1
|
Chu H, Wang L, Wang J, Zhang Y, Jin N, Liu F, Li Y. Genomic profile of eGFP-tagged senecavirus A subjected to serial plaque-to-plaque transfers. Microb Pathog 2024; 191:106661. [PMID: 38657711 DOI: 10.1016/j.micpath.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green fluorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs): F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.
Collapse
Affiliation(s)
- Huanhuan Chu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| |
Collapse
|
2
|
Somovilla P, Rodríguez-Moreno A, Arribas M, Manrubia S, Lázaro E. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ. Int J Mol Sci 2022; 23:ijms23168876. [PMID: 36012143 PMCID: PMC9408265 DOI: 10.3390/ijms23168876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/15/2023] Open
Abstract
A critical issue to understanding how populations adapt to new selective pressures is the relative contribution of the initial standing genetic diversity versus that generated de novo. RNA viruses are an excellent model to study this question, as they form highly heterogeneous populations whose genetic diversity can be modulated by factors such as the number of generations, the size of population bottlenecks, or exposure to new environment conditions. In this work, we propagated at nonoptimal temperature (43 °C) two bacteriophage Qβ populations differing in their degree of heterogeneity. Deep sequencing analysis showed that, prior to the temperature change, the most heterogeneous population contained some low-frequency mutations that had previously been detected in the consensus sequences of other Qβ populations adapted to 43 °C. Evolved populations with origin in this ancestor reached similar growth rates, but the adaptive pathways depended on the frequency of these standing mutations and the transmission bottleneck size. In contrast, the growth rate achieved by populations with origin in the less heterogeneous ancestor did depend on the transmission bottleneck size. The conclusion is that viral diversification in a particular environment may lead to the emergence of mutants capable of accelerating adaptation when the environment changes.
Collapse
Affiliation(s)
- Pilar Somovilla
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alicia Rodríguez-Moreno
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - María Arribas
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Susanna Manrubia
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Correspondence:
| |
Collapse
|
3
|
|
4
|
Arribas M, Aguirre J, Manrubia S, Lázaro E. Differences in adaptive dynamics determine the success of virus variants that propagate together. Virus Evol 2018; 4:vex043. [PMID: 29340211 PMCID: PMC5761584 DOI: 10.1093/ve/vex043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Virus fitness is a complex parameter that results from the interaction of virus-specific characters (e.g. intracellular growth rate, adsorption rate, virion extracellular stability, and tolerance to mutations) with others that depend on the underlying fitness landscape and the internal structure of the whole population. Individual mutants usually have lower fitness values than the complex population from which they come from. When they are propagated and allowed to attain large population sizes for a sufficiently long time, they approach mutation-selection equilibrium with the concomitant fitness gains. The optimization process follows dynamics that vary among viruses, likely due to differences in any of the parameters that determine fitness values. As a consequence, when different mutants spread together, the number of generations experienced by each of them prior to co-propagation may determine its particular fate. In this work we attempt a clarification of the effect of different levels of population diversity in the outcome of competition dynamics. To this end, we analyze the behavior of two mutants of the RNA bacteriophage Qβ that co-propagate with the wild-type virus. When both competitor viruses are clonal, the mutants rapidly outcompete the wild type. However, the outcome in competitions performed with partially optimized virus populations depends on the distance of the competitors to their clonal origin. We also implement a theoretical population dynamics model that describes the evolution of a heterogeneous population of individuals, each characterized by a fitness value, subjected to subsequent cycles of replication and mutation. The experimental results are explained in the framework of our theoretical model under two non-excluding, likely complementary assumptions: (1) The relative advantage of both competitors changes as populations approach mutation-selection equilibrium, as a consequence of differences in their growth rates and (2) one of the competitors is more robust to mutations than the other. The main conclusion is that the nearness of an RNA virus population to mutation-selection equilibrium is a key factor determining the fate of particular mutants arising during replication.
Collapse
Affiliation(s)
- María Arribas
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, Madrid 28850, Spain
| | - Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Madrid 28049, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Centro Nacional de Biotecnología (CSIC), c/Darwin 3, Madrid 28049, Spain
| | - Ester Lázaro
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, Torrejón de Ardoz, Madrid 28850, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| |
Collapse
|
5
|
Arribas M, Cabanillas L, Kubota K, Lázaro E. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ. Virology 2016; 497:163-170. [PMID: 27471955 DOI: 10.1016/j.virol.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023]
Abstract
RNA viruses replicate with very high error rates, which makes them more sensitive to additional increases in this parameter. This fact has inspired an antiviral strategy named lethal mutagenesis, which is based on the artificial increase of the error rate above a threshold incompatible with virus infectivity. A relevant issue concerning lethal mutagenesis is whether incomplete treatments might enhance the adaptive possibilities of viruses. We have addressed this question by subjecting an RNA virus, the bacteriophage Qβ, to different transmission regimes in the presence or the absence of sublethal concentrations of the mutagenic nucleoside analogue 5-azacytidine (AZC). Populations obtained were subsequently exposed to a non-optimal temperature and analyzed to determine their consensus sequences. Our results show that previously mutagenized populations rapidly fixed a specific set of mutations upon propagation at the new temperature, suggesting that the expansion of the mutant spectrum caused by AZC has an influence on later evolutionary behavior.
Collapse
Affiliation(s)
- María Arribas
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Laura Cabanillas
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Kirina Kubota
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| |
Collapse
|
6
|
Trends in Antiviral Strategies. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149557 DOI: 10.1016/b978-0-12-800837-9.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral populations are true moving targets regarding the genomic sequences to be targeted in antiviral designs. Experts from different fields have expressed the need of new paradigms for antiviral interventions and viral disease control. This chapter reviews several strategies that aim at counteracting the adaptive capacity of viral quasispecies. The proposed designs are based on combinations of different antiviral drugs and immune modulators, or in the administration of virus-specific mutagenic agents, in an approach termed lethal mutagenesis of viruses. It consists of decreasing viral fitness by an excess of mutations that render viral proteins sub-optimal or non-functional. Viral extinction by lethal mutagenesis involves several sequential, overlapping steps that recapitulate the major concepts of intra-population interactions and genetic information stability discussed in preceding chapters. Despite the magnitude of the challenge, the chapter closes with some optimistic prospects for an effective control of viruses displaying error-prone replication, based on the combined targeting of replication fidelity and the induction of the innate immune response.
Collapse
|
7
|
Tao Y, Rotem A, Zhang H, Cockrell SK, Koehler SA, Chang CB, Ung LW, Cantalupo PG, Ren Y, Lin JS, Feldman AB, Wobus CE, Pipas JM, Weitz DA. Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics. Chembiochem 2015; 16:2167-71. [PMID: 26247541 DOI: 10.1002/cbic.201500384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/23/2023]
Abstract
Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 × 10(-4) ± 2 × 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.
Collapse
Affiliation(s)
- Ye Tao
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,School of Mechatronics Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Assaf Rotem
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Huidan Zhang
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang, 110001, China
| | - Shelley K Cockrell
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Stephan A Koehler
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Connie B Chang
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.,Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, 59717, USA
| | - Lloyd W Ung
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA
| | - Paul G Cantalupo
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Jeffrey S Lin
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Andrew B Feldman
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA.,Department of Emergency Medicine, Johns Hopkins Medicine, 5801 Smith Avenue, Suite 3220, Baltimore, MD, 21209, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, 5622 Medical Science II, Ann Arbor, MI, 48109, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 29 Oxford Street, Pierce 231, Cambridge, MA, 02138, USA.
| |
Collapse
|
8
|
Getting to Know Viral Evolutionary Strategies: Towards the Next Generation of Quasispecies Models. Curr Top Microbiol Immunol 2015; 392:201-17. [PMID: 26271604 DOI: 10.1007/82_2015_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral populations are formed by complex ensembles of genomes with broad phenotypic diversity. The adaptive strategies deployed by these ensembles are multiple and often cannot be predicted a priori. Our understanding of viral dynamics is mostly based on two kinds of empirical approaches: one directed towards characterizing molecular changes underlying fitness changes and another focused on population-level responses. Simultaneously, theoretical efforts are directed towards developing a formal picture of viral evolution by means of more realistic fitness landscapes and reliable population dynamics models. New technologies, chiefly the use of next-generation sequencing and related tools, are opening avenues connecting the molecular and the population levels. In the near future, we hope to be witnesses of an integration of these still decoupled approaches, leading into more accurate and realistic quasispecies models able to capture robust generalities and endowed with a satisfactory predictive power.
Collapse
|
9
|
Cabanillas L, Sanjuán R, Lázaro E. Changes in protein domains outside the catalytic site of the bacteriophage Qβ replicase reduce the mutagenic effect of 5-azacytidine. J Virol 2014; 88:10480-7. [PMID: 24965463 PMCID: PMC4178890 DOI: 10.1128/jvi.00979-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The high genetic heterogeneity and great adaptability of RNA viruses are ultimately caused by the low replication fidelity of their polymerases. However, single amino acid substitutions that modify replication fidelity can evolve in response to mutagenic treatments with nucleoside analogues. Here, we investigated how two independent mutants of the bacteriophage Qβ replicase (Thr210Ala and Tyr410His) reduce sensitivity to the nucleoside analogue 5-azacytidine (AZC). Despite being located outside the catalytic site, both mutants reduced the mutation frequency in the presence of the drug. However, they did not modify the type of AZC-induced substitutions, which was mediated mainly by ambiguous base pairing of the analogue with purines. Furthermore, the Thr210Ala and Tyr410His substitutions had little or no effect on replication fidelity in untreated viruses. Also, both substitutions were costly in the absence of AZC or when the action of the drug was suppressed by adding an excess of natural pyrimidines (uridine or cytosine). Overall, the phenotypic properties of these two mutants were highly convergent, despite the mutations being located in different domains of the Qβ replicase. This suggests that treatment with a given nucleoside analogue tends to select for a unique functional response in the viral replicase. IMPORTANCE In the last years, artificial increase of the replication error rate has been proposed as an antiviral therapy. In this study, we investigated the mechanisms by which two substitutions in the Qβ replicase confer partial resistance to the mutagenic nucleoside analogue AZC. As opposed to previous work with animal viruses, where different mutations selected sequentially conferred nucleoside analogue resistance through different mechanisms, our results suggest that there are few or no alternative AZC resistance phenotypes in Qβ. Also, despite resistance mutations being highly costly in the absence of the drug, there was no sequential fixation of secondary mutations. Bacteriophage Qβ is the virus with the highest reported mutation rate, which should make it particularly sensitive to nucleoside analogue treatments, probably favoring resistance mutations even if they incur high costs. The results are also relevant for understanding the possible pathways by which fidelity of the replication machinery can be modified.
Collapse
Affiliation(s)
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Ester Lázaro
- Centro de Astrobiología, INTA-CSIC, Madrid, Spain
| |
Collapse
|
10
|
Abstract
ABSTRACT: RNA viruses replicate their genomes with very high error rates, which leads to the generation of a large genetic diversity that makes them highly adaptable to most environmental pressures, including antiviral drugs and immune responses. However, since most mutations are deleterious, an excess of errors can be very negative for RNA viruses, entailing that error rates must be finely regulated. Currently, the manipulation of the error rate is emerging as a promising antiviral therapy that could minimize the problem of virus adaptation to classical treatments. This review provides a detailed analysis of the different outcomes that can result from the variation of the error rate in RNA viruses, on the basis of the more relevant findings obtained in experimental studies.
Collapse
|
11
|
Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure. PLoS One 2014; 9:e100940. [PMID: 24963780 PMCID: PMC4071030 DOI: 10.1371/journal.pone.0100940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023] Open
Abstract
The frequency of change in the selective pressures is one of the main factors driving evolution. It is generally accepted that constant environments select specialist organisms whereas changing environments favour generalists. The particular outcome achieved in either case also depends on the relative strength of the selective pressures and on the fitness costs of mutations across environments. RNA viruses are characterized by their high genetic diversity, which provides fast adaptation to environmental changes and helps them evade most antiviral treatments. Therefore, the study of the adaptive possibilities of RNA viruses is highly relevant for both basic and applied research. In this study we have evolved an RNA virus, the bacteriophage Qβ, under three different temperatures that either were kept constant or alternated periodically. The populations obtained were analyzed at the phenotypic and the genotypic level to characterize the evolutionary process followed by the virus in each case and the amount of convergent genetic changes attained. Finally, we also investigated the influence of the pre-existent genetic diversity on adaptation to high temperature. The main conclusions that arise from our results are: i) under periodically changing temperature conditions, evolution of bacteriophage Qβ is driven by the most stringent selective pressure, ii) there is a high degree of evolutionary convergence between replicated populations and also among populations evolved at different temperatures, iii) there are mutations specific of a particular condition, and iv) adaptation to high temperatures in populations differing in their pre-existent genetic diversity takes place through the selection of a common set of mutations.
Collapse
|
12
|
Cabanillas L, Arribas M, Lázaro E. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus. BMC Evol Biol 2013; 13:11. [PMID: 23323937 PMCID: PMC3556134 DOI: 10.1186/1471-2148-13-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background When beneficial mutations present in different genomes spread simultaneously in an asexual population, their fixation can be delayed due to competition among them. This interference among mutations is mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current study we have investigated whether competition among beneficial mutations was responsible for the prolonged presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qβ, evolved during a large number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine. Results The analysis of the mutant spectra of bacteriophage Qβ populations evolved at artificially increased error rate shows a large number of polymorphic mutations, some of them with demonstrated selective value. Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly complex interference dynamics. Conclusions Interference among beneficial mutations in bacteriophage Qβ evolved at increased error rate permits the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different local maxima that exist in rugged fitness landscapes.
Collapse
Affiliation(s)
- Laura Cabanillas
- Centro de Astrobiología (CSIC-INTA) Ctra de Ajalvir Km 4, Torrejón de Ardoz, Madrid, 28850, Spain
| | | | | |
Collapse
|
13
|
Modelling viral evolution and adaptation: challenges and rewards. Curr Opin Virol 2012; 2:531-7. [DOI: 10.1016/j.coviro.2012.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/25/2012] [Indexed: 01/28/2023]
|
14
|
Perales C, Iranzo J, Manrubia SC, Domingo E. The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 2012; 20:595-603. [PMID: 22989762 DOI: 10.1016/j.tim.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/31/2023]
Abstract
The application of quasispecies theory to viral populations has boosted our understanding of how endogenous and exogenous features condition their adaptation. Mounting empirical evidence demonstrates that internal interactions within mutant spectra may cause unexpected responses to antiviral treatments. In this scenario, increased mutagenesis could be efficient at low mutagen doses due to the lethal action of defective genomes, whereas sequential administration of antiviral drugs might be superior to combination therapies. Our ability to predict the outcome of a particular therapy takes advantage of the complementary use of in vivo observations, in vitro experiments, and mathematical models.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco 28049, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Nucleoside analogue mutagenesis of a single-stranded DNA virus: evolution and resistance. J Virol 2012; 86:9640-6. [PMID: 22740415 DOI: 10.1128/jvi.00613-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been well established that chemical mutagenesis has adverse fitness effects in RNA viruses, often leading to population extinction. This is mainly a consequence of the high RNA virus spontaneous mutation rates, which situate them close to the extinction threshold. Single-stranded DNA viruses are the fastest-mutating DNA-based systems, with per-nucleotide mutation rates close to those of some RNA viruses, but chemical mutagenesis has been much less studied in this type of viruses. Here, we serially passaged bacteriophage X174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU). We found that 5-FU was unable to trigger population extinction for the range of concentrations tested, but it negatively affected viral adaptability. The phage evolved partial drug resistance, and parallel nucleotide substitutions appearing in independently evolved lines were identified as candidate resistance mutations. Using site-directed mutagenesis, two single-nucleotide substitutions in the lysis protein E (T572C and A781G) were shown to be selectively advantageous in the presence of 5-FU. In RNA viruses, base analogue resistance is often mediated by changes in the viral polymerase, but this mechanism is not possible for X174 and other single-stranded DNA viruses because they do not encode their own polymerase. In addition to increasing mutation rates, 5-FU produces a wide variety of cytotoxic effects at the levels of replication, transcription, and translation. We found that substitutions T572C and A781G lost their ability to confer 5-FU resistance after cells were supplemented with deoxythymidine, suggesting that their mechanism of action is at the DNA level. We hypothesize that regulation of lysis time may allow the virus to optimize progeny size in cells showing defects in DNA synthesis.
Collapse
|
16
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
17
|
Cuesta JA. Huge progeny production during the transient of a quasi-species model of viral infection, reproduction and mutation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2010.11.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Tempo and mode of inhibitor-mutagen antiviral therapies: a multidisciplinary approach. Proc Natl Acad Sci U S A 2011; 108:16008-13. [PMID: 21911373 DOI: 10.1073/pnas.1110489108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The continuous emergence of drug-resistant viruses is a major obstacle for the successful treatment of viral infections, thus representing a persistent spur to the search for new therapeutic strategies. Among them, multidrug treatments are currently at the forefront of pharmaceutical, clinical, and computational investigation. Still, there are many unknowns in the way that different drugs interact among themselves and with the pathogen that they aim to control. Inspired by experimental studies with picornavirus, here, we discuss the performance of sequential vs. combination therapies involving two dissimilar drugs: the mutagen ribavirin and an inhibitor of viral replication, guanidine. Because a systematic analysis of viral response to drug doses demands a precious amount of time and resources, we present and analyze an in silico model describing the dynamics of the viral population under the action of the two drugs. The model predicts the response of the viral population to any dose combination, the optimal therapy to be used in each case, and the way to minimize the probability of appearance of resistant mutants. In agreement with the theoretical predictions, in vitro experiments with foot-and-mouth disease virus confirm that the suitability of simultaneous or sequential administration depends on the drug doses. In addition, intrinsic replicative characteristics of the virus (e.g., replication through RNA only or a DNA intermediate) play a key role to determine the appropriateness of a sequential or combination therapy. Knowledge of several model parameters can be derived by means of few, simple experiments, such that the model and its predictions can be extended to other viral systems.
Collapse
|
19
|
Capitán JA, Cuesta JA, Manrubia SC, Aguirre J. Severe hindrance of viral infection propagation in spatially extended hosts. PLoS One 2011; 6:e23358. [PMID: 21912595 PMCID: PMC3160299 DOI: 10.1371/journal.pone.0023358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022] Open
Abstract
The production of large progeny numbers affected by high mutation rates is a ubiquitous strategy of viruses, as it promotes quick adaptation and survival to changing environments. However, this situation often ushers in an arms race between the virus and the host cells. In this paper we investigate in depth a model for the dynamics of a phenotypically heterogeneous population of viruses whose propagation is limited to two-dimensional geometries, and where host cells are able to develop defenses against infection. Our analytical and numerical analyses are developed in close connection to directed percolation models. In fact, we show that making the space explicit in the model, which in turn amounts to reducing viral mobility and hindering the infective ability of the virus, connects our work with similar dynamical models that lie in the universality class of directed percolation. In addition, we use the fact that our model is a multicomponent generalization of the Domany-Kinzel probabilistic cellular automaton to employ several techniques developed in the past in that context, such as the two-site approximation to the extinction transition line. Our aim is to better understand propagation of viral infections with mobility restrictions, e.g., in crops or in plant leaves, in order to inspire new strategies for effective viral control.
Collapse
Affiliation(s)
- José A. Capitán
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | | | - Jacobo Aguirre
- Centro de Astrobiología, CSIC-INTA, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
20
|
Arribas M, Cabanillas L, Lázaro E. Identification of mutations conferring 5-azacytidine resistance in bacteriophage Qβ. Virology 2011; 417:343-52. [PMID: 21757215 DOI: 10.1016/j.virol.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
Abstract
RNA virus replication takes place at a very high error rate, and additional increases in this parameter can produce the extinction of virus infectivity. Nevertheless, RNA viruses can adapt to conditions of increased mutagenesis, which demonstrates that selection of beneficial mutations is also possible at higher-than-standard error rates. In this study we have analysed the evolutionary behaviour of bacteriophage Qβ populations when replication proceeds in the presence of the mutagenic nucleoside analogue 5-azacytidine (AZC). We have obtained a virus population with reduced capacity to accumulate mutations in the presence of AZC and able to avoid extinction under conditions that are lethal for the wild type virus. Adapted populations fix a substitution in the readthrough protein gene and incorporate several mutations in the replicase gene that, despite having selective value, remain polymorphic after a large number of transfers in the presence of AZC.
Collapse
Affiliation(s)
- María Arribas
- Centro de Astrobiología (INTA-CSIC), Ctra de Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | | | | |
Collapse
|
21
|
Cuesta JA, Aguirre J, Capitán JA, Manrubia SC. Struggle for space: viral extinction through competition for cells. PHYSICAL REVIEW LETTERS 2011; 106:028104. [PMID: 21405255 DOI: 10.1103/physrevlett.106.028104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 05/30/2023]
Abstract
The design of protocols to suppress the propagation of viral infections is an enduring enterprise, especially hindered by limited knowledge of the mechanisms leading to viral extinction. Here we report on infection extinction due to intraspecific competition to infect susceptible hosts. Beneficial mutations increase the production of viral progeny, while the host cell may develop defenses against infection. For an unlimited number of host cells, a feedback runaway coevolution between host resistance and progeny production occurs. However, physical space limits the advantage that the virus obtains from increasing offspring numbers; thus, infection clearance may result from an increase in host defenses beyond a finite threshold. Our results might be relevant to devise improved control strategies in environments with mobility constraints or different geometrical properties.
Collapse
Affiliation(s)
- José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Manrubia SC, Domingo E, Lázaro E. Pathways to extinction: beyond the error threshold. Philos Trans R Soc Lond B Biol Sci 2010; 365:1943-52. [PMID: 20478889 DOI: 10.1098/rstb.2010.0076] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of the quasispecies and the error catastrophe concepts for molecular evolution by Eigen and their subsequent application to viral populations, increased mutagenesis has become a common strategy to cause the extinction of viral infectivity. Nevertheless, the high complexity of virus populations has shown that viral extinction can occur through several other pathways apart from crossing an error threshold. Increases in the mutation rate enhance the appearance of defective forms and promote the selection of mechanisms that are able to counteract the accelerated appearance of mutations. Current models of viral evolution take into account more realistic scenarios that consider compensatory and lethal mutations, a highly redundant genotype-to-phenotype map, rough fitness landscapes relating phenotype and fitness, and where phenotype is described as a set of interdependent traits. Further, viral populations cannot be understood without specifying the characteristics of the environment where they evolve and adapt. Altogether, it turns out that the pathways through which viral quasispecies go extinct are multiple and diverse.
Collapse
Affiliation(s)
- Susanna C Manrubia
- Centro de Astrobiología, INTA-CSIC, Ctra. de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | |
Collapse
|
23
|
Variable mutation rates as an adaptive strategy in replicator populations. PLoS One 2010; 5:e11186. [PMID: 20567506 PMCID: PMC2887357 DOI: 10.1371/journal.pone.0011186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/20/2010] [Indexed: 02/01/2023] Open
Abstract
For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates.
Collapse
|
24
|
Stich M, Lázaro E, Manrubia SC. Phenotypic effect of mutations in evolving populations of RNA molecules. BMC Evol Biol 2010; 10:46. [PMID: 20163698 PMCID: PMC2841169 DOI: 10.1186/1471-2148-10-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 02/17/2010] [Indexed: 11/17/2022] Open
Abstract
Background The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate μ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of μ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks.
Collapse
|
25
|
Patwa Z, Wahl LM. Adaptation rates of lytic viruses depend critically on whether host cells survive the bottleneck. Evolution 2009; 64:1166-72. [PMID: 19895555 DOI: 10.1111/j.1558-5646.2009.00887.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use a branching process approach to estimate the substitution rate, the rate at which beneficial mutations occur and fix, in populations of lytic viruses whose growth is controlled by periodic population bottlenecks. Our model predicts that substitution rates, and by extension adaptation rates, are profoundly affected by the survival of infected host cells at the bottleneck. In particular, we find that direct transfer (or environmental) bottlenecks, in which some fraction of both free virus and host cells are preserved, are associated with relatively slow adaptation rates for the virus. In contrast, viruses can adapt much more quickly when only free virus is transferred to a new host population, as is typical in an epidemiological setting. Finally, when premature lysis of the host-cell population is induced at the bottleneck, we predict that adaptation rates for the virus will, in general, be faster still. These results hold irrespective of the life-history trait affected by the beneficial mutation. The substitution rates in the presence of environmental bottlenecks are predicted to be as much as an order of magnitude lower than in the other two cases.
Collapse
Affiliation(s)
- Zaheerabbas Patwa
- Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | |
Collapse
|
26
|
Abstract
Evolution at high mutation rates is expected to reduce population fitness deterministically by the accumulation of deleterious mutations. A high enough rate should even cause extinction (lethal mutagenesis), a principle motivating the clinical use of mutagenic drugs to treat viral infections. The impact of a high mutation rate on long-term viral fitness was tested here. A large population of the DNA bacteriophage T7 was grown with a mutagen, producing a genomic rate of 4 nonlethal mutations per generation, two to three orders of magnitude above the baseline rate. Fitness-viral growth rate in the mutagenic environment-was predicted to decline substantially; after 200 generations, fitness had increased, rejecting the model. A high mutation load was nonetheless evident from (i) many low- to moderate-frequency mutations in the population (averaging 245 per genome) and (ii) an 80% drop in average burst size. Twenty-eight mutations reached high frequency and were thus presumably adaptive, clustered mostly in DNA metabolism genes, chiefly DNA polymerase. Yet blocking DNA polymerase evolution failed to yield a fitness decrease after 100 generations. Although mutagenic drugs have caused viral extinction in vitro under some conditions, this study is the first to match theory and fitness evolution at a high mutation rate. Failure of the theory challenges the quantitative basis of lethal mutagenesis and highlights the potential for adaptive evolution at high mutation rates.
Collapse
|
27
|
Mbanzibwa DR, Tian Y, Mukasa SB, Valkonen JPT. Cassava brown streak virus (Potyviridae) encodes a putative Maf/HAM1 pyrophosphatase implicated in reduction of mutations and a P1 proteinase that suppresses RNA silencing but contains no HC-Pro. J Virol 2009; 83:6934-40. [PMID: 19386713 PMCID: PMC2698530 DOI: 10.1128/jvi.00537-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/15/2009] [Indexed: 11/20/2022] Open
Abstract
The complete positive-sense single-stranded RNA genome of Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae) was found to consist of 9,069 nucleotides and predicted to produce a polyprotein of 2,902 amino acids. It was lacking helper-component proteinase but contained a single P1 serine proteinase that strongly suppressed RNA silencing. Besides the exceptional structure of the 5'-proximal part of the genome, CBSV also contained a Maf/HAM1-like sequence (678 nucleotides, 226 amino acids) recombined between the replicase and coat protein domains in the 3'-proximal part of the genome, which is highly conserved in Potyviridae. HAM1 was flanked by consensus proteolytic cleavage sites for ipomovirus NIaPro cysteine proteinase. Homology of CBSV HAM1 with cellular Maf/HAM1 pyrophosphatases suggests that it may intercept noncanonical nucleoside triphosphates to reduce mutagenesis of viral RNA.
Collapse
Affiliation(s)
- Deusdedith R Mbanzibwa
- Department of Applied Biology, University of Helsinki, P.O. Box 27, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|