36
|
Rodrigues GA, Mason M, Christie LA, Hansen C, Hernandez LM, Burke J, Luhrs KA, Hohman TC. Functional Characterization of Abicipar-Pegol, an Anti-VEGF DARPin Therapeutic That Potently Inhibits Angiogenesis and Vascular Permeability. ACTA ACUST UNITED AC 2018; 59:5836-5846. [DOI: 10.1167/iovs.18-25307] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | | | | | | | | | - James Burke
- Allergan plc, Irvine, California, United States
| | | | | |
Collapse
|
37
|
ElGamacy M, Coles M, Ernst P, Zhu H, Hartmann MD, Plückthun A, Lupas AN. An Interface-Driven Design Strategy Yields a Novel, Corrugated Protein Architecture. ACS Synth Biol 2018; 7:2226-2235. [PMID: 30148951 DOI: 10.1021/acssynbio.8b00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing proteins with novel folds remains a major challenge, as the biophysical properties of the target fold are not known a priori and no sequence profile exists to describe its features. Therefore, most computational design efforts so far have been directed toward creating proteins that recapitulate existing folds. Here we present a strategy centered upon the design of novel intramolecular interfaces that enables the construction of a target fold from a set of starting fragments. This strategy effectively reduces the amount of computational sampling necessary to achieve an optimal sequence, without compromising the level of topological control. The solenoid architecture has been a target of extensive protein design efforts, as it provides a highly modular platform of low topological complexity. However, none of the previous efforts have attempted to depart from the natural form, which is characterized by a uniformly handed superhelical architecture. Here we aimed to design a more complex platform, abolishing the superhelicity by introducing internally alternating handedness, resulting in a novel, corrugated architecture. We employed our interface-driven strategy, designing three proteins and confirming the design by solving the structure of two examples.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Patrick Ernst
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Hongbo Zhu
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Marcus D. Hartmann
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrei N. Lupas
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions. Proc Natl Acad Sci U S A 2018; 115:7539-7544. [PMID: 29959204 DOI: 10.1073/pnas.1800283115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Designed helical repeats (DHRs) are modular helix-loop-helix-loop protein structures that are tandemly repeated to form a superhelical array. Structures combining tandem DHRs demonstrate a wide range of molecular geometries, many of which are not observed in nature. Understanding cooperativity of DHR proteins provides insight into the molecular origins of Rosetta-based protein design hyperstability and facilitates comparison of energy distributions in artificial and naturally occurring protein folds. Here, we use a nearest-neighbor Ising model to quantify the intrinsic and interfacial free energies of four different DHRs. We measure the folding free energies of constructs with varying numbers of internal and terminal capping repeats for four different DHR folds, using guanidine-HCl and glycerol as destabilizing and solubilizing cosolvents. One-dimensional Ising analysis of these series reveals that, although interrepeat coupling energies are within the range seen for naturally occurring repeat proteins, the individual repeats of DHR proteins are intrinsically stable. This favorable intrinsic stability, which has not been observed for naturally occurring repeat proteins, adds to stabilizing interfaces, resulting in extraordinarily high stability. Stable repeats also impart a downhill shape to the energy landscape for DHR folding. These intrinsic stability differences suggest that part of the success of Rosetta-based design results from capturing favorable local interactions.
Collapse
|
39
|
Curvature of designed armadillo repeat proteins allows modular peptide binding. J Struct Biol 2018; 201:108-117. [DOI: 10.1016/j.jsb.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
|
40
|
Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D, Phillips DJ, Forrer P, Stumpp MT, Zitt C, Binz HK. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng Des Sel 2017; 30:583-591. [PMID: 29088432 DOI: 10.1093/protein/gzx022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/14/2017] [Indexed: 01/10/2023] Open
Abstract
A long systemic half-life is key for therapeutic proteins. To that end we have generated serum albumin-binding designed ankyrin repeat domains. These domains bind serum albumin of different species with nanomolar affinities, and have significantly improved pharmacokinetic properties both in mouse and cynomolgus monkey compared to non-serum albumin-binding DARPin® domains. In addition, they exhibit high thermal stability and long storage stability, which is an essential feature for their use in drug development. Covalently linking a serum albumin-binding DARPin® domain to domains with other target specificities results in improvements of multiple orders of magnitude in exposure and terminal half-life, both in mouse and cynomolgus monkey. Pharmacokinetic assessment of such constructs revealed terminal half-life values ranging from 27 h to 80 h in mouse, and from 2.6 days to 20 days in cynomolgus monkey. Extrapolation by allometric scaling on these findings suggests terminal half-life values of 5-50 days in human, indicating that pharmacokinetic properties in the range of monoclonal antibodies can be achieved with DARPin® drug candidates. Such serum albumin-binding DARPin® domains are thus valuable tools for the generation of multi-functional drugs with an extended in vivo half-life.
Collapse
Affiliation(s)
- Daniel Steiner
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Frieder W Merz
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Ivo Sonderegger
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | | | - Denis Villemagne
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | | | - Patrik Forrer
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Michael T Stumpp
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Christof Zitt
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - H Kaspar Binz
- Molecular Partners AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| |
Collapse
|
41
|
Verdurmen WPR, Mazlami M, Plückthun A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 2017; 7:13194. [PMID: 29038564 PMCID: PMC5643320 DOI: 10.1038/s41598-017-13469-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems have remained unclear. Here, we demonstrate the use of the biotin ligase assay for a quantitative comparison of protein transport to the cytosol via cell-penetrating peptides, supercharged proteins and bacterial toxins in four different cell lines. The data illustrate large differences in both the total cellular internalization, which denotes any intracellular location including endosomes, and in the cytosolic uptake of the transport systems, with little correlation between the two. Also, we found significant differences between the cell lines. In general, protein transport systems based on cell-penetrating peptides show a modest total uptake, and mostly do not deliver cargo to the cytosol. Systems based on bacterial toxins show a modest receptor-mediated internalization but an efficient delivery to the cytosol. Supercharged proteins, on the contrary, are not receptor-specific and lead to massive total internalization into endosomes, but only low amounts end up in the cytosol.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
42
|
Rigidly connected multispecific artificial binders with adjustable geometries. Sci Rep 2017; 7:11217. [PMID: 28894181 PMCID: PMC5593856 DOI: 10.1038/s41598-017-11472-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Multivalent binding proteins can gain biological activities beyond what is inherent in the individual binders, by bringing together different target molecules, restricting their conformational flexibility or changing their subcellular localization. In this study, we demonstrate a method to build up rigid multivalent and multispecific scaffolds by exploiting the modular nature of a repeat protein scaffold and avoiding flexible linkers. We use DARPins (Designed Ankyrin Repeat Proteins), synthetic binding proteins based on the Ankyrin-repeat protein scaffold, as binding units. Their ease of in vitro selection, high production yield and stability make them ideal specificity-conferring building blocks for the design of more complex constructs. C- and N-terminal DARPin capping repeats were re-designed to be joined by a shared helix in such a way that rigid connector modules are formed. This allows us to join two or more DARPins in predefined geometries without compromising their binding affinities and specificities. Nine connector modules with distinct geometries were designed; for eight of these we were able to confirm the structure by X-ray crystallography, while only one did not crystallize. The bispecific constructs were all able to bind both target proteins simultaneously.
Collapse
|
43
|
Broom A, Jacobi Z, Trainor K, Meiering EM. Computational tools help improve protein stability but with a solubility tradeoff. J Biol Chem 2017; 292:14349-14361. [PMID: 28710274 DOI: 10.1074/jbc.m117.784165] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accurately predicting changes in protein stability upon amino acid substitution is a much sought after goal. Destabilizing mutations are often implicated in disease, whereas stabilizing mutations are of great value for industrial and therapeutic biotechnology. Increasing protein stability is an especially challenging task, with random substitution yielding stabilizing mutations in only ∼2% of cases. To overcome this bottleneck, computational tools that aim to predict the effect of mutations have been developed; however, achieving accuracy and consistency remains challenging. Here, we combined 11 freely available tools into a meta-predictor (meieringlab.uwaterloo.ca/stabilitypredict/). Validation against ∼600 experimental mutations indicated that our meta-predictor has improved performance over any of the individual tools. The meta-predictor was then used to recommend 10 mutations in a previously designed protein of moderate thermodynamic stability, ThreeFoil. Experimental characterization showed that four mutations increased protein stability and could be amplified through ThreeFoil's structural symmetry to yield several multiple mutants with >2-kcal/mol stabilization. By avoiding residues within functional ties, we could maintain ThreeFoil's glycan-binding capacity. Despite successfully achieving substantial stabilization, however, almost all mutations decreased protein solubility, the most common cause of protein design failure. Examination of the 600-mutation data set revealed that stabilizing mutations on the protein surface tend to increase hydrophobicity and that the individual tools favor this approach to gain stability. Thus, whereas currently available tools can increase protein stability and combining them into a meta-predictor yields enhanced reliability, improvements to the potentials/force fields underlying these tools are needed to avoid gaining protein stability at the cost of solubility.
Collapse
Affiliation(s)
- Aron Broom
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zachary Jacobi
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kyle Trainor
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
44
|
Geiger-Schuller K, Barrick D. Broken TALEs: Transcription Activator-like Effectors Populate Partly Folded States. Biophys J 2017; 111:2395-2403. [PMID: 27926841 DOI: 10.1016/j.bpj.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Transcription activator-like effector proteins (TALEs) contain large numbers of repeats that bind double-stranded DNA, wrapping around DNA to form a continuous superhelix. Since unbound TALEs retain superhelical structure, it seems likely that DNA binding requires a significant structural distortion or partial unfolding. In this study, we use nearest-neighbor "Ising" analysis of consensus TALE (cTALE) repeat unfolding to quantify intrinsic folding free energies, coupling energies between repeats, and the free energy distribution of partly unfolded states, and to determine how those energies depend on the sequence that determines DNA-specificity (called the "RVD"). We find a moderate level of cooperativity for both the HD and NS RVD sequences (stabilizing interfaces combined with unstable repeats), as has been seen in other linear repeat proteins. Surprisingly, RVD sequence identity influences both the overall stability and the balance of intrinsic repeat stability and interfacial coupling energy. Using parameters from the Ising analysis, we have analyzed the distribution of partly folded states as a function of cTALE length and RVD sequence. We find partly unfolded states where one or more repeats are unfolded to be energetically accessible. Mixing repeats with different RVD sequences increases the population of partially folded states. Local folding free energies plateau for central repeats, suggesting that TALEs access partially folded states where a single internal repeat is unfolded while adjacent repeats remain folded. This breakage should allow TALEs to access superhelically-broken states, and may facilitate DNA binding.
Collapse
Affiliation(s)
- Kathryn Geiger-Schuller
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
45
|
Popescu SC, Brauer EK, Dimlioglu G, Popescu GV. Insights into the Structure, Function, and Ion-Mediated Signaling Pathways Transduced by Plant Integrin-Linked Kinases. FRONTIERS IN PLANT SCIENCE 2017; 8:376. [PMID: 28421082 PMCID: PMC5376563 DOI: 10.3389/fpls.2017.00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/06/2017] [Indexed: 05/04/2023]
Abstract
Kinases facilitate detection of extracellular signals and set in motion cellular responses for plant adaptation and survival. Some of the energy utilized for kinase signal processing is produced through the activity of ion transporters. Additionally, the synergy between cellular ions and signal transduction influences plant response to pathogens, and their growth and development. In plants, the signaling elements that connect cell wall and membrane sensors with ion homeostasis and transport-mediated processes are largely unknown. Current research indicates that plant Integrin-Linked Kinases (ILKs), a subfamily Raf-like MAP2K Kinases, may have evolved to fulfill this role. In this review, we explore new findings on plant ILKs placing a particular focus on the connection between ILKs proteins unique structural features and ILKs functions. The ankyrin repeat motifs and the kinase domains of ILKs in Arabidopsis and land plants lineage, respectively, are analyzed and discussed as potential determinants of ILKs' metal ion cofactor specificity and their enzymatic and interaction activities. Further, ILKs regulation through gene expression, subcellular localization, and ions and ion transporters is reviewed in the context of recent studies. Finally, using evidence from literature and interactomics databanks, we infer ILKs-dependent cellular pathways and highlight their potential in transmitting multiple types of signals originating at the interface between the cell wall and plasma membrane.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, StarkvilleMS, USA
| | - Elizabeth K. Brauer
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Gizem Dimlioglu
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, StarkvilleMS, USA
| | - George V. Popescu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, StarkvilleMS, USA
| |
Collapse
|
46
|
Coppock MB, Warner CR, Dorsey B, Orlicki JA, Sarkes DA, Lai BT, Pitram SM, Rohde RD, Malette J, Wilson JA, Kearney P, Fang KC, Law SM, Candelario SL, Farrow B, Finch AS, Agnew HD, Heath JR, Stratis‐Cullum DN. Protein catalyzed capture agents with tailored performance for in vitro and in vivo applications. Biopolymers 2017; 108:e22934. [PMID: 27539157 PMCID: PMC6585716 DOI: 10.1002/bip.22934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.
Collapse
Affiliation(s)
- Matthew B. Coppock
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Candice R. Warner
- Excet, SpringfieldVA 22151 supporting USA Edgewood Chemical Biological CenterAberdeen Proving GroundMD21010
| | - Brandi Dorsey
- Federal Staffing Resources, Annapolis, MD supporting U.S. Army Research LaboratoryAdelphiMD20783
| | - Joshua A. Orlicki
- Weapons and Materials Research DirectorateU.S. Army Research LaboratoryAberdeen Proving GroundMD21005
| | - Deborah A. Sarkes
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Bert T. Lai
- Indi Molecular6162 Bristol ParkwayCulver CityCA90230
| | | | | | | | | | | | | | | | | | - Blake Farrow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | - Amethist S. Finch
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | | | - James R. Heath
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | | |
Collapse
|
47
|
Reichen C, Hansen S, Forzani C, Honegger A, Fleishman SJ, Zhou T, Parmeggiani F, Ernst P, Madhurantakam C, Ewald C, Mittl PR, Zerbe O, Baker D, Caflisch A, Plückthun A. Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. J Mol Biol 2016; 428:4467-4489. [DOI: 10.1016/j.jmb.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
48
|
Abstract
Structural domains are believed to be modules within proteins that can fold and function independently. Some proteins show tandem repetitions of apparent modular structure that do not fold independently, but rather co-operate in stabilizing structural forms that comprise several repeat-units. For many natural repeat-proteins, it has been shown that weak energetic links between repeats lead to the breakdown of co-operativity and the appearance of folding sub-domains within an apparently regular repeat array. The quasi-1D architecture of repeat-proteins is crucial in detailing how the local energetic balances can modulate the folding dynamics of these proteins, which can be related to the physiological behaviour of these ubiquitous biological systems.
Collapse
|
49
|
Using natural sequences and modularity to design common and novel protein topologies. Curr Opin Struct Biol 2016; 38:26-36. [PMID: 27270240 DOI: 10.1016/j.sbi.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.
Collapse
|
50
|
Millership C, Phillips JJ, Main ERG. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway. J Mol Biol 2016; 428:1804-17. [PMID: 26947150 PMCID: PMC4871810 DOI: 10.1016/j.jmb.2016.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch.
Collapse
Affiliation(s)
- C Millership
- School of Biological and Chemical Sciences, G.E. Fogg Building, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - J J Phillips
- School of Biological and Chemical Sciences, G.E. Fogg Building, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - E R G Main
- School of Biological and Chemical Sciences, G.E. Fogg Building, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|