1
|
Felix Oghenemaro E, Uthirapathy S, Nathiya D, Kaur P, Ravi Kumar M, Verma A. Role of glutaminyl-peptide cyclo-transferase-like protein (QPCTL) in cancer: From molecular mechanisms to immunotherapy. Gene 2025; 937:149153. [PMID: 39653089 DOI: 10.1016/j.gene.2024.149153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Glutaminyl-peptide cyclotransferase-like protein (QPCTL) is a newly discovered enzyme that has sparked interest owing to its possible role in cancer genesis and progression. Initially discovered as a post-translational modification regulator of protein maturation, QPCTL has emerged as a key participant in cancer biology. Recent research has linked QPCTL to numerous essential cancer-related processes, including cell proliferation, migration, invasion, and apoptosis. Furthermore, QPCTL expression changes have been seen in a variety of cancer types, underlining its potential as a diagnostic and prognostic marker. The molecular mechanisms behind QPCTL's participation in cancer will be examined in this review. We investigate its involvement in the control of signaling pathways and the modification of cellular activities that are important in cancer. We also examine the clinical importance of QPCTL, including as its relationship with tumor development, metastasis, and response to treatment. We also discuss the possible therapeutic implications of targeting QPCTL in cancer therapy. QPCTL is a prospective target for the development of innovative anticancer treatments due to its participation in several cancer-associated pathways.
Collapse
Affiliation(s)
- Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ashish Verma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Zhou Q, Wu Z, Qin F, He P, Wang Z, Zhu F, Gao Y, Xiong W, Li C, Wu H. Design, synthesis, and evaluation of 4-(4-methyl-4H-1,2,4-triazol-3-yl)piperidine derivatives as potential glutaminyl cyclase isoenzyme inhibitors for the treatment of cancer. Eur J Med Chem 2025; 281:117019. [PMID: 39504793 DOI: 10.1016/j.ejmech.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Upregulated glutaminyl cyclase isoenzyme (isoQC) contributes to cancer development by catalyzing pE-CD47 generation and thus enhancing CD47-SIRPα binding and subsequent "don't eat me" signals. We thus consider that isoQC could represent a novel target for cancer therapy. We previously prepared a series of diphenyl conjugated imidazole derivatives (DPCIs) and evaluated their use as glutaminyl cyclase (QC) inhibitors. Here, a new series of DPCIs was rationally designed and synthesized. As anticipated, the analogues exhibited considerably improved inhibitory potency against both QC and isoQC. Crucially, these chemicals exhibited marked selectivity toward isoQC. Further assessments established that one selected compound (27) did not affect the viability of A549, H1299, PC9, or HEK293T cells or the body weight of mice. This compound did, however, reduce pE-CD47 levels in infected A549 cells (isoQC_OE and isoQC_KD) and exhibited apparent anti-cancer effects in vivo by downregulating the level of pE-CD47 via the inhibition of isoQC activity. Taken together, these findings indicated that the compounds synthesized in this study could represent potential QC/isoQC inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhenxin Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Feixia Qin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Pan He
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhuoran Wang
- School of Basic Medicine, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Fangyi Zhu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Ying Gao
- School of Physical Education, Shenzhen University, Shenzhen, 518060, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Yu L, Sun Y, Xie L, Tan X, Wang P, Xu S. Targeting QPCTL: An Emerging Therapeutic Opportunity. J Med Chem 2025. [PMID: 39746038 DOI: 10.1021/acs.jmedchem.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glutaminyl cyclases, including glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like protein (QPCTL), primarily catalyze the cyclization of N-terminal glutamine or glutamate to pyroglutamate (pGlu). QPCTL, in particular, modifies the N-terminus of CD47, thereby regulating its interaction with signal-regulatory protein alpha (SIRPα) and modulating phagocytosis of tumor cells by immune cells. Additionally, QPCTL cyclizes the N-termini of CCL2, CCL7, and CX3CL1, influencing the tumor microenvironment and inflammatory responses in cancer and other disorders. Consequently, QPCTL is considered a valuable therapeutic target for several human diseases. However, the development of QPCTL inhibitors remains in its early stages. This perspective summarizes the structural features, catalytic mechanisms, and biological functions of QPCTL, along with its recent advances in small-molecule inhibitors. It provides valuable insights into the development of novel QPCTL inhibitors.
Collapse
Affiliation(s)
- Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Longyan Xie
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Dileep KV, Sakai N, Ihara K, Nakata A, Ito A, Sivaraman DM, Yip CW, Shin JW, Yoshida M, Shirouzu M, Zhang KYJ. Identification of benzimidazole-6-carboxamide based inhibitors of secretory glutaminyl cyclase for the treatment of Alzheimer's disease. Int J Biol Macromol 2024; 293:139320. [PMID: 39740711 DOI: 10.1016/j.ijbiomac.2024.139320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
The formation of the pyroglutamate variant of amyloid beta (pGlu-Aβ), which is extremely hydrophobic, rapidly aggregating, and highly neurotoxic, is mediated by the action of secretory glutaminyl cyclase (sQC). The pGlu-Aβ often acts as a seed for the aggregation of the full length Aβ and contributes to the overall load of Aβ plaques in Alzheimer's disease (AD). Therefore, inhibiting sQC is a potential approach to limit the formation of pGlu-Aβ and to modify the progression of AD. This study presents two novel molecules containing benzimidazole-6-carboxamide, namely LSB-09 and LSB-24, as promising sQC inhibitors. These inhibitors demonstrated moderate toxicity in human neuroblastoma cell lines and possessed IC50 values in the micromolar range (40 and 4 μM for LSB-09 and LSB-24, respectively). Additionally, the X-ray crystal structure of the sQC-LSB-09 complex revealed a unique binding mode, and a systematic computational investigation elucidated the binding mode for LSB-24. The binding mode of these two benzimidazole-6-carboxamide inhibitors offers a potential platform for designing attractive lead candidates against sQC.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680 005, India
| | - Naoki Sakai
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Divya M Sivaraman
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, Kerala, India
| | - Chi Wai Yip
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Office of University Professors, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
5
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
6
|
Tassone G, Pozzi C, Mangani S. Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective. Int J Mol Sci 2024; 25:8279. [PMID: 39125848 PMCID: PMC11312887 DOI: 10.3390/ijms25158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| |
Collapse
|
7
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Chen X, Yu X, Cui Y, Du L, Zhou Q, Xiong W, Li C, Xu C, Wu H. Isoglutaminyl Cyclase Overexpression Enhances KYSE30 Cancer Cell Proliferation and Migration via the MAPK Signaling Pathway. J Proteome Res 2024; 23:1859-1870. [PMID: 38655723 DOI: 10.1021/acs.jproteome.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To understand how upregulated isoglutaminyl cyclase (isoQC) is involved in the initiation of diseases such as cancer, we developed a human KYSE30 carcinoma cell model in which isoQC was stably overexpressed. GO and KEGG analysis of the DEGs (228) and DEPs (254) respectively implicated isoQC on the proliferation invasion and metastasis of cells and suggested that isoQC might participate in the regulation of MAPK, RAS, circadian rhythm, and related pathways. At the functional level, isoQC-overexpressing KYSE30 cells showed enhanced proliferation, migration, and invasion capacity. Next, we decided to study the precise effect of isoQC overexpression on JNK, p-JNK, AKT, p-AKT, ERK, p-ERK, and PER2, as RNA levels of these proteins are significantly correlated with signal levels indicated in RNA-Seq analysis, and these candidates are the top correlated DEPs enriched in RT-qPCR analysis. We saw that only p-ERK expression was inhibited, while PER2 was increased. These phenotypes were inhibited upon exposure to PER2 inhibitor KL044, which allowed for the restoration of p-ERK levels. These data support upregulated isoQC being able to promote cancer cell proliferation and migration in vitro, likely by helping to regulate the MAPK and RAS signaling pathways, and the circadian protein PER2 might be a potential mediator.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xi Yu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yangqing Cui
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Lang Du
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qingqing Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenshu Xu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
9
|
Zhao P, Xie L, Yu L, Wang P. Targeting CD47-SIRPα axis for Hodgkin and non-Hodgkin lymphoma immunotherapy. Genes Dis 2024; 11:205-217. [PMID: 37588232 PMCID: PMC10425755 DOI: 10.1016/j.gendis.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
The interaction between cluster of differentiation 47 (CD47) and signal regulatory protein α (SIRPα) protects healthy cells from macrophage attack, which is crucial for maintaining immune homeostasis. Overexpression of CD47 occurs widely across various tumor cell types and transmits the "don't eat me" signal to macrophages to avoid phagocytosis through binding to SIRPα. Blockade of the CD47-SIRPα axis is therefore a promising approach for cancer treatment. Lymphoma is the most common hematological malignancy and is an area of unmet clinical need. This review mainly described the current strategies targeting the CD47-SIRPα axis, including antibodies, SIRPα Fc fusion proteins, small molecule inhibitors, and peptides both in preclinical studies and clinical trials with Hodgkin lymphoma and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Longyan Xie
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ping Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
11
|
Liu Y, Lu S, Sun Y, Wang F, Yu S, Chen X, Wu LL, Yang H, Shi Y, Zhao K. Deciphering the role of QPCTL in glioma progression and cancer immunotherapy. Front Immunol 2023; 14:1166377. [PMID: 37063864 PMCID: PMC10090505 DOI: 10.3389/fimmu.2023.1166377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundGlioma is the most lethal and most aggressive brain cancer, and currently there is no effective treatment. Cancer immunotherapy is an advanced therapy by manipulating immune cells to attack cancer cells and it has been studied a lot in glioma treatment. Targeting the immune checkpoint CD47 or blocking the CD47-SIRPα axis can effectively eliminate glioma cancer cells but also brings side effects such as anemia. Glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the pyroglutamylation of CD47 and is crucial for the binding between CD47 and SIRPα. Further study found that loss of intracellular QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. However, the role of QPCTL in glioma and the relationship between its expression and clinical outcomes remains unclear. Deciphering the role of QPCTL in glioma will provide a promising therapy for glioma cancer immunotherapy.MethodsQPCTL expression in glioma tissues and normal adjacent tissues was primarily analyzed in The Cancer Genome Atlas (TCGA) database, and further validated in another independent cohort from the Gene Expression Omnibus (GEO) database, Chinese Glioma Genome Atlas (CGGA), and Human Protein Atlas (HPA). The relationships between QPCTL expression and clinicopathologic parameters and overall survival (OS) were assessed using multivariate methods and Kaplan-Meier survival curves. And the proteins network with which QPCTL interacted was built using the online STRING website. Meanwhile, we use Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to investigate the relationships between QPCTL expression and infiltrated immune cells and their corresponding gene marker sets. We analyzed the Differentially Expressed Genes (DEGs) including GO/KEGG and Gene Set Enrichment Analysis (GSEA) based on QPCTL-high and -low expression tumors.ResultsIn contrast to normal tissue, QPCTL expression was higher in glioma tumor tissue (p < 0.05). Higher QPCTL expression was closely associated with high-grade malignancy and advanced tumor stage. Univariate and multivariate analysis indicated the overall survival of glioma patients with higher QPCTL expression is shorter than those with lower QPCTL expression (p < 0.05). Glioma with QPCTL deficiency presented the paucity of infiltrated immune cells and their matching marker sets. Moreover, QPCTL is essential for glioma cell proliferation and tumor growth and is a positive correlation with glioma cell stemness.ConclusionHigh QPCTL expression predicts high grades of gliomas and poor prognosis with impaired infiltration of adaptive immune cells in the tumor microenvironment as well as higher cancer stemness. Moreover, targeting QPCTL will be a promising immunotherapy in glioma cancer treatment.
Collapse
Affiliation(s)
- Yu’e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Kaijun Zhao, ; Yufeng Shi, ; Yu’e Liu,
| | - Shaojuan Lu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihong Sun
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Wang
- Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xi Chen
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Lei-lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, National Center for Neurological Disorders, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Kaijun Zhao, ; Yufeng Shi, ; Yu’e Liu,
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Kaijun Zhao, ; Yufeng Shi, ; Yu’e Liu,
| |
Collapse
|
12
|
Is the new angel better than the old devil? Challenges and opportunities in CD47- SIRPα-based cancer therapy. Crit Rev Oncol Hematol 2023; 184:103939. [PMID: 36774991 DOI: 10.1016/j.critrevonc.2023.103939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The efficacy of immunotherapies is limited due to the impenetrable nature of the tumor microenvironment (TME). The TME of many tumors is immune-privileged, thus allowing them to evade host immunosurveillance. One mechanism through which this occurs is via the overexpression of CD47, a 'don't eat me' protein that can interact with SIRPα on myeloid cells to suppress their phagocytic action. In recent times, many studies are focusing on CD47-SIRPα-dependent immunotherapies to incite a 'seek and eat' interaction between phagocytes and tumors. Thus, in this review, we highlight the basic molecular properties and mechanisms of CD47-SIRPα cascade. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
|
13
|
Upregulation of Glutaminyl Cyclase Contributes to ERS-Induced Apoptosis in PC12 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4154697. [PMID: 36479306 PMCID: PMC9722295 DOI: 10.1155/2022/4154697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
Glutaminyl cyclase (QC) is responsible for converting the N-terminal glutaminyl and glutamyl of the proteins into pyroglutamate (pE) through cyclization. It has been confirmed that QC catalyzes the formation of neurotoxic pE-modified Aβ in the brain of AD patients. But the effects of upregulated QC in diverse diseases have not been much clear until recently. Here, RNA sequencing was applied to identify differentially expressed genes (DEGs) in PC12 cells with QC overexpressing or knockdown. A total of 697 DEGs were identified in QC overexpressing cells while only 77 in QC knockdown cells. Multiple bioinformatic approaches revealed that the DEGs in QC overexpressing group were enriched in endoplasmic reticulum stress (ERS) related signaling pathways. The gene expression patterns of 23 DEGs were confirmed by RT-qPCR, in which the genes related to ERS showed the highest consistency. We also revealed the protein levels of GRP78, PERK, CHOP, and PARP-1, and caspase family was significantly upregulated by overexpressing QC. Moreover, overexpressing QC significantly increased apoptosis of PC12 cells in a time dependent manner. However, no significant alteration was observed in QC knockdown cells. Therefore, our study indicated that upregulated QC could induce ERS and apoptosis, which consequently trigger diseases by catalyzing the generation of pE-modified mediators.
Collapse
|
14
|
Park E, Song KH, Kim D, Lee M, Van Manh N, Kim H, Hong KB, Lee J, Song JY, Kang S. 2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint. ACS Med Chem Lett 2022; 13:1459-1467. [PMID: 36105338 PMCID: PMC9465712 DOI: 10.1021/acsmedchemlett.2c00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Glutaminyl cyclases (QC, isoQC) convert N-terminal glutamine or glutamate into pyroglutamate (pGlu) on substrates. IsoQC has recently been demonstrated to promote pGlu formation on the N-terminus of CD47, the SIRPα binding site, contributing to the "don't eat me" cancer immune signaling of CD47-SIRPα. We developed new QC inhibitors by applying a structure-based optimization approach starting from fragments identified through library screening. Screening of metal binding fragments identified 5-(1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine (9) as a potent fragment, and further modification provided 5-(1-(3-methoxy-4-(3-(piperidin-1-yl)propoxy)benzyl)-1H-benzo[d]imidazol-5-yl)-1,3,4-thiadiazol-2-amine (22b) as a potent QC inhibitor. Treatment with 22b in A549 and H1975 lung cancer cells decreased the CD47/αhCD47-CC2C6 interaction, indicative of the CD47/SIRPα interaction, and enhanced the increased phagocytic activity of both THP-1 and U937 macrophages.
Collapse
Affiliation(s)
- Eunsun Park
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Hee Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Darong Kim
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Minyoung Lee
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Nguyen Van Manh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Kim
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Ki Bum Hong
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Jeewoo Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jie-Young Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Soosung Kang
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
16
|
Bresser K, Logtenberg MEW, Toebes M, Proost N, Sprengers J, Siteur B, Boeije M, Kroese LJ, Schumacher TN. QPCTL regulates macrophage and monocyte abundance and inflammatory signatures in the tumor microenvironment. Oncoimmunology 2022; 11:2049486. [PMID: 35309731 PMCID: PMC8932921 DOI: 10.1080/2162402x.2022.2049486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzyme glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the formation of pyroglutamate residues at the NH2-terminus of proteins, thereby influencing their biological properties. A number of studies have implicated QPCTL in the regulation of chemokine stability. Furthermore, QPCTL activity has recently been shown to be critical for the formation of the high-affinity SIRPα binding site of the CD47 “don’t-eat-me” protein. Based on the latter data, interference with QPCTL activity —and hence CD47 maturation—may be proposed as a means to promote anti-tumor immunity. However, the pleiotropic activity of QPCTL makes it difficult to predict the effects of QPCTL inhibition on the tumor microenvironment (TME). Using a syngeneic mouse melanoma model, we demonstrate that QPCTL deficiency alters the intra-tumoral monocyte-to-macrophage ratio, results in a profound increase in the presence of pro-inflammatory cancer-associated fibroblasts (CAFs) relative to immunosuppressive TGF-β1-driven CAFs, and leads to an increased IFN and decreased TGF-β transcriptional response signature in tumor cells. Importantly, the functional relevance of the observed TME remodeling is demonstrated by the synergy between QPCTL deletion and anti PD-L1 therapy, sensitizing an otherwise refractory melanoma model to anti-checkpoint therapy. Collectively, these data provide support for the development of strategies to interfere with QPCTL activity as a means to promote tumor-specific immunity.
Collapse
Affiliation(s)
- Kaspar Bresser
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike E. W. Logtenberg
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bjorn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Manon Boeije
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lona J. Kroese
- Transgenic Facility, Mouse Clinic for Cancer and Aging Research, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Zhu Y, Huang D, Zhao Z, Lu C. Bioinformatic analysis identifies potential key genes of epilepsy. PLoS One 2021; 16:e0254326. [PMID: 34555062 PMCID: PMC8459949 DOI: 10.1371/journal.pone.0254326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Epilepsy is one of the most common brain disorders worldwide. It is usually hard to be identified properly, and a third of patients are drug-resistant. Genes related to the progression and prognosis of epilepsy are particularly needed to be identified. Methods In our study, we downloaded the Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE143272. Differentially expressed genes (DEGs) with a fold change (FC) >1.2 and a P-value <0.05 were identified by GEO2R and grouped in male, female and overlapping DEGs. Functional enrichment analysis and Protein-Protein Interaction (PPI) network analysis were performed. Results In total, 183 DEGs overlapped (77 ups and 106 downs), 302 DEGs (185 ups and 117 downs) in the male dataset, and 750 DEGs (464 ups and 286 downs) in the female dataset were obtained from the GSE143272 dataset. These DEGs were markedly enriched under various Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. 16 following hub genes were identified based on PPI network analysis: ADCY7, C3AR1, DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in overlapping DEGs. Conclusion This discovery-driven study may be useful to provide a novel insight into the diagnosis and treatment of epilepsy. However, more experiments are needed in the future to study the functional roles of these genes in epilepsy.
Collapse
Affiliation(s)
- Yike Zhu
- Department of Respiratory Medicine, Hainan General Hospital, Haikou, China
| | - Dan Huang
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Chuansen Lu
- Department of Neurology, Hainan General Hospital, Haikou, China
- * E-mail:
| |
Collapse
|
18
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Li Z, Gu X, Rao D, Lu M, Wen J, Chen X, Wang H, Cui X, Tang W, Xu S, Wang P, Yu L, Ge X. Luteolin promotes macrophage-mediated phagocytosis by inhibiting CD47 pyroglutamation. Transl Oncol 2021; 14:101129. [PMID: 34051623 PMCID: PMC8176368 DOI: 10.1016/j.tranon.2021.101129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
Interception of CD47-SIRPα signaling is an elusive yet intriguing goal for anti-tumor immunotherapy since unbiased CD47 blockade by its antibody cannot avoid erythrocyte destruction. We previously reported that isoQC, a Golgi-resident enzyme lacking in mature erythrocyte, disrupts the binding of CD47 to SIRPα by downregulating pGlu-CD47 and its interaction with SIRPα (Cell research 2019. 29:502–505). In this study, we explored the possibility of utilizing isoQC inhibition to address the challenge of CD47 antibody treatment induced anemia. We discovered a new lead compound of isoQC inhibitor, Luteolin, and revealed that posttranslational modification may work as an immunotherapeutic target by abolishing immune checkpoint signaling.
‘Don't eat me’ signal of CD47 is activated via its interaction with SIRPα protein on myeloid cells, especially phagocytic cells, and prevents malignant cells from anti-tumor immunity in which pyroglutamate modification of CD47 by glutaminyl-peptide cyclotransferase-like protein (isoQC) takes an important part evidenced by our previous report that isoQC is an essential regulator for CD47-SIRPα axis with a strong inhibition on macrophage-mediated phagoctyosis. Therefore, we screened for potential isoQC inhibitors by fluorescence-activated cell sorting assay and identified luteolin as a potent compound that blocked the pyroglutamation of CD47 by isoQC. We further demonstrated that luteolin directly bound to isoQC using pull-down assay and isothermal calorimetric (ITC) assay. In consistency, we showed that luteolin markedly abrogated the cell-surface interaction between CD47 and SIRPα in multiple myeloma H929 cells and consequently promoted the macrophage-mediated phagocytosis. Collectively, our study discovered a promising lead compound targeting isoQC, luteolin, which functions distinctly from current CD47 antibody-based drugs and therefore may potentially overcome the clinical side effects associated with CD47 antibody treatment-induced anemia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuemei Gu
- Shanghai Clinical Medical College, Anhui Medical University, Hefei 230031, China
| | - Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 110039, China
| | - Meiling Lu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Wen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyan Chen
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongbing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xianghuan Cui
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Tang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing 110039, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Shanghai Clinical Medical College, Anhui Medical University, Hefei 230031, China.
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Kanemitsu N, Kiyonaga F, Mizukami K, Maeno K, Nishikubo T, Yoshida H, Ito H. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:751-761. [PMID: 33159802 PMCID: PMC8007495 DOI: 10.1007/s00210-020-02013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Glomeruli and renal tubule injury in chronic kidney disease (CKD) is reported to involve induction of macrophage activation through the CCL2/CCR2 axis. The effects of inhibitors of the CCL2/CCR2 axis, such as anti-CCL2 antibody and CCR2 antagonist, on kidney function in animal models or humans with kidney dysfunction have been demonstrated. The N-terminal glutamine on immature CCL2 is replaced with pyroglutamate (pE) by glutaminyl cyclase (QC) and isoQC. pE-CCL2 is stable and resistant to peptidases. We hypothesized that inhibiting QC/isoQC activity would lead to the degradation of CCL2, thereby ameliorating CKD and reducing kidney inflammation. To test this hypothesis, we investigated the renoprotective properties of the QC/isoQC inhibitor PQ529 in anti-glomerular basement membrane (GBM) antibody-induced glomerulonephritis Wistar Kyoto (WKY) rats. Three-week repeated administration of PQ529 (30 and 100 mg/kg, twice daily) significantly reduced the serum and urine CCL2 and urinary protein excretion in a dose-dependent manner. Correlations between the urinary protein level and serum or urinary CCL2 levels were confirmed in tested animals. Repeated administration of PQ529 significantly reduced the expression of CD68, a macrophage marker, in the kidney cortex and mononuclear infiltration into the tubulointerstitium. In addition, decreased levels of urinary KIM-1, β2 microglobulin, and clusterin were detected, suggesting the inhibition of inflammation in both the proximal and distal tubules. These results suggest that PQ529 suppresses the progression of inflammation-induced renal dysfunction by inhibiting the CCL2/CCR2 axis. Inhibition of QC/isoQC may thus be a viable alternative therapeutic approach for treating glomerulonephritis and CKD patients.
Collapse
MESH Headings
- Aminoacyltransferases/antagonists & inhibitors
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Benzimidazoles/pharmacokinetics
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Adhesion Molecules/urine
- Chemokine CCL2/antagonists & inhibitors
- Chemokine CCL2/blood
- Chemokine CCL2/metabolism
- Chemokine CCL2/urine
- Clusterin/urine
- Glomerulonephritis/blood
- Glomerulonephritis/drug therapy
- Glomerulonephritis/metabolism
- Glomerulonephritis/urine
- Imidazolines/pharmacokinetics
- Imidazolines/pharmacology
- Imidazolines/therapeutic use
- Interferon-gamma/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Male
- Protective Agents/pharmacokinetics
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Rats, Inbred WKY
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/urine
- beta 2-Microglobulin/urine
- Rats
Collapse
Affiliation(s)
- Naotoshi Kanemitsu
- Development, Astellas Pharma Inc., 2-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411, Japan.
| | - Fumiko Kiyonaga
- Corporate Advocacy, Astellas Pharma Inc., Chuo-ku, Tokyo, 103-8411, Japan
| | - Kazuhiko Mizukami
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kyoichi Maeno
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Takashi Nishikubo
- Astellas Innovation Management LLC, 1030 Massachusetts Ave. Suite 310, Cambridge, MA, 02138, USA
| | - Hiroyuki Yoshida
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Hiroyuki Ito
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, 305-8585, Japan
| |
Collapse
|
22
|
A Unique Carboxylic-Acid Hydrogen-Bond Network (CAHBN) Confers Glutaminyl Cyclase Activity on M28 Family Enzymes. J Mol Biol 2021; 433:166960. [PMID: 33774034 DOI: 10.1016/j.jmb.2021.166960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Proteins with sequence or structure similar to those of di-Zn exopeptidases are usually classified as the M28-family enzymes, including the mammalian-type glutaminyl cyclases (QCs). QC catalyzes protein N-terminal pyroglutamate formation, a posttranslational modification important under many physiological and pathological conditions, and is a drug target for treating neurodegenerative diseases, cancers and inflammatory disorders. Without functional characterization, mammalian QCs and their orthologs remain indistinguishable at the sequence and structure levels from other M28-family proteins, leading to few reported QCs. Here, we show that a low-barrier carboxylic-acid hydrogen-bond network (CAHBN) is required for QC activity and discriminates QCs from M28-family peptidases. We demonstrate that the CAHBN-containing M28 peptidases deposited in the PDB are indeed QCs. Our analyses identify several thousands of QCs from the three domains of life, and we enzymatically and structurally characterize several. For the first time, the interplay between a CAHBN and the binuclear metal-binding center of mammalian QCs is made clear. We found that the presence or absence of CAHBN is a key discriminator for the formation of either the mono-Zn QCs or the di-Zn exopeptidases. Our study helps explain the possible roles of QCs in life.
Collapse
|
23
|
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2021; 21:148-166. [PMID: 31385768 DOI: 10.2174/1389450120666190806153206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.
Collapse
Affiliation(s)
- Dileep Vijayan
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Remya Chandra
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kerala Pin 670 661, India
| |
Collapse
|
24
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
25
|
Dileep KV, Sakai N, Ihara K, Kato-Murayama M, Nakata A, Ito A, Sivaraman DM, Shin JW, Yoshida M, Shirouzu M, Zhang KYJ. Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors. Int J Biol Macromol 2020; 170:415-423. [PMID: 33373636 DOI: 10.1016/j.ijbiomac.2020.12.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aβ, which acts as a potential seed for the aggregation of full length Aβ. Preventing the formation of pGlu-Aβ through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34 μM). Systematic molecular docking, MD simulations and X-ray crystallographic analysis provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this molecule an attractive candidate for designing high affinity sQC inhibitors.
Collapse
Affiliation(s)
- K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Naoki Sakai
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - D M Sivaraman
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 011, Kerala, India
| | - Jay W Shin
- Laboratory for Advanced Genomics Circuit, Centre for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
26
|
Regulation of CD47 expression in cancer cells. Transl Oncol 2020; 13:100862. [PMID: 32920329 PMCID: PMC7494507 DOI: 10.1016/j.tranon.2020.100862] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD47 is overexpressed in various types of cancers and it can directly bind with SIRPα, which is mainly located on macrophages. The binding of CD47-SIRPα transmits a “don't eat me” signal, which can prevent cancer cells from immune clearance. Targeting the phagocytosis checkpoint of CD47-SIRPα axis has shown remarkable anticancer effect in preclinical and clinical research, which indicates the potential application of CD47-SIRPα blockade for cancer treatment. In this case, the comprehensive description of the regulation of CD47 in different types of cancer cells has significant implications for furthering our understanding of the role of CD47 in cancer. Based on the current reports, we summarized the regulatory factors, i.e., cytokines, oncogenes, microRNAs as well as enzymes, of CD47 expression in cancer cells. Accordingly, we also proposed several points needing further research, hoping to provide useful insights for the future investigation on the regulation of CD47 in cancers. Cytokines, oncogenes, microRNAs and enzymes regulate CD47 expression in cancer. CD47 expression could be regulated at the transcriptional, post-transcriptional and post-translational modification level. Further studies are required to determine other factors that regulate CD47 expression.
Collapse
|
27
|
High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat Biomed Eng 2019; 3:796-805. [DOI: 10.1038/s41551-019-0454-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
28
|
Xu A, He F, Yu C, Qu Y, Zhang Q, Lv J, Zhang X, Ran Y, Wei C, Wu J. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201902852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Xu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Feng He
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chenggong Yu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Ying Qu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Qiuqiong Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jiahui Lv
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Xiangna Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Yingying Ran
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chao Wei
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jingde Wu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| |
Collapse
|
29
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
30
|
Identification of Glutaminyl Cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis. Cell Res 2019; 29:502-505. [PMID: 31089204 DOI: 10.1038/s41422-019-0177-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 11/09/2022] Open
|
31
|
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med 2019; 25:612-619. [PMID: 30833751 PMCID: PMC7025889 DOI: 10.1038/s41591-019-0356-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.
Collapse
|
32
|
The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J Biol Inorg Chem 2018; 23:1219-1226. [DOI: 10.1007/s00775-018-1605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
33
|
N-terminal pyroglutamate formation in CX3CL1 is essential for its full biologic activity. Biosci Rep 2017; 37:BSR20170712. [PMID: 28739588 PMCID: PMC5634468 DOI: 10.1042/bsr20170712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
CX3CL1 (fractalkine) is a unique member of the CX3C chemokine family and mediates
both adhesion and cell migration in inflammatory processes. Frequently, the
activity of chemokines depends on a modified N-terminus as described for the
N-terminus of CCL2 modified to a pGlu- (pyroglutamate) residue by QC (glutaminyl
cyclase) activity. Here, we assess the role of the pGlu-modified residue of the
CX3CL1 chemokine domain in human endothelial and smooth muscle cells. For the
first time, we demonstrated using MS that QC (QPCT, gene name
of QC) or its isoenzyme isoQC (iso-glutaminyl cyclase) (QPCTL,
gene name of isoQC) catalyse the formation of N-terminal-modified pGlu-CX3CL1.
Expression of QPCT is co-regulated with its substrates
CCL2 and CX3CL1 in HUVECs (human umbilical
vein endothelial cells) and HCASMCs (human coronary artery smooth muscle cells)
upon stimulation with TNF-α and IL-1β whereas
QPCTL expression is not affected. By contrast, inhibition
of the NF-κB pathway using an IKK2 inhibitor decreased the expression of
the co-regulated targets QPCT, CCL2, and
CX3CL1. Furthermore, RNAi-mediated inhibition of
QPCT expression resulted in a reduction in
CCL2 and CX3CL1 mRNA. In HCASMCs,
N-terminal-modified pGlu1-CX3CL1 induced a significant stronger effect on
phosphorylation of ERK (extracellular signal regulated kinase) 1/2, Akt (protein
kinase B), and p38 (p38 mitogen-activated protein kinase) kinases than the
immature Gln1-CX3CL1 in a time- and concentration-dependent manner. Furthermore,
pGlu1-CX3CL1 affected the expression of CCL2, CX3CL1, and the
adhesion molecule ICAM1/CD54 (intercellular adhesion
molecule-1) inducing in higher expression level compared with its Gln1-variant
in both HCASMCs and HUVECs. These results strongly suggest that QC-catalysed
N-terminal pGlu formation of CX3CL1 is important for the stability or the
interaction with its receptor and opens new insights into the function of QC in
inflammation.
Collapse
|
34
|
A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev 2017; 31:154-171. [PMID: 28174210 PMCID: PMC5322730 DOI: 10.1101/gad.285684.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/13/2017] [Indexed: 01/02/2023]
Abstract
Here, Lo et al. demonstrate that cell architecture can be controlled by a developmentally regulated transcriptional program independent of the program that specifies cell identity. They show that MIST1 (BHLHA15) is a “scaling factor” that universally establishes secretory morphology in cells that perform regulated secretion, and targeted deletion of MIST1 causes dismantling of the secretory apparatus of diverse exocrine cells. We hypothesized that basic helix–loop–helix (bHLH) MIST1 (BHLHA15) is a “scaling factor” that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural “blueprints.”
Collapse
|
35
|
Gromova OA, Torshin IY, Kalacheva AG, Fedotova LE, Rudakov KV. [Molecular mechanisms of pidolate magnesium action and its neurotropic affects]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 116:96-103. [PMID: 28139633 DOI: 10.17116/jnevro201611612196-103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM A complex study of pharmacological properties of magnesium pyroglutamate using the modern methods of chemoinformatics and bioinformatics. MATERIAL AND METHODS Pharmacological properties of magnesium pyroglutamate were studied using chemoinformatic and bioinformatic analyses. RESULTS Neurotropic effects of magnesium pyroglutamate are due to an influence on the synthesis of neuropeptides containing pyroglutamate (orexin, thyroliberin, neurotensin etc) and due to the similarity between pyroglutamate-anion with some neuroactive components (L-theanine, 2-pirrolydinone, piracetam). CONCLUSION The results of the study suggest neuroprotective, sedative and antidepressive properties of magnesium pyroglutamate which are realized by pyroglutamate-anion in the synergism with magnesium cation.
Collapse
Affiliation(s)
- O A Gromova
- Ivanovo State Medical Academy, Ivanovo, Russia
| | - I Yu Torshin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - K V Rudakov
- Ivanovo State Medical Academy, Ivanovo, Russia, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
36
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
37
|
Lee S, Kelleher SL. Molecular regulation of lactation: The complex and requisite roles for zinc. Arch Biochem Biophys 2016; 611:86-92. [DOI: 10.1016/j.abb.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/10/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
|
38
|
Khan RAW, Chen J, Shen J, Li Z, Wang M, Wen Z, Song Z, Li W, Xu Y, Shi Y, Yi Q, Ji W. Common variants in QPCT gene confer risk of schizophrenia in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:237-42. [PMID: 26492838 DOI: 10.1002/ajmg.b.32397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022]
Abstract
Schizophrenia (SCZ) is a common and severe mental disorder, its etiology has not been elucidated completely. In one previous genome-wide association study (GWAS) of SCZ in the Caucasian population, the QPCT has been reported as susceptible gene for SCZ. The QPCT gene encodes Glutaminyl cyclase (QC), an enzyme which is involved in the post translational modification by converting N-terminal glutamate of protein to pyroglutamate, which is resistant to protease degradation, more hydrophobic, and prone to aggregation and neurotoxic. To further investigate the role of this gene in the pathogenesis of schizophrenia in the Han Chinese population, we conducted this study in 1,248 (Mean age ± S.D, 36.44 years ± 9.0) SCZ cases, 1,248 (Mean age ± S.D, 30.62 years ± 11.35) healthy control samples for a case control study. We genotyped six SNPs in this study, including one positive SNP of the previous study, using the Sequenom MassARRAY platform. We found that rs2373000 was significantly associated with SCZ before correction [rs2373000: P allele = 0.016, χ(2) = 5.784, OR [95%CI] = 0.861 [0.762-0.972], P genotype = 0.018, χ(2) = 0.069]. After permutation correction for multiple testing, rs2373000 [rs2373000: P Allele corrected = 0.063, P genotype corrected = 0.069] showed marginal association with SCZ. Additionally, one pathogenic haplotype (TGT) containing rs2373000 was also significantly associated with SCZ. Our results are consistent with the findings of previous study and the genetic risk of QPCT gene for SCZ also exists in the Han Chinese population.
Collapse
Affiliation(s)
- Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,University of Azad Jammu and Kashmir, Department of Chemistry, Muzaffarabad, 13100, Pakistan
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Changning Mental Health Center, Shanghai, People's Republic of China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhong Yi
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Weidong Ji
- Shanghai Changning Mental Health Center, Shanghai, People's Republic of China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Dammers C, Gremer L, Reiß K, Klein AN, Neudecker P, Hartmann R, Sun N, Demuth HU, Schwarten M, Willbold D. Structural Analysis and Aggregation Propensity of Pyroglutamate Aβ(3-40) in Aqueous Trifluoroethanol. PLoS One 2015; 10:e0143647. [PMID: 26600248 PMCID: PMC4658145 DOI: 10.1371/journal.pone.0143647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the accumulation of extracellular amyloid-β (Aβ) plaques in the brains of patients. N-terminally truncated pyroglutamate-modified Aβ (pEAβ) has been described as a major compound of Aβ species in senile plaques. pEAβ is more resistant to degradation, shows higher toxicity and has increased aggregation propensity and β-sheet stabilization compared to non-modified Aβ. Here we characterized recombinant pEAβ(3-40) in aqueous trifluoroethanol (TFE) solution regarding its aggregation propensity and structural changes in comparison to its non-pyroglutamate-modified variant Aβ(1-40). Secondary structure analysis by circular dichroism spectroscopy suggests that pEAβ(3-40) shows an increased tendency to form β-sheet-rich structures in 20% TFE containing solutions where Aβ(1-40) forms α-helices. Aggregation kinetics of pEAβ(3-40) in the presence of 20% TFE monitored by thioflavin-T (ThT) assay showed a typical sigmoidal aggregation in contrast to Aβ(1-40), which lacks ThT positive structures under the same conditions. Transmission electron microscopy confirms that pEAβ(3-40) aggregated to large fibrils and high molecular weight aggregates in spite of the presence of the helix stabilizing co-solvent TFE. High resolution NMR spectroscopy of recombinantly produced and uniformly isotope labeled [U-15N]-pEAβ(3-40) in TFE containing solutions indicates that the pyroglutamate formation affects significantly the N-terminal region, which in turn leads to decreased monomer stability and increased aggregation propensity.
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Kerstin Reiß
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antonia N. Klein
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Philipp Neudecker
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Na Sun
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120, Halle (Saale), Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
40
|
Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer's disease. Acta Neuropathol 2015; 129:565-83. [PMID: 25666182 PMCID: PMC4366547 DOI: 10.1007/s00401-015-1395-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
The brains of Alzheimer’s disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.
Collapse
|
41
|
Höfling C, Indrischek H, Höpcke T, Waniek A, Cynis H, Koch B, Schilling S, Morawski M, Demuth HU, Roßner S, Hartlage-Rübsamen M. Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int J Dev Neurosci 2014; 36:64-73. [PMID: 24886834 DOI: 10.1016/j.ijdevneu.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henrike Indrischek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Theodor Höpcke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Holger Cynis
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Birgit Koch
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
42
|
Shih YP, Chou CC, Chen YL, Huang KF, Wang AHJ. Linked production of pyroglutamate-modified proteins via self-cleavage of fusion tags with TEV protease and autonomous N-terminal cyclization with glutaminyl cyclase in vivo. PLoS One 2014; 9:e94812. [PMID: 24733552 PMCID: PMC3986218 DOI: 10.1371/journal.pone.0094812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022] Open
Abstract
Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities.
Collapse
Affiliation(s)
- Yan-Ping Shih
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Chen
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| | - Andrew H.- J. Wang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| |
Collapse
|
43
|
Huang KF, Hsu HL, Karim S, Wang AHJ. Structural and functional analyses of a glutaminyl cyclase from Ixodes scapularis reveal metal-independent catalysis and inhibitor binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:789-801. [PMID: 24598748 PMCID: PMC8494195 DOI: 10.1107/s1399004713033488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022]
Abstract
Glutaminyl cyclases (QCs) from mammals and Drosophila are zinc-dependent enzymes that catalyze N-terminal pyroglutamate formation of numerous proteins and peptides. These enzymes have been found to be critical for the oviposition and embryogenesis of ticks, implying that they are possible physiological targets for tick control. Here, 1.10-1.15 Å resolution structures of a metal-independent QC from the black-legged tick Ixodes scapularis (Is-QC) are reported. The structures exhibit the typical scaffold of mammalian QCs but have two extra disulfide bridges that stabilize the central β-sheet, resulting in an increased thermal stability. Is-QC contains ~0.5 stoichiometric zinc ions, which could be removed by 1 mM EDTA. Compared with the Zn-bound form, apo-Is-QC has a nearly identical active-site structure and stability, but unexpectedly possesses significantly increased QC activities towards both synthetic and physiological substrates. Enzyme-kinetic analysis revealed that apo-Is-QC has a stronger substrate-binding affinity, suggesting that bound zinc interferes with substrate binding during catalysis. The structures of Is-QC bound to the inhibitor PBD150 revealed similar binding modes to both forms of Is-QC, with the exception of the inhibitor imidazole ring, which is consistent with the comparable inhibition activities of the inhibitor towards both forms of Is-QC. These findings have implications for the design of new QC inhibitors.
Collapse
Affiliation(s)
- Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Ling Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| | - Shahid Karim
- Department of Biological Sciences, The University of Southern Mississippi, 18 College Drive #5018, Hattiesburg, MS 39406, USA
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
44
|
Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration. BMC Neurosci 2013; 14:108. [PMID: 24083638 PMCID: PMC3850634 DOI: 10.1186/1471-2202-14-108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Background Posttranslational modifications of beta amyloid (Aβ) have been shown to affect its biophysical and neurophysiological properties. One of these modifications is N-terminal pyroglutamate (pE) formation. Enzymatic glutaminyl cyclase (QC) activity catalyzes cyclization of truncated Aβ(3-x), generating pE3-Aβ. Compared to unmodified Aβ, pE3-Aβ is more hydrophobic and neurotoxic. In addition, it accelerates aggregation of other Aβ species. To directly investigate pE3-Aβ formation and toxicity in vivo, transgenic (tg) ETNA (E at the truncated N-terminus of Aβ) mice expressing truncated human Aβ(3–42) were generated and comprehensively characterized. To further investigate the role of QC in pE3-Aβ formation in vivo, ETNA mice were intercrossed with tg mice overexpressing human QC (hQC) to generate double tg ETNA-hQC mice. Results Expression of truncated Aβ(3–42) was detected mainly in the lateral striatum of ETNA mice, leading to progressive accumulation of pE3-Aβ. This ultimately resulted in astrocytosis, loss of DARPP-32 immunoreactivity, and neuronal loss at the sites of pE3-Aβ formation. Neuropathology in ETNA mice was associated with behavioral alterations. In particular, hyperactivity and impaired acoustic sensorimotor gating were detected. Double tg ETNA-hQC mice showed similar Aβ levels and expression sites, while pE3-Aβ were significantly increased, entailing increased astrocytosis and neuronal loss. Conclusions ETNA and ETNA-hQC mice represent novel mouse models for QC-mediated toxicity of truncated and pE-modified Aβ. Due to their significant striatal neurodegeneration these mice can also be used for analysis of striatal regulation of basal locomotor activity and sensorimotor gating, and possibly for DARPP-32-dependent neurophysiology and neuropathology. The spatio-temporal correlation of pE3-Aβ and neuropathology strongly argues for an important role of this Aβ species in neurodegenerative processes in these models.
Collapse
|
45
|
Ramsbeck D, Buchholz M, Koch B, Böhme L, Hoffmann T, Demuth HU, Heiser U. Structure–Activity Relationships of Benzimidazole-Based Glutaminyl Cyclase Inhibitors Featuring a Heteroaryl Scaffold. J Med Chem 2013; 56:6613-25. [DOI: 10.1021/jm4001709] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Ramsbeck
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Mirko Buchholz
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Birgit Koch
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Livia Böhme
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Torsten Hoffmann
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Hans-Ulrich Demuth
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Ulrich Heiser
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| |
Collapse
|
46
|
Pfeiffer T, Ruppert T, Schaal H, Bosch V. Detection and initial characterization of protein entities consisting of the HIV glycoprotein cytoplasmic C-terminal domain alone. Virology 2013; 441:85-94. [DOI: 10.1016/j.virol.2013.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/26/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
47
|
Kehlen A, Haegele M, Menge K, Gans K, Immel UD, Hoang-Vu C, Klonisch T, Demuth HU. Role of glutaminyl cyclases in thyroid carcinomas. Endocr Relat Cancer 2013. [PMID: 23183267 DOI: 10.1530/erc-12-0053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CCL2 is a chemokine known to recruit monocytes/macrophages to sites of inflammation. CCL2 is also associated with tumor progression in several cancer types. Recently, we showed that the N-terminus of CCL2 is modified to a pyroglutamate (pE)-residue by both glutaminyl cyclases (QC (QPCT)) and its isoenzyme (isoQC (QPCTL)). The pE-residue increases stability against N-terminal degradation by aminopeptidases. Here, we report an upregulation of QPCT expression in tissues of patients with thyroid carcinomas compared with goiter tissues, whereas QPCTL was not regulated. In thyroid carcinoma cell lines, QPCT gene expression correlates with the mRNA levels of its substrate CCL2. Both QPCT and CCL2 are regulated in a NF-κB-dependent pathway shown by stimulation with TNFa and IL1b as well as by inhibition with the IKK2 inhibitor and RNAi of p50. In the culture supernatant of thyroid carcinoma cells, equal amounts of pECCL2 and total CCL2 were detected by two ELISAs discriminating between total CCL2 and pECCL2, concluding that all CCL2 is secreted as pECCL2. Activation of the CCL2/CCR2 pathway by recombinant CCL2 increased tumor cell migration of FTC238 cells in scratch assays as well as thyroid carcinoma cell-derived CCL2-induced migration of monocytic THP1 cells. Suppression of CCL2 signaling by CCR2 antagonist, IKK2 inhibitor, and QPCT RNAi reduced FTC238 cell growth measured by WST8 proliferation assays. Our results reveal new evidence for a novel role of QC in thyroid carcinomas and provide an intriguing rationale for the use of QC inhibitors as a means of blocking pECCL2 formation and preventing thyroid cancer metastasis.
Collapse
Affiliation(s)
- Astrid Kehlen
- Probiodrug AG, Weinbergweg 22, Halle, Saale, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Hellvard A, Maresz K, Schilling S, Graubner S, Heiser U, Jonsson R, Cynis H, Demuth HU, Potempa J, Mydel P. Glutaminyl cyclases as novel targets for the treatment of septic arthritis. J Infect Dis 2012. [PMID: 23204180 DOI: 10.1093/infdis/jis729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Septic arthritis is a severe and rapidly debilitating disease mainly caused by Staphylococcus aureus. Here, we assess the antiarthritic efficiency of glutaminyl cyclase (QC) inhibitors. METHODS Mice were inoculated with an arthritogenic amount of S. aureus intravenously or by local administration into the knee joint. Animals were treated with QC inhibitors (PBD155 and PQ529) via chow during the experiment. QC and isoQC knockout mice were also analyzed for arthritis symptoms after local administration of bacteria. RESULTS Both QC inhibitors significantly delayed the onset of clinical signs of arthritis, and inhibitors significantly decreased weight loss in treated animals. Following intraarticular injection of S. aureus, PBD155-treated mice had lower levels of synovitis and bone erosion, as well as less myeloperoxidase in synovial tissue. Fluorescence-activated cell sorter analysis revealed that PBD155 treatment affected the expression pattern of adhesion molecules, preventing the upregulation of cells expressing CD11b/CD18. CONCLUSION The compounds investigated here represent a novel class of small molecular antiarthritic inhibitors. In our studies, they exerted strong antiinflammatory actions, and therefore they might be suited for disease-modifying treatment of infectious arthritis.
Collapse
Affiliation(s)
- Annelie Hellvard
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sun N, Hartmann R, Lecher J, Stoldt M, Funke SA, Gremer L, Ludwig HH, Demuth HU, Kleinschmidt M, Willbold D. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer's disease-related amyloid-β using NMR spectroscopy. J Pept Sci 2012; 18:691-5. [DOI: 10.1002/psc.2456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/01/2012] [Accepted: 08/31/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Na Sun
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | | | - Justin Lecher
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | - Matthias Stoldt
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | | | - Lothar Gremer
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | | | | | | | - Dieter Willbold
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|