1
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
2
|
Kumar GS, Dubey A, Panda SP, Alawi MM, Sindi AA, Azhar EI, Dwivedi VD, Agrawal S. Repurposing of antibacterial compounds for suppression of Mycobacterium tuberculosis dormancy reactivation by targeting resuscitation-promoting factors B. J Biomol Struct Dyn 2024; 42:6850-6862. [PMID: 37551014 DOI: 10.1080/07391102.2023.2245059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/08/2023] [Indexed: 08/09/2023]
Abstract
Tuberculosis infection has always been a global concern for public health, and the mortality rate has increased tremendously every year. The ability of the resuscitation Mycobacterium tuberculosis (Mtb) from the dormant state is one of the major reasons for the epidemic spread of tuberculosis infection, especially latent tuberculosis infection (LTBI). The element that encourages resuscitation, RpfB (resuscitation-promoting factors B), is mostly in charge of bringing Mtb out of slumber. This reason makes RpfB a promising target for developing tuberculosis drugs because of the effects of latent tuberculosis. Therefore, this work was executed using a computational three-level screening of the Selleckhem antibiotics database consisting of 462 antibiotics against the ligand binding region of the RpfB protein, followed by an estimation of binding free energy for ideal identification and confirmation of potential RpfB inhibitor. Subsequently, three antibiotic drug molecules, i.e., Amikacin hydrate (-66.87 kcal/mol), Isepamicin sulphate (-60.8 kcal/mol), and Bekanamycin (-46.89 kcal/mol), were selected on the basis of their binding free energy value for further computational studies in comparison to reference ligand, 4-benzoyl-2-nitrophenyl thiocyanate (NPT7). Based on the intermolecular interaction profiling, 200 ns molecular dynamic simulation (MD), post-simulation analysis and principal component analysis (PCA), the selected antibiotics showed substantial stability with the RpfB protein compared to the NPT7 inhibitor. Conclusively based on the computational results, the preferred drugs can be potent inhibitors of the RpfB protein, which can be further validated using in vivo research and in vitro enzyme inhibition to understand their therapeutic activity against tuberculosis infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Maha M Alawi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anees A Sindi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pulmonary and Critical Care Department, International Medical Center Hospital, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sharad Agrawal
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Li X, Ren Q, Sun Z, Wu Y, Pan H. Resuscitation Promotion Factor: A Pronounced Bacterial Cytokine in Propelling Bacterial Resuscitation. Microorganisms 2024; 12:1528. [PMID: 39203370 PMCID: PMC11356341 DOI: 10.3390/microorganisms12081528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
While confronted with unfavorable growth conditions, bacteria may transform into the dormant state, such as viable but nonculturable (VBNC) state, which is a reversible state characterized by low metabolic activity and lack of division. These dormant cells can be reactivated through the influence of the resuscitation promoting factor (Rpf) family, which are classified as autocrine growth factors and possess peptidoglycan hydrolase activities. To date, with the significant resuscitation or growth promotion ability of Rpf, it has been extensively applied to increasing bacterial diversity and isolating functional microbial species. This review provides a comprehensive analysis of the distribution, mode of action, and functional mechanisms of Rpf proteins in various bacterial species. The aim is to create opportunities for decoding microbial communities and extracting microbial resources from real samples across different research fields.
Collapse
Affiliation(s)
| | | | | | | | - Hanxu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (Q.R.); (Z.S.); (Y.W.)
| |
Collapse
|
4
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
5
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a new family of peptidoglycan transpeptidases reveals atypical crosslinking is essential for viability in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584917. [PMID: 38559057 PMCID: PMC10980060 DOI: 10.1101/2024.03.14.584917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Present address: Haleon, 1211 Sherwood Ave, Richmond, VA 23220
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| |
Collapse
|
6
|
Brenner EP, Sreevatsan S. Attenuated but immunostimulatory Mycobacterium tuberculosis variant bovis strain Ravenel shows variation in T cell epitopes. Sci Rep 2023; 13:12402. [PMID: 37524777 PMCID: PMC10390569 DOI: 10.1038/s41598-023-39578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.
Collapse
Affiliation(s)
- Evan P Brenner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Berisio R, Ruggiero A. Virulence Factors in Mycobacterium tuberculosis Infection: Structural and Functional Studies. Biomolecules 2023; 13:1201. [PMID: 37627265 PMCID: PMC10452091 DOI: 10.3390/biom13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains one of the main causes of death by infection, especially in immunocompromised patients [...].
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), I-80131 Napoli, Italy
| |
Collapse
|
8
|
Role of Resuscitation Promoting Factor-like Protein from Nocardiopsis halophila. Microorganisms 2023; 11:microorganisms11020485. [PMID: 36838450 PMCID: PMC9966590 DOI: 10.3390/microorganisms11020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Resuscitation promoting factors (Rpf), a class of proteins secreted by gram-positive bacteria including actinobacteria, promote the resuscitation of dormant bacteria and spore germination. Here, we describe the reconstitution of the resuscitation promoting activity of the Rpf protein from Nocardiopsis halophila CGMCC 4.1195Tin vitro and in vivo. The Rpf protein was expressed in the host Escherichia coli BL21 codon plus (DE3) and was confirmed to have a significant resuscitation effect on the viable but non-culturable (VBNC) N. halophila. Subsequently, the rpf gene of N. halophila was knocked out. We found that the growth rate of the mutant strain (Δrpf) was slower than that of the wild strain, and the former produced significantly shorter spores than the wild-type strain. Our results confirmed the activity of the Rpf protein in N. halophila to promote dormant bacteria resuscitation. This study will lay the foundation for the application of the Rpf protein from N. halophila to exploit actinomycetes resources.
Collapse
|
9
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
10
|
Ruggiero A, Choi HG, Barra G, Squeglia F, Back YW, Kim HJ, Berisio R. Structure based design of effective HtpG-derived vaccine antigens against M. tuberculosis. Front Mol Biosci 2022; 9:964645. [PMID: 36032688 PMCID: PMC9403545 DOI: 10.3389/fmolb.2022.964645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette–Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Young Woo Back
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| |
Collapse
|
11
|
Ye Z, Li H, Jia Y, Fan J, Wan J, Guo L, Su X, Zhang Y, Wu WM, Shen C. Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9 T. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114488. [PMID: 32244156 DOI: 10.1016/j.envpol.2020.114488] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The biodegradation of polychlorinated biphenyls (PCBs) occurs slowly when the degrading bacteria enter a low activity state, such as a viable but nonculturable (VBNC) state, under unfavorable environmental conditions. The introduction of resuscitation-promoting factor (Rpf) can re-activate VBNC bacteria. This study tested the feasibility of enhancing PCB biodegradation via supplementing Rpf in liquid culture and soil microcosms inoculated with Rhodococcus biphenylivorans strain TG9T. Exogenous Rpf resuscitated TG9T cells that had previously entered the VBNC state after 90 d of nutrient starvation, resulting in the significantly enhanced degradation of PCB by 24.3% over 60 h in liquid medium that originally contained 50 mg L-1 Aroclor 1242. In soil microcosms containing 50 mg kg-1 Aroclor 1242 and inoculated with VBNC TG9T cells, after 49 d of supplementation with Rpf, degradation efficiency of PCB reached 34.2%, which was significantly higher than the control. Our results confirmed that exogenous Rpf resuscitated VBNC TG9T cells by stimulating endogenous expression of rpf gene orthologs. The enhanced PCB-degrading capability was likely due to the increased cell numbers and the strong expression of PCB catabolic genes. This study demonstrated the role of Rpf in enhancing PCB degradation via resuscitating PCB-degrading bacteria, indicating a promising approach for the remediation of PCB contamination.
Collapse
Affiliation(s)
- Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Hongxuan Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Jixing Wan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Li Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William and Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA, 94305-4020, United States
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Sexton DL, Herlihey FA, Brott AS, Crisante DA, Shepherdson E, Clarke AJ, Elliot MA. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J Biol Chem 2020; 295:9171-9182. [PMID: 32434927 PMCID: PMC7335776 DOI: 10.1074/jbc.ra120.013994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.
Collapse
Affiliation(s)
- Danielle L Sexton
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - David A Crisante
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Evan Shepherdson
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Marie A Elliot
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
13
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
14
|
Gordhan BG, Peters J, Kana BD. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease. ADVANCES IN APPLIED MICROBIOLOGY 2019; 108:115-161. [PMID: 31495404 DOI: 10.1016/bs.aambs.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) claims more human lives than any other infectious organism. The lethal synergy between TB-HIV infection and the rapid emergence of drug resistant strains has created a global public health threat that requires urgent attention. Mycobacterium tuberculosis, the causative agent of TB is an exquisitely well-adapted human pathogen, displaying the ability to promptly remodel metabolism when encountering stressful environments during pathogenesis. A careful study of the mechanisms that enable this adaptation will enhance the understanding of key aspects related to the microbiology of TB disease. However, these efforts require microbiological model systems that mimic host conditions in the laboratory. Herein, we describe several in vitro model systems that generate non-replicating and differentially culturable mycobacteria. The changes that occur in the metabolism of M. tuberculosis in some of these models and how these relate to those reported for human TB disease are discussed. We describe mechanisms that tubercle bacteria use to resuscitate from these non-replicating conditions, together with phenotypic heterogeneity in terms of culturabiliy of M. tuberculosis in sputum. Transcriptional changes in M. tuberculosis that allow for adaptation of the organism to the lung environment are also summarized. Finally, given the emerging importance of the microbiome in various infectious diseases, we provide a description of how the lung and gut microbiome affect susceptibility to TB infection and response to treatment. Consideration of these collective aspects will enhance the understanding of basic metabolism, physiology, drug tolerance and persistence in M. tuberculosis to enable development of new therapeutic interventions.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Julian Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh Davandra Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
15
|
Calvanese L, Squeglia F, Romano M, D'Auria G, Falcigno L, Berisio R. Structural and dynamic studies provide insights into specificity and allosteric regulation of ribonuclease as, a key enzyme in mycobacterial virulence. J Biomol Struct Dyn 2019; 38:2455-2467. [PMID: 31299874 DOI: 10.1080/07391102.2019.1643786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease AS (RNase AS) is a crucial enzyme for virulence of Mycobacterium tuberculosis. We previously observed that RNase AS structurally resembles RNase T from Escherichia coli, an important enzyme for tRNA maturation and turnover. Here, we combine X-ray crystallography and molecular dynamics (MD) to investigate the specificity and dynamic properties of substrate binding. Both X-ray and MD data provide structural determinants that corroborate the strict substrate specificity of RNase AS to cleave only adenosine residues, due to the structural features of adenine base. Beside suggesting tRNA as most likely substrate of RNase AS, MD and modeling studies identify key enzyme-ligand interactions, both involving the catalytic site and the double helix region of tRNA, which is locked by interactions with a set of arginine residues. The MD data also evidence a ligand-induced conformational change of the enzyme which is transferred from one chain to the adjacent one. These data will explain the dimeric nature of both RNase AS and RNase T, with two catalytic grooves composed of both chains. Also, they account for the dichotomy of tRNA, which contains both the substrate poly(A) chain and an inhibiting double strand RNA. Indeed, they provide a possible mechanism of allosteric regulation, which unlocks one catalytic groove when the second groove is inhibited by the double strand region of tRNA. Finally, a full comprehension of the molecular details of tRNA maturation processes is essential to develop novel strategies to modulate RNA processing, for therapeutic purposes. AbbreviationsMDmolecular dynamicsPDBProtein Data BankRMSDroot mean square deviationRMSFroot mean square fluctuationRNAribonucleotidic acidRNase ASRibonuclease ASCommunicated by Ramasamy H. Sarma.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Squeglia
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| | - Maria Romano
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| |
Collapse
|
16
|
Squeglia F, Moreira M, Ruggiero A, Berisio R. The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective. Cells 2019; 8:cells8060609. [PMID: 31216697 PMCID: PMC6628586 DOI: 10.3390/cells8060609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| |
Collapse
|
17
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
18
|
Resuscitation-Promoting Factors Are Required for Mycobacterium smegmatis Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.00687-18. [PMID: 29915116 DOI: 10.1128/aem.00687-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.
Collapse
|
19
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
20
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
21
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
22
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
23
|
Demina GR, Nikitushkin VD, Shleeva MO, Riabova OB, Lepioshkin AY, Makarov VA, Kaprelyants AS. Benzoylphenyl thiocyanates are new, effective inhibitors of the mycobacterial resuscitation promoting factor B protein. Ann Clin Microbiol Antimicrob 2017; 16:69. [PMID: 29096645 PMCID: PMC5667462 DOI: 10.1186/s12941-017-0244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022] Open
Abstract
Background Resuscitation promoting factors (Rpfs) are the proteins involved in the process of reactivation of the dormant cells of mycobacteria. Recently a new class of nitrophenylthiocyanates (NPTs), capable of inhibiting the biological and enzymatic activities of Rpfs has been discovered. In the current study the inhibitory properties of the compounds containing both nitro and thiocyanate groups alongside with the compounds with the modified number and different spatial location of the substituents are compared. Methods New benzoylphenyl thiocyanates alongside with nitrophenylthiocyanates were tested in the enzymatic assay of bacterial peptidoglycan hydrolysis as well as against strains of several actinobacteria (Mycobacterium smegmatis, Mycobacterium tuberculosis) on in-lab developed models of resuscitation of the dormant forms. Results Introduction of the additional nitro and thiocyanate groups to the benzophenone scaffold did not influence the inhibitory activity of the compounds. Removal of the nitro groups analogously did not impair the functional properties of the molecules. Among the tested compounds two molecules without nitro group: 3-benzoylphenyl thiocyanate and 4-benzoylphenyl thiocyanate demonstrated the maximum activity in both enzymatic assay (inhibition of the Rpf-mediated peptidoglycan hydrolysis) and in the resuscitation assay of the dormant M. tuberculosis cells. Conclusions The current study demonstrates dispensability of the nitro group in the NPT’s structure for inhibition of the enzymatic and biological activities of the Rpf protein molecules. These findings provide new prospects in anti-TB drug discovery especially in finding of molecular scaffolds effective for the latent infection treatment. Electronic supplementary material The online version of this article (10.1186/s12941-017-0244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Galina R Demina
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Vadim D Nikitushkin
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia.
| | - Margarita O Shleeva
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Olga B Riabova
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Alexander Yu Lepioshkin
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Vadim A Makarov
- Laboratory of Biomedicinal Chemistry, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| | - Arseny S Kaprelyants
- Laboratory of Biochemistry of Stress in Microorganisms, A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky prospect, 33 (2), Moscow, 119071, Russia
| |
Collapse
|
24
|
Rifat D, Campodónico VL, Tao J, Miller JA, Alp A, Yao Y, Karakousis PC. In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiol 2017; 12:753-765. [PMID: 28343421 DOI: 10.2217/fmb-2017-0022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM There is controversy regarding the potential fitness costs of rifampicin (RIF) resistance-conferring mutations in the Mycobacterium tuberculosis (Mtb) rpoB gene. We characterized the pathogenicity of an Mtb RpoB H526D mutant. MATERIALS & METHODS A mutant containing the RpoB H526D mutation was isolated from wild-type Mtb grown on RIF-containing plates and complemented for determination of in vitro and in vivo fitness costs. RESULTS The RpoB H526D mutant showed reduced survival relative to control strains during progressive hypoxia and delayed growth following resuscitation from nutrient starvation (p < 0.05), which was associated with reduced expression of the resuscitation-promoting factor genes rpfB, rpfC and rpfE. Relative to the isogenic wild-type strain, the mutant showed significantly attenuated growth and long-term survival as well as reduced inflammation in mouse lungs. Conclusion & future perspective: Our data suggest that RpoB H526D mutation confers a fitness cost during growth-limiting conditions in vitro and in mouse lungs.
Collapse
Affiliation(s)
- Dalin Rifat
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Victoria L Campodónico
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jing Tao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of Microbiology & Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - James A Miller
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Alpaslan Alp
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yufeng Yao
- Department of Microbiology & Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21205, USA
| |
Collapse
|
25
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
26
|
Nikitushkin VD, Demina GR, Kaprelyants AS. Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. BIOCHEMISTRY (MOSCOW) 2017; 81:1719-1734. [DOI: 10.1134/s0006297916130095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
van Wyk N, Drancourt M, Henrissat B, Kremer L. Current perspectives on the families of glycoside hydrolases ofMycobacterium tuberculosis: their importance and prospects for assigning function to unknowns. Glycobiology 2016; 27:112-122. [DOI: 10.1093/glycob/cww099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/28/2016] [Accepted: 09/26/2016] [Indexed: 11/14/2022] Open
|
28
|
Ruggiero A, Squeglia F, Romano M, Vitagliano L, De Simone A, Berisio R. Structure and dynamics of the multi-domain resuscitation promoting factor RpfB from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:1322-1330. [PMID: 27420638 DOI: 10.1080/07391102.2016.1182947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RpfB is multidomain protein that is crucial for Mycobacterium tuberculosis resuscitation from dormancy. This protein cleaves cell wall peptidoglycan, an essential bacterial cell wall polymer formed by glycan chains of β-(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptide stems. RpfB is structurally complex being composed of five distinct domains, namely a catalytic, a G5 and three DUF348 domains. Here, we have undertaken a combined experimental and computation structural investigations on the entire protein to gain insights into its structure-function relationships. CD spectroscopy and light scattering experiments have provided insights into the protein fold stability and into its oligomeric state. Using the available structure information, we modeled the entire protein structure, which includes the two DUF348 domains whose structure is experimentally unknown, and we analyzed the dynamic behavior of RpfB using molecular dynamics simulations. Present results highlight an intricate mutual influence of the dynamics of the different protein domains. These data provide interesting clues on the functional role of non-catalytic domains of RpfB and on the mechanism of peptidoglycan degradation necessary to resuscitation of M. tuberculosis.
Collapse
Affiliation(s)
- Alessia Ruggiero
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Flavia Squeglia
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Maria Romano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Luigi Vitagliano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Alfonso De Simone
- b Division of Molecular Biosciences , Imperial College London , London , UK
| | - Rita Berisio
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| |
Collapse
|
29
|
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword. FEBS Lett 2016; 590:3800-3819. [PMID: 27350117 DOI: 10.1002/1873-3468.12273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
30
|
NMR Structure and Dynamics of the Resuscitation Promoting Factor RpfC Catalytic Domain. PLoS One 2015; 10:e0142807. [PMID: 26576056 PMCID: PMC4648573 DOI: 10.1371/journal.pone.0142807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/27/2015] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis latent infection is maintained for years with no clinical symptoms and no adverse effects for the host. The mechanism through which dormant M. tuberculosis resuscitates and enters the cell cycle leading to tuberculosis is attracting much interest. The RPF family of proteins has been found to be responsible for bacteria resuscitation and normal proliferation. This family of proteins in M. tuberculosis is composed by five homologues (named RpfA-E) and understanding their conformational, structural and functional peculiarities is crucial to the design of therapeutic strategies.Therefore, we report the structural and dynamics characterization of the catalytic domain of RpfC from M. tubercolosis by combining Nuclear Magnetic Resonance, Circular Dichroism and Molecular Dynamics data. We also show how the formation of a disulfide bridge, highly conserved among the homologues, is likely to modulate the shape of the RpfC hydrophobic catalytic cleft. This might result in a protein function regulation via a “conformational editing” through a disulfide bond formation.
Collapse
|
31
|
Ruggiero A, Squeglia F, Romano M, Vitagliano L, De Simone A, Berisio R. The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. Biochim Biophys Acta Gen Subj 2015; 1860:445-51. [PMID: 26549874 DOI: 10.1016/j.bbagen.2015.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND RpfB is a key factor in resuscitation from dormancy of Mycobacterium tuberculosis. This protein is a cell-wall glycosidase, which cleaves cell-wall peptidoglycan. RpfB is structurally complex and is composed of three types of domains, including a catalytic, a G5 and three DUF348 domains. Structural information is currently limited to a portion of the protein including only the catalytic and G5 domains. To gain insights into the structure and function of all domains we have undertaken structural investigations on a large protein fragment containing all three types of domains that constitute RpfB (RpfB3D). METHODS The structural features of RpfB3D have been investigated combining x-ray crystallography and biophysical studies. RESULTS AND CONCLUSIONS The crystal structure of RpfB3D provides the first structural characterization of a DUF348 domain and revealed an unexpected structural relationship with ubiquitin. The crystal structure also provides specific structural features of these domains explaining their frequent association with G5 domains. GENERAL SIGNIFICANCE Results provided novel insights into the mechanism of peptidoglycan degradation necessary to the resuscitation of M. tuberculosis. Features of the DUF348 domain add structural data to a large set of proteins embedding this domain. Based on its structural similarity to ubiquitin and frequent association to the G5 domain, we propose to name this domain as G5-linked-Ubiquitin-like domain, UBLG5.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy.
| |
Collapse
|
32
|
A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection. PLoS One 2015; 10:e0137578. [PMID: 26356298 PMCID: PMC4565658 DOI: 10.1371/journal.pone.0137578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.
Collapse
|
33
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
34
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
35
|
Nikitushkin VD, Demina GR, Shleeva MO, Guryanova SV, Ruggiero A, Berisio R, Kaprelyants AS. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J 2015; 282:2500-11. [PMID: 25846449 DOI: 10.1111/febs.13292] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Abstract
Resuscitation-promoting factor proteins (Rpfs) are known to participate in reactivating the dormant forms of actinobacteria. Structural analysis of the Rpf catalytic domain demonstrates its similarity to lysozyme and to lytic transglycosylases - the groups of enzymes that cleave the β-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc, and concomitantly form a 1,6-anhydro ring at the MurNAc residue. Analysis of the products formed from mycobacterial peptidoglycan hydrolysis reactions containing a mixture of RpfB and resuscitation-promoting factor interacting protein (RipA) allowed us to identify the suggested product of their action - N-acetylglucosaminyl-β(1 → 4)-N-glycolyl-1,6-anhydromuramyl-L-alanyl-D-isoglutamate. To identify the role of this resulting product in resuscitation, we used a synthetic 1,6-anhydrodisaccharide-dipeptide, and tested its ability to stimulate resuscitation by using the dormant Mycobacterium smegmatis model. It was found that the disaccharide-dipeptide was the minimal structure capable of resuscitating the dormant mycobacterial cells over the concentration range of 9-100 ng · mL(-1). The current study therefore provides the first insights into the molecular mechanism of resuscitation from dormancy involving a product of RpfB/RipA-mediated peptidoglycan cleavage.
Collapse
Affiliation(s)
- Vadim D Nikitushkin
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana V Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Napoli, Italy
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
St-Onge RJ, Haiser HJ, Yousef MR, Sherwood E, Tschowri N, Al-Bassam M, Elliot MA. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol Microbiol 2015; 96:779-95. [PMID: 25682701 DOI: 10.1111/mmi.12971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Peptidoglycan degradative enzymes have important roles at many stages during the bacterial life cycle, and it is critical that these enzymes be stringently regulated to avoid compromising the integrity of the cell wall. How this regulation is exerted is of considerable interest: promoter-based control and protein-protein interactions are known to be employed; however, other regulatory mechanisms are almost certainly involved. In the actinobacteria, a class of muralytic enzymes - the 'resuscitation-promoting factors' (Rpfs) - orchestrates the resuscitation of dormant cells. In this study, we have taken a holistic approach to exploring the mechanisms governing RpfA function using the model bacterium Streptomyces coelicolor and have uncovered unprecedented multilevel regulation that is coordinated by three second messengers. Our studies show that RpfA is subject to transcriptional control by the cyclic AMP receptor protein, riboswitch-mediated transcription attenuation in response to cyclic di-AMP, and growth stage-dependent proteolysis in response to ppGpp accumulation. Furthermore, our results suggest that these control mechanisms are likely applicable to cell wall lytic enzymes in other bacteria.
Collapse
Affiliation(s)
- Renée J St-Onge
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Henry J Haiser
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mary R Yousef
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Emma Sherwood
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Natalia Tschowri
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mahmoud Al-Bassam
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Mavrici D, Prigozhin DM, Alber T. Mycobacterium tuberculosis RpfE crystal structure reveals a positively charged catalytic cleft. Protein Sci 2015; 23:481-7. [PMID: 24452911 DOI: 10.1002/pro.2431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 11/07/2022]
Abstract
Resuscitation promoting factor (Rpf) proteins, which hydrolyze the sugar chains in cell-wall peptidoglycan (PG), play key roles in prokaryotic cell elongation, division, and escape from dormancy to vegetative growth. Like other bacteria, Mycobacterium tuberculosis (Mtb) expresses multiple Rpfs, none of which is individually essential. This redundancy has left unclear the distinct functions of the different Rpfs. To explore the distinguishing characteristics of the five Mtb Rpfs, we determined the crystal structure of the RpfE catalytic domain. The protein adopts the characteristic Rpf fold, but the catalytic cleft is narrower compared to Mtb RpfB. Also in contrast to RpfB, in which the substrate-binding surfaces are negatively charged, the corresponding RpfE catalytic pocket and predicted peptide-binding sites are more positively charged at neutral pH. The complete reversal of the electrostatic potential of the substrate-binding site suggests that the different Rpfs function optimally at different pHs or most efficiently hydrolyze different micro-domains of PG. These studies provide insights into the molecular determinants of the evolution of functional specialization in Rpfs.
Collapse
Affiliation(s)
- Daniela Mavrici
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, California, 94720
| | | | | |
Collapse
|
38
|
Proença D, Velours C, Leandro C, Garcia M, Pimentel M, São-José C. A two-component, multimeric endolysin encoded by a single gene. Mol Microbiol 2014; 95:739-53. [PMID: 25388025 DOI: 10.1111/mmi.12857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/11/2023]
Abstract
Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to fight bacterial infections has been intensively studied. Endolysins from Gram-positive systems are typically described as monomeric and as having a modular structure consisting of one or two N-terminal catalytic domains (CDs) linked to a C-terminal region responsible for cell wall binding (CWB). We show here that expression of the endolysin gene lys170 of the enterococcal phage F170/08 results in two products, the expected full length endolysin (Lys170FL) and a C-terminal fragment corresponding to the CWB domain (CWB170). The latter is produced from an in-frame, alternative translation start site. Both polypeptides interact to form the fully active endolysin. Biochemical data strongly support a model where Lys170 is made of one monomer of Lys170FL associated with up to three CWB170 subunits, which are responsible for efficient endolysin binding to its substrate. Bioinformatics analysis indicates that similar secondary translation start signals may be used to produce and add independent CWB170-like subunits to different enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new mode of increasing the number of CWB motifs associated to CD modules, as an alternative to the tandem repetition typically found in monomeric cell wall hydrolases.
Collapse
Affiliation(s)
- Daniela Proença
- Technophage, SA, Av. Professor Egas Moniz, Ed. Egas Moniz, piso 2, 1649-028, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
Chauviac FX, Robertson G, Quay DHX, Bagnéris C, Dumas C, Henderson B, Ward J, Keep NH, Cohen-Gonsaud M. The RpfC (Rv1884) atomic structure shows high structural conservation within the resuscitation-promoting factor catalytic domain. Acta Crystallogr F Struct Biol Commun 2014; 70:1022-6. [PMID: 25084374 PMCID: PMC4118796 DOI: 10.1107/s2053230x1401317x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 11/27/2022] Open
Abstract
The first structure of the catalytic domain of RpfC (Rv1884), one of the resuscitation-promoting factors (RPFs) from Mycobacterium tuberculosis, is reported. The structure was solved using molecular replacement once the space group had been correctly identified as twinned P21 rather than the apparent C2221 by searching for anomalous scattering sites in P1. The structure displays a very high degree of structural conservation with the previously published structures of the catalytic domains of RpfB (Rv1009) and RpfE (Rv2450). This structural conservation highlights the importance of the versatile domain composition of the RPF family.
Collapse
Affiliation(s)
- Francois-Xavier Chauviac
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Giles Robertson
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Doris H. X. Quay
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Claire Bagnéris
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Christian Dumas
- Centre de Biochimie Structurale, CNRS UMR 5048, 29 Rue de Navacelles, 34090 Montpellier, France; INSERM U1054, Université Montpellier I, Montpellier, France
| | - Brian Henderson
- Department of Microbial Diseases, UCL–Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, England
| | - John Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, England
| | - Nicholas H. Keep
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Martin Cohen-Gonsaud
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
- Centre de Biochimie Structurale, CNRS UMR 5048, 29 Rue de Navacelles, 34090 Montpellier, France; INSERM U1054, Université Montpellier I, Montpellier, France
| |
Collapse
|
40
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
41
|
Calvanese L, Falcigno L, Maglione C, Marasco D, Ruggiero A, Squeglia F, Berisio R, D'Auria G. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein fromMycobacterium tuberculosis. Biopolymers 2014; 101:712-9. [DOI: 10.1002/bip.22447] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Lucia Falcigno
- CIRPeB; University of Naples Federico II; Naples Italy
- Department of Pharmacy; University of Naples “Federico II,”; via Mezzocannone 16 80134 Naples Italy
- Institute of Biostructures and Bioimaging-CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Cira Maglione
- Department of Chemical Sciences; University of Naples “Federico II,”; via Cintia 45 80126 Naples Italy
| | - Daniela Marasco
- Department of Pharmacy; University of Naples “Federico II,”; via Mezzocannone 16 80134 Naples Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging-CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging-CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging-CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Gabriella D'Auria
- CIRPeB; University of Naples Federico II; Naples Italy
- Department of Pharmacy; University of Naples “Federico II,”; via Mezzocannone 16 80134 Naples Italy
- Institute of Biostructures and Bioimaging-CNR; via Mezzocannone, 16 80134 Naples Italy
| |
Collapse
|
42
|
Machowski EE, Senzani S, Ealand C, Kana BD. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity. BMC Microbiol 2014; 14:75. [PMID: 24661741 PMCID: PMC3987819 DOI: 10.1186/1471-2180-14-75] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/12/2014] [Indexed: 02/04/2023] Open
Abstract
Background Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. Results We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. Conclusion PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt.
Collapse
Affiliation(s)
| | | | | | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, P,O, Box 1038, Johannesburg 2000, South Africa.
| |
Collapse
|
43
|
Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci 2013; 13:756-66. [PMID: 23305362 PMCID: PMC3601408 DOI: 10.2174/138920312804871201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Abstract
Recent genetic, biochemical and structural studies have established that eukaryotic-like Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases are widespread in gram-positive bacteria. These data underline a key role of reversible Ser/Thr phosphorylation in bacterial physiology and virulence. Numerous studies have revealed how phosphorylation/dephosphorylation of Ser/Thr protein-kinases governs cell division and cell wall biosynthesis and that Ser/Thr protein kinases are responsible for distinct phenotypes, dependent on different environmental signals. In this review we discuss the current understandings of Ser/Thr protein-kinases functional processes based on structural data.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone, 16. I-80134, Napoli, Italy.
| | | | | | | | | |
Collapse
|
44
|
Correale S, Ruggiero A, Capparelli R, Pedone E, Berisio R. Structures of free and inhibited forms of theL,D-transpeptidase LdtMt1fromMycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1697-706. [DOI: 10.1107/s0907444913013085] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/13/2013] [Indexed: 11/10/2022]
|
45
|
Vaillancourt K, Bonifait L, Grignon L, Frenette M, Gottschalk M, Grenier D. Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis. J Med Microbiol 2013; 62:1073-1080. [DOI: 10.1099/jmm.0.057877-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Streptococcus suis is a major swine pathogen and an emerging zoonotic agent. The ability of pathogenic bacteria to bind the complement regulator factor H on their cell surface may allow them to avoid complement attack and phagocytosis. The aim of this study was to characterize a new cell surface protein possessing factor H-binding activity in S. suis serotype 2. The capacity of S. suis to bind the complement regulator factor H on its surface was demonstrated by ELISA. Using a factor I–cofactor assay, it was found that the functional activity of factor H bound to S. suis was kept. Since the product of gene SSU0186 in S. suis P1/7 shared similarity with a Streptococcus pneumoniae protein (named PspC) possessing factor H-binding activity, it was proposed as a putative factor H receptor in S. suis. SSU0186 has a 1686 bp open reading frame encoding a 561 amino acid protein containing the Gram-positive cell wall anchoring motif (LPXTG) at the carboxy-terminal, an amino-terminal signal sequence, an α-helix domain, a proline-rich region and a G5 domain. The SSU0186 gene was cloned in Escherichia coli and the purified recombinant factor H-binding protein showed a molecular mass of 95 kDa, as determined by SDS-PAGE. The protein possessed the functional property of binding factor H. Sera from S. suis-infected pigs reacted with the recombinant factor H receptor, suggesting that it is produced during the course of infections. In conclusion, we identified a novel S. suis cell surface protein that binds the complement factor H. This cell surface protein may help S. suis to resist complement attack and phagocytosis and contribute to pathogenesis.
Collapse
Affiliation(s)
- Katy Vaillancourt
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Laetitia Bonifait
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Louis Grignon
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
| | - Daniel Grenier
- Centre de Recherche en Infectiologie Porcine (CRIP), Fonds de Recherche du Québec – Nature et Technologies (FRQNT), Quebec City, Quebec, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
46
|
Pinto D, São-José C, Santos MA, Chambel L. Characterization of two resuscitation promoting factors of Listeria monocytogenes. Microbiology (Reading) 2013; 159:1390-1401. [DOI: 10.1099/mic.0.067850-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Daniela Pinto
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Carlos São-José
- Center of Molecular Pathogenesis, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mário A. Santos
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lélia Chambel
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
47
|
Squeglia F, Romano M, Ruggiero A, Vitagliano L, De Simone A, Berisio R. Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys J 2013; 104:2530-9. [PMID: 23746526 PMCID: PMC3672874 DOI: 10.1016/j.bpj.2013.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Resuscitation of Mtb is crucial to the etiology of Tuberculosis, because latent tuberculosis is estimated to affect one-third of the world population. The resuscitation-promoting factor RpfB is mainly responsible for Mtb resuscitation from dormancy. Given the impact of latent Tuberculosis, RpfB represents an interesting target for tuberculosis drug discovery. However, no molecular models of substrate binding and catalysis are hitherto available for this enzyme. Here, we identified key interactions involved in substrate binding to RpfB by combining x-ray diffraction studies and computational approaches. The crystal structure of RpfB catalytic domain in complex with N,N',N"-triacetyl-chitotriose, as described here, provides the first, to our knowledge, atomic representation of ligand recognition by RpfB and demonstrates that the strongest interactions are established by the N-acetylglucosamine moiety in the central region of the enzyme binding cleft. Molecular dynamics analyses provided information on the dynamic behavior of protein-substrate interactions and on the role played by the solvent in RpfB function. These data combined with sequence conservation analysis suggest that Glu-292 is the sole residue crucial for catalysis, implying that RpfB acts via the formation of an oxocarbenium ion rather than a covalent intermediate. Present data represent a solid base for the design of effective drug inhibitors of RpfB. Moreover, homology models were generated for the catalytic domains of all members of the Mtb Rpf family (RpfA-E). The analysis of these models unveiled analogies and differences among the different members of the Rpf protein family.
Collapse
Key Words
- mtb, mycobacterium tuberculosis
- rpfb, resuscitation promoting factor b
- pdb, protein data bank
- rpfbc, catalytic domain of rpfb
- nag3, n,n',n"-triacetyl-chitotriose
- nag6, hexa-n- acetylchitohexaose
- md, molecular dynamics
- rmsf, root mean-square fluctuation
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Department of Chemistry, University of Naples Federico II, Napoli, Italy
| | - Maria Romano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
- Seconda Università di Napoli, Caserta, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, United Kingdom
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| |
Collapse
|
48
|
Correale S, Ruggiero A, Pedone E, Berisio R. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the L,D-transpeptidase LdtMt1 from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:253-6. [PMID: 23519798 PMCID: PMC3606568 DOI: 10.1107/s1744309112052141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/31/2012] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis is capable of adapting to prolonged periods of dormancy, a state which is resistant to killing by antimycobacterial agents. The L,D-transpeptidation reaction catalysed by the L,D-transpeptidase LdtMt1 is likely to play an essential role in the adaptation of M. tuberculosis to its dormant state. LdtMt1 has been successfully crystallized using vapour-diffusion methods. The crystals of this protein belonged to space group P6₅22, with unit-cell parameters a=57.25, b=57.25, c=257.96 Å, α=90, β=90, γ=120°. Diffraction data have also been collected from a selenomethionine derivative to 2.9 Å resolution. Model building using the phases derived from the multiwavelength anomalous dispersion experiment is in progress.
Collapse
Affiliation(s)
- Stefania Correale
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| |
Collapse
|
49
|
Ruggiero A, Marchant J, Squeglia F, Makarov V, De Simone A, Berisio R. Molecular determinants of inactivation of the resuscitation promoting factor B fromMycobacterium tuberculosis. J Biomol Struct Dyn 2013; 31:195-205. [DOI: 10.1080/07391102.2012.698243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 2013; 3:411. [PMID: 23308075 PMCID: PMC3538277 DOI: 10.3389/fimmu.2012.00411] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission.
Collapse
Affiliation(s)
- Stefan Ehlers
- Priority Research Area "Infections", Research Center Borstel Borstel, Germany ; Molecular Inflammation Medicine, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|