1
|
Ding E, Chaudhury SN, Prajapati JD, Onuchic JN, Sanbonmatsu KY. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements. RNA (NEW YORK, N.Y.) 2024; 30:992-1010. [PMID: 38777381 PMCID: PMC11251524 DOI: 10.1261/rna.079767.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 μsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.
Collapse
Affiliation(s)
- Erdong Ding
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Susmit Narayan Chaudhury
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
2
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
3
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
4
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
5
|
Hamal Dhakal S, Panchapakesan SSS, Slattery P, Roth A, Breaker RR. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine. Proc Natl Acad Sci U S A 2022; 119:e2120246119. [PMID: 35622895 PMCID: PMC9295807 DOI: 10.1073/pnas.2120246119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022] Open
Abstract
The aptamer portions of previously reported riboswitch classes that sense guanine, adenine, or 2′-deoxyguanosine are formed by a highly similar three-stem junction with distinct nucleotide sequences in the regions joining the stems. The nucleotides in these joining regions form the major features of the selective ligand-binding pocket for each aptamer. Previously, we reported the existence of additional, rare variants of the predominant guanine-sensing riboswitch class that carry nucleotide differences in the ligand-binding pocket, suggesting that these RNAs have further diversified their structures and functions. Herein, we report the discovery and analysis of three naturally occurring variants of guanine riboswitches that are narrowly distributed across Firmicutes. These RNAs were identified using comparative sequence analysis methods, which also revealed that some of the gene associations for these variants are atypical for guanine riboswitches or their previously known natural variants. Binding assays demonstrate that the newfound variant riboswitch representatives recognize xanthine, guanine, or 2′-deoxyguanosine, with the guanine class exhibiting greater discrimination against related purines than the more common guanine riboswitch class reported previously. These three additional variant classes, together with the four previously discovered riboswitch classes that employ the same three-stem junction architecture, reveal how a simple structural framework can be diversified to expand the range of purine-based ligands sensed by RNA.
Collapse
Affiliation(s)
- Siddhartha Hamal Dhakal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | | | - Paul Slattery
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT 06520-8103
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
- HHMI, Yale University, New Haven, CT 06520-8103
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
6
|
Antunes D, Santos LHS, Caffarena ER, Guimarães ACR. Bacterial 2'-Deoxyguanosine Riboswitch Classes as Potential Targets for Antibiotics: A Structure and Dynamics Study. Int J Mol Sci 2022; 23:ijms23041925. [PMID: 35216040 PMCID: PMC8872408 DOI: 10.3390/ijms23041925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023] Open
Abstract
The spread of antibiotic-resistant bacteria represents a substantial health threat. Current antibiotics act on a few metabolic pathways, facilitating resistance. Consequently, novel regulatory inhibition mechanisms are necessary. Riboswitches represent promising targets for antibacterial drugs. Purine riboswitches are interesting, since they play essential roles in the genetic regulation of bacterial metabolism. Among these, class I (2′-dG-I) and class II (2′-dG-II) are two different 2′-deoxyguanosine (2′-dG) riboswitches involved in the control of deoxyguanosine metabolism. However, high affinity for nucleosides involves local or distal modifications around the ligand-binding pocket, depending on the class. Therefore, it is crucial to understand these riboswitches’ recognition mechanisms as antibiotic targets. In this work, we used a combination of computational biophysics approaches to investigate the structure, dynamics, and energy landscape of both 2′-dG classes bound to the nucleoside ligands, 2′-deoxyguanosine, and riboguanosine. Our results suggest that the stability and increased interactions in the three-way junction of 2′-dG riboswitches were associated with a higher nucleoside ligand affinity. Also, structural changes in the 2′-dG-II aptamers enable enhanced intramolecular communication. Overall, the 2′-dG-II riboswitch might be a promising drug design target due to its ability to recognize both cognate and noncognate ligands.
Collapse
Affiliation(s)
- Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Correspondence:
| | - Lucianna H. S. Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
7
|
High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules 2020; 25:molecules25102295. [PMID: 32414072 PMCID: PMC7287874 DOI: 10.3390/molecules25102295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson–Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.
Collapse
|
8
|
Matyjasik MM, Batey RT. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Nucleic Acids Res 2020; 47:10931-10941. [PMID: 31598729 PMCID: PMC6847200 DOI: 10.1093/nar/gkz839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022] Open
Abstract
A recent bioinformatic analysis of well-characterized classes of riboswitches uncovered subgroups unable to bind to the regulatory molecule of the parental class. Within the guanine/adenine class, seven groups of RNAs were identified that deviate from the consensus sequence at one or more of three positions directly involved purine nucleobase recognition, one of which was validated as a second class of 2'-deoxyguanosine riboswitch (called 2'-dG-II). To understand how 2'-dG-II riboswitches recognize their cognate ligand and how they differ from a previously identified class of 2'-deoxyguanosine binding riboswitches, we have solved the crystal structure of a 2'-dG-II aptamer domain bound to 2'-deoxyguanosine. This structure reveals a global architecture similar to other members of the purine riboswitch family, but contains key differences within the ligand binding core. Defining the 2'-dG-II riboswitches is a two-nucleotide insertion in the three-way junction that promotes novel base-base interactions. Unlike 2'-dG-I riboswitches, the 2'-dG-II class only requires local changes to the ligand binding pocket of the guanine/adenine class to achieve a change in ligand preference. Notably, members of the 2'-dG-II family have variable ability to discriminate between 2'-deoxyguanosine and riboguanosine, suggesting that a subset of 2'-dG-II riboswitches may bind either molecule to regulate gene expression.
Collapse
Affiliation(s)
- Michal M Matyjasik
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, CO 80309-0596, USA
| |
Collapse
|
9
|
Peselis A, Serganov A. ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. Nat Chem Biol 2018; 14:887-894. [PMID: 30120360 PMCID: PMC6263941 DOI: 10.1038/s41589-018-0114-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022]
Abstract
The ykkC family of bacterial riboswitches combines several widespread classes that have similar secondary structures and consensus motifs but control different genes in response to different cellular metabolites. Here we report the crystal structures of two distinct ykkC riboswitches specifically bound to their cognate ligands ppGpp, a second messenger involved in stress response, or PRPP, a precursor in purine biosynthesis. Both RNAs adopt similar structures and contain a conserved core previously observed in the guanidine-specific ykkC riboswitch. However, ppGpp and PRPP riboswitches uniquely employ an additional helical element that joins the ends of the ligand-sensing domains and creates a tunnel for direct and Mg2+-mediated binding of ligands. Mutational and footprinting experiments highlight the importance of conserved nucleotides forming the tunnel and long-distance contacts for ligand binding and genetic response. Our work provides new insights into the specificity of riboswitches and gives a unique opportunity for future studies of RNA evolution.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Morse DP, Nevins CE, Aggrey-Fynn J, Bravo RJ, Pfaeffle HOI, Laney JE. Sensitive and specific detection of ligands using engineered riboswitches. J Biotechnol 2018. [PMID: 29518463 DOI: 10.1016/j.jbiotec.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Riboswitches are RNA elements found in non-coding regions of messenger RNAs that regulate gene expression through a ligand-triggered conformational change. Riboswitches typically bind tightly and specifically to their ligands, so they have the potential to serve as highly effective sensors in vitro. In B. subtilis and other gram-positive bacteria, purine nucleotide synthesis is regulated by riboswitches that bind to guanine. We modified the xpt-pbuX guanine riboswitch for use in a fluorescence quenching assay that allowed us to specifically detect and quantify guanine in vitro. Using this assay, we reproducibly detected as little as 5 nM guanine. We then produced sensors for 2'-deoxyguanosine and cyclic diguanylate (c-diGMP) by appending the P1 stem of the guanine riboswitch to the ligand-binding domains of a 2'-deoxyguanosine riboswitch and a c-diGMP riboswitch. These hybrid sensors could detect 15 nM 2'-deoxyguanosine and 3 nM c-diGMP, respectively. Each sensor retained the ligand specificity of its corresponding natural riboswitch. In order to extend the utility of our approach, we developed a strategy for the in vitro selection of sensors with novel ligand specificity. Here we report a proof-of-principle experiment that demonstrated the feasibility of our selection strategy.
Collapse
Affiliation(s)
- Daniel P Morse
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Colin E Nevins
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Joana Aggrey-Fynn
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Rick J Bravo
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Herman O I Pfaeffle
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jess E Laney
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| |
Collapse
|
11
|
Tian S, Kladwang W, Das R. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. eLife 2018; 7:29602. [PMID: 29446752 PMCID: PMC5847336 DOI: 10.7554/elife.29602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Physics, Stanford University, Stanford, United States
| |
Collapse
|
12
|
Kim YB, Wacker A, Laer KV, Rogov VV, Suess B, Schwalbe H. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context. Nucleic Acids Res 2017; 45:5375-5386. [PMID: 28115631 PMCID: PMC5435998 DOI: 10.1093/nar/gkx016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The mfl-riboswitch is a transcriptional off-switch, which down-regulates expression of subunit β of ribonucleotide reductase in Mesoplasma florum upon 2΄-deoxyguanosine binding. We characterized binding of 2΄-deoxyguanosine to the mfl-aptamer domain (WT aptamer) and a sequence-stabilized aptamer (MT aptamer) under in vitro and ‘in-cell-like’ conditions by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy. ‘In-cell-like’ environment was simulated by Bacillus subtilis cell extract, in which both aptamers remained sufficiently stable to detect the resonances of structural elements and ligand binding in 2D NMR experiments. Under ‘in-cell-like’-environment, (i) the WT aptamer bound the endogenous metabolite guanosine and (ii) 2΄-deoxyguanosine efficiently displaced guanosine from the WT aptamer. In contrast, MT aptamer exhibited moderate binding to 2΄-deoxyguanosine and weak binding to guanosine. NMR experiments indicated that binding of guanosine was not limited to the aptamer domain of the riboswitch but also the full-length mfl-riboswitch bound guanosine, impacting on the regulation efficiency of the riboswitch and hinting that, in addition to 2΄-deoxyguanosine, guanosine plays a role in riboswitch function in vivo. Reporter gene assays in B. subtilis demonstrated the regulation capacity of the WT aptamer, whereas the MT aptamer with lower affinity to 2΄-deoxyguanosine was not able to regulate gene expression.
Collapse
Affiliation(s)
- Yong-Boum Kim
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| | - Karl von Laer
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
13
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Polaski JT, Webster SM, Johnson JE, Batey RT. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin. J Biol Chem 2017; 292:11650-11658. [PMID: 28483920 DOI: 10.1074/jbc.m117.787176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
Riboswitches are a widely distributed class of regulatory RNAs in bacteria that modulate gene expression via small-molecule-induced conformational changes. Generally, these RNA elements are grouped into classes based upon conserved primary and secondary structure and their cognate effector molecule. Although this approach has been very successful in identifying new riboswitch families and defining their distributions, small sequence differences between structurally related RNAs can alter their ligand selectivity and regulatory behavior. Herein, we use a structure-based mutagenic approach to demonstrate that cobalamin riboswitches have a broad spectrum of preference for the two biological forms of cobalamin in vitro using isothermal titration calorimetry. This selectivity is primarily mediated by the interaction between a peripheral element of the RNA that forms a T-loop module and a subset of nucleotides in the cobalamin-binding pocket. Cell-based fluorescence reporter assays in Escherichia coli revealed that mutations that switch effector preference in vitro lead to differential regulatory responses in a biological context. These data demonstrate that a more comprehensive analysis of representative sequences of both previously and newly discovered classes of riboswitches might reveal subgroups of RNAs that respond to different effectors. Furthermore, this study demonstrates a second distinct means by which tertiary structural interactions in cobalamin riboswitches dictate ligand selectivity.
Collapse
Affiliation(s)
- Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Samantha M Webster
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - James E Johnson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.
| |
Collapse
|
15
|
Jones CP, Ferré-D'Amaré AR. Long-Range Interactions in Riboswitch Control of Gene Expression. Annu Rev Biophys 2017; 46:455-481. [PMID: 28375729 DOI: 10.1146/annurev-biophys-070816-034042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Riboswitches are widespread RNA motifs that regulate gene expression in response to fluctuating metabolite concentrations. Known primarily from bacteria, riboswitches couple specific ligand binding and changes in RNA structure to mRNA expression in cis. Crystal structures of the ligand binding domains of most of the phylogenetically widespread classes of riboswitches, each specific to a particular metabolite or ion, are now available. Thus, the bound states-one end point-have been thoroughly characterized, but the unbound states have been more elusive. Consequently, it is less clear how the unbound, sensing riboswitch refolds into the ligand binding-induced output state. The ligand recognition mechanisms of riboswitches are diverse, but we find that they share a common structural strategy in positioning their binding sites at the point of the RNA three-dimensional fold where the residues farthest from one another in sequence meet. We review how riboswitch folds adhere to this fundamental strategy and propose future research directions for understanding and harnessing their ability to specifically control gene expression.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824;
| |
Collapse
|
16
|
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and In Vivo Applications of Riboswitches. Annu Rev Biochem 2017; 86:515-539. [PMID: 28375743 DOI: 10.1146/annurev-biochem-060815-014628] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Rebekah Z Kitto
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, California 94720; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
17
|
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. Proc Natl Acad Sci U S A 2017; 114:E2077-E2085. [PMID: 28265071 DOI: 10.1073/pnas.1619581114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Riboswitches are RNAs that form complex, folded structures that selectively bind small molecules or ions. As with certain groups of protein enzymes and receptors, some riboswitch classes have evolved to change their ligand specificity. We developed a procedure to systematically analyze known riboswitch classes to find additional variants that have altered their ligand specificity. This approach uses multiple-sequence alignments, atomic-resolution structural information, and riboswitch gene associations. Among the discoveries are unique variants of the guanine riboswitch class that most tightly bind the nucleoside 2'-deoxyguanosine. In addition, we identified variants of the glycine riboswitch class that no longer recognize this amino acid, additional members of a rare flavin mononucleotide (FMN) variant class, and also variants of c-di-GMP-I and -II riboswitches that might recognize different bacterial signaling molecules. These findings further reveal the diverse molecular sensing capabilities of RNA, which highlights the potential for discovering a large number of additional natural riboswitch classes.
Collapse
|
18
|
Nasiri AH, Wurm JP, Immer C, Weickhmann AK, Wöhnert J. An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA (NEW YORK, N.Y.) 2016; 22:1750-1759. [PMID: 27659052 PMCID: PMC5066627 DOI: 10.1261/rna.058909.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Many naturally occurring or artificially created RNAs are capable of binding to guanine or guanine derivatives with high affinity and selectivity. They bind their ligands using very different recognition modes involving a diverse set of hydrogen bonding and stacking interactions. Apparently, the potential structural diversity for guanine, guanosine, and guanine nucleotide binding motifs is far from being fully explored. Szostak and coworkers have derived a large set of different GTP-binding aptamer families differing widely in sequence, secondary structure, and ligand specificity. The so-called class V-GTP aptamer from this set binds GTP with very high affinity and has a complex secondary structure. Here we use solution NMR spectroscopy to demonstrate that the class V aptamer binds GTP through the formation of an intermolecular two-layered G-quadruplex structure that directly incorporates the ligand and folds only upon ligand addition. Ligand binding and G-quadruplex formation depend strongly on the identity of monovalent cations present with a clear preference for potassium ions. GTP binding through direct insertion into an intermolecular G-quadruplex is a previously unobserved structural variation for ligand-binding RNA motifs and rationalizes the previously observed specificity pattern of the class V aptamer for GTP analogs.
Collapse
Affiliation(s)
- Amir H Nasiri
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Carina Immer
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Anna Katharina Weickhmann
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Millman A, Dar D, Shamir M, Sorek R. Computational prediction of regulatory, premature transcription termination in bacteria. Nucleic Acids Res 2016; 45:886-893. [PMID: 27574119 PMCID: PMC5314783 DOI: 10.1093/nar/gkw749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022] Open
Abstract
A common strategy for regulation of gene expression in bacteria is conditional transcription termination. This strategy is frequently employed by 5′UTR cis-acting RNA elements (riboregulators), including riboswitches and attenuators. Such riboregulators can assume two mutually exclusive RNA structures, one of which forms a transcriptional terminator and results in premature termination, and the other forms an antiterminator that allows read-through into the coding sequence to produce a full-length mRNA. We developed a machine-learning based approach, which, given a 5′UTR of a gene, predicts whether it can form the two alternative structures typical to riboregulators employing conditional termination. Using a large positive training set of riboregulators derived from 89 human microbiome bacteria, we show high specificity and sensitivity for our classifier. We further show that our approach allows the discovery of previously unidentified riboregulators, as exemplified by the detection of new LeuA leaders and T-boxes in Streptococci. Finally, we developed PASIFIC (www.weizmann.ac.il/molgen/Sorek/PASIFIC/), an online web-server that, given a user-provided 5′UTR sequence, predicts whether this sequence can adopt two alternative structures conforming with the conditional termination paradigm. This webserver is expected to assist in the identification of new riboswitches and attenuators in the bacterial pan-genome.
Collapse
Affiliation(s)
- Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Dar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maya Shamir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Wostenberg C, Ceres P, Polaski JT, Batey RT. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning. J Mol Biol 2015; 427:3473-3490. [PMID: 26343759 DOI: 10.1016/j.jmb.2015.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/24/2023]
Abstract
RNA folding in vivo is significantly influenced by transcription, which is not necessarily recapitulated by Mg(2+)-induced folding of the corresponding full-length RNA in vitro. Riboswitches that regulate gene expression at the transcriptional level are an ideal system for investigating this aspect of RNA folding as ligand-dependent termination is obligatorily co-transcriptional, providing a clear readout of the folding outcome. The folding of representative members of the SAM-I family of riboswitches has been extensively analyzed using approaches focusing almost exclusively upon Mg(2+) and/or S-adenosylmethionine (SAM)-induced folding of full-length transcripts of the ligand binding domain. To relate these findings to co-transcriptional regulatory activity, we have investigated a set of structure-guided mutations of conserved tertiary architectural elements of the ligand binding domain using an in vitro single-turnover transcriptional termination assay, complemented with phylogenetic analysis and isothermal titration calorimetry data. This analysis revealed a conserved internal loop adjacent to the SAM binding site that significantly affects ligand binding and regulatory activity. Conversely, most single point mutations throughout key conserved features in peripheral tertiary architecture supporting the SAM binding pocket have relatively little impact on riboswitch activity. Instead, a secondary structural element in the peripheral subdomain appears to be the key determinant in observed differences in regulatory properties across the SAM-I family. These data reveal a highly coupled network of tertiary interactions that promote high-fidelity co-transcriptional folding of the riboswitch but are only indirectly linked to regulatory tuning.
Collapse
Affiliation(s)
- Christopher Wostenberg
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Pablo Ceres
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Jacob T Polaski
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309-0596, USA.
| |
Collapse
|
21
|
Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism. Structure 2015; 23:1375-1381. [PMID: 26118534 DOI: 10.1016/j.str.2015.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
Abstract
ZTP, the pyrophosphorylated analog of ZMP (5-amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. We report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines, while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg(2+), contrasts with exposure of the 5'-phosphate to solvent. Our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.
Collapse
|
22
|
Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ. Structural basis for molecular discrimination by a 3',3'-cGAMP sensing riboswitch. Cell Rep 2015; 11:1-12. [PMID: 25818298 PMCID: PMC4732562 DOI: 10.1016/j.celrep.2015.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
Cyclic dinucleotides are second messengers that target the adaptor STING and stimulate the innate immune response in mammals. Besides protein receptors, there are bacterial riboswitches that selectively recognize cyclic dinucleotides. We recently discovered a natural riboswitch that targets 3',3'-cGAMP, which is distinguished from the endogenous mammalian signal 2',3'-cGAMP by its backbone connectivity. Here, we report on structures of the aptamer domain of the 3',3'-cGAMP riboswitch from Geobacter in the 3',3'-cGAMP and c-di-GMP bound states. The riboswitch adopts a tuning fork-like architecture with a junctional ligand-binding pocket and different orientations of the arms are correlated with the identity of the bound cyclic dinucleotide. Subsequent biochemical experiments revealed that specificity of ligand recognition can be affected by point mutations outside of the binding pocket, which has implications for both the assignment and reengineering of riboswitches in this structural class.
Collapse
Affiliation(s)
- Aiming Ren
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xin C Wang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Colleen A Kellenberger
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Roger A Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ming C Hammond
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Porter EB, Marcano-Velázquez JG, Batey RT. The purine riboswitch as a model system for exploring RNA biology and chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:919-930. [PMID: 24590258 PMCID: PMC4148472 DOI: 10.1016/j.bbagrm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade the purine riboswitch, and in particular its nucleobase-binding aptamer domain, has emerged as an important model system for exploring various aspects of RNA structure and function. Its relatively small size, structural simplicity and readily observable activity enable application of a wide variety of experimental approaches towards the study of this RNA. These analyses have yielded important insights into small molecule recognition, co-transcriptional folding and secondary structural switching, and conformational dynamics that serve as a paradigm for other RNAs. In this article, the current state of understanding of the purine riboswitch family and how this growing knowledge base is starting to be exploited in the creation of novel RNA devices are examined. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Ely B Porter
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Joan G Marcano-Velázquez
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
24
|
Structural basis for diversity in the SAM clan of riboswitches. Proc Natl Acad Sci U S A 2014; 111:6624-9. [PMID: 24753586 DOI: 10.1073/pnas.1312918111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative "PK-2" subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor.
Collapse
|
25
|
Peselis A, Serganov A. Themes and variations in riboswitch structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:908-918. [PMID: 24583553 DOI: 10.1016/j.bbagrm.2014.02.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022]
Abstract
The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Alla Peselis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
26
|
Serganov A, Patel DJ. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 2013; 41:343-70. [PMID: 22577823 DOI: 10.1146/annurev-biophys-101211-113224] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Riboswitches are mRNA elements capable of modulating gene expression in response to specific binding by cellular metabolites. Riboswitches exert their function through the interplay of alternative ligand-free and ligand-bound conformations of the metabolite-sensing domain, which in turn modulate the formation of adjacent gene expression controlling elements. X-ray crystallography and NMR spectroscopy have determined three-dimensional structures of virtually all the major riboswitch classes in the ligand-bound state and, for several riboswitches, in the ligand-free state. The resulting spatial topologies have demonstrated the wide diversity of riboswitch folds and revealed structural principles for specific recognition by cognate metabolites. The available three-dimensional information, supplemented by structure-guided biophysical and biochemical experimentation, has led to an improved understanding of how riboswitches fold, what RNA conformations are required for ligand recognition, and how ligand binding can be transduced into gene expression modulation. These studies have greatly facilitated the dissection of molecular mechanisms underlying riboswitch action and should in turn guide the anticipated development of tools for manipulating gene regulatory circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
27
|
Stoddard CD, Widmann J, Trausch JJ, Marcano-Velázquez JG, Knight R, Batey RT. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 2013; 425:1596-611. [PMID: 23485418 DOI: 10.1016/j.jmb.2013.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
A riboswitch is a non-protein coding sequence capable of directly binding a small molecule effector without the assistance of accessory proteins to regulate expression of the mRNA in which it is embedded. Currently, over 20 different classes of riboswitches have been validated in bacteria with the promise of many more to come, making them an important means of regulating the genome in the bacterial kingdom. Strikingly, half of the known riboswitches recognize effector compounds that contain a purine or related moiety. In the last decade, significant progress has been made to determine how riboswitches specifically recognize these compounds against the background of many other similar cellular metabolites and transduce this signal into a regulatory response. Of the known riboswitches, the purine family containing guanine, adenine and 2'-deoxyguanosine-binding classes are the most extensively studied, serving as a simple and useful paradigm for understanding how these regulatory RNAs function. This review provides a comprehensive summary of the current state of knowledge regarding the structure and mechanism of these riboswitches, as well as insights into how they might be exploited as therapeutic targets and novel biosensors.
Collapse
|
29
|
Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279-86. [PMID: 22579413 DOI: 10.1016/j.sbi.2012.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Regulatory mRNAs elements termed riboswitches respond to elevated concentrations of cellular metabolites by modulating expression of associated genes. Riboswitches attain their high metabolite selectivity by capitalizing on the intrinsic tertiary structures of their sensor domains. Over the years, riboswitch structure and folding have been amongst the most researched topics in the RNA field. Most recently, novel structures of single-ligand and cooperative double-ligand sensors have broadened our knowledge of architectural and molecular recognition principles exploited by riboswitches. The structural information has been complemented by extensive folding studies, which have provided several important clues on the formation of ligand-competent conformations and mechanisms of ligand discrimination. These studies have greatly improved our understanding of molecular events in riboswitch-mediated gene expression control and provided the molecular basis for intervention into riboswitch-controlled genetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Ave., MSB-393, New York, NY 10016, USA
| | | |
Collapse
|
30
|
Wacker A, Buck J, Richter C, Schwalbe H, Wöhnert J. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol 2012; 9:672-80. [PMID: 22647526 DOI: 10.4161/rna.20106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Riboswitches are elements in the 5'-untranslated region of mRNAs that regulate gene expression by directly interacting with metabolites related to their own gene products. A remarkable feature of this gene regulation mechanism is the high specificity of riboswitches for their cognate ligands. In this study, we used a combination of static and time-resolved NMR-spectroscopic methods to investigate the mechanisms for ligand specificity in purine riboswitches. We investigate the xpt-aptamer domain from a guanine-responsive riboswitch and the mfl-aptamer domain from a 2'-deoxyguanosine-responsive riboswitch. The xpt-aptamer binds the purine nucleobases guanine/hypoxanthine with high affinity, but, unexpectedly, also the nucleoside 2'-deoxyguanosine. On the other hand, the mfl-aptamer is highly specific for its cognate ligand 2'-deoxyguanosine, and does not bind purine ligands. We addressed the question of aptamer`s ligand specificity by real-time NMR spectroscopy. Our studies of ligand binding and subsequently induced aptamer folding revealed that the xpt-aptamer discriminates against non-cognate ligands by enhanced life-times of the cognate complex compared with non-cognate complexes, whereas the mfl-aptamer rejects non-cognate ligands at the level of ligand association, employing a kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Riboswitches are structured noncoding RNA domains that selectively bind metabolites and control gene expression (Mandal and Breaker 2004a; Coppins et al. 2007; Roth and Breaker 2009). Nearly all examples of the known riboswitches reside in noncoding regions of messenger RNAs where they control transcription or translation. Newfound classes of riboswitches are being reported at a rate of about three per year (Ames and Breaker 2009), and these have been shown to selectively respond to fundamental metabolites including coenzymes, nucleobases or their derivatives, amino acids, and other small molecule ligands. The characteristics of some riboswitches suggest they could be modern descendents of an ancient sensory and regulatory system that likely functioned before the emergence of enzymes and genetic factors made of protein (Nahvi et al. 2002; Vitreschak et al. 2004; Breaker 2006). If true, then some of the riboswitch structures and functions that serve modern cells so well may accurately reflect the capabilities of RNA sensors and switches that existed in the RNA World. This article will address some of the characteristics of modern riboswitches that may be relevant to ancient versions of these metabolite-sensing RNAs.
Collapse
|
32
|
Abstract
RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| | - Matthew D. Disney
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| |
Collapse
|
33
|
Deigan KE, FerrÉ-D’AmarÉ AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 2011; 44:1329-38. [PMID: 21615107 DOI: 10.1021/ar200039b] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboswitches are messenger RNA (mRNA) domains that regulate gene function in response to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, thus representing an inviting new class of biomolecular target for the development of antibiotics and chemical-biological tools. In this Account, we briefly review the discovery of riboswitches in the first years of the 21st century and their ensuing characterization over the past decade. We then discuss the progress achieved so far in using riboswitches as a focus for drug discovery, considering both the value of past serendipity and the particular challenges that confront current researchers. Five mechanisms of gene regulation have been determined for riboswitches. Most bacterial riboswitches modulate either transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches, and some bacterial riboswitches, control gene expression by alternative splicing. The glmS riboswitch, which is widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding: its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of a trans-acting riboswitch is known. Three-dimensional structures have been determined for representatives of 13 structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs have attracted widespread interest as potential drug targets, riboswitches show special promise due to the diversity of small-molecule recognition strategies that are on display in their ligand-binding pockets. Moreover, riboswitches have evolved to recognize small-molecule ligands, which is unique among known structured RNA domains. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment-based screening approach employing equilibrium dialysis that may be generically useful has demonstrated early success. Riboswitch-mediated gene regulation is widely employed by bacteria; however, only the thiamine pyrophosphate-responsive riboswitch has thus far been found in eukaryotes. Thus, riboswitches are particularly attractive as targets for antibacterials. Indeed, antimicrobials with previously unknown mechanisms have been found to function by binding riboswitches and causing aberrant gene expression.
Collapse
Affiliation(s)
- Katherine E. Deigan
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adrian R. FerrÉ-D’AmarÉ
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
| |
Collapse
|
34
|
Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43:867-79. [PMID: 21925376 DOI: 10.1016/j.molcel.2011.08.024] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022]
Abstract
An expanding number of metabolite-binding riboswitch classes are being discovered in the noncoding portions of bacterial genomes. Findings over the last decade indicate that bacteria commonly use these RNA genetic elements as regulators of metabolic pathways and as mediators of changes in cell physiology. Some riboswitches are surprisingly complex, and they rival protein factors in their structural and functional sophistication. Each new riboswitch discovery expands our knowledge of the biochemical capabilities of RNA, and some give rise to new questions that require additional study to be addressed. Some of the greatest prospects for riboswitch research and some of the more interesting mysteries are discussed in this review.
Collapse
|
35
|
|
36
|
Trausch JJ, Ceres P, Reyes FE, Batey RT. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 2011; 19:1413-23. [PMID: 21906956 DOI: 10.1016/j.str.2011.06.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/16/2022]
Abstract
Transport and biosynthesis of folate and its derivatives are frequently controlled by the tetrahydrofolate (THF) riboswitch in Firmicutes. We have solved the crystal structure of the THF riboswitch aptamer in complex with folinic acid, a THF analog. Uniquely, this structure reveals two molecules of folinic acid binding to a single structured domain. These two sites interact with ligand in a similar fashion, primarily through recognition of the reduced pterin moiety. 7-deazaguanine, a soluble analog of guanine, binds the riboswitch with nearly the same affinity as its natural effector. However, 7-deazaguanine effects transcriptional termination to a substantially lesser degree than folinic acid, suggesting that the cellular guanine pool does not act upon the THF riboswitch. Under physiological conditions the ligands display strong cooperative binding, with one of the two sites playing a greater role in eliciting the regulatory response, which suggests that the second site may play another functional role.
Collapse
Affiliation(s)
- Jeremiah J Trausch
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
37
|
Buck J, Wacker A, Warkentin E, Wöhnert J, Wirmer-Bartoschek J, Schwalbe H. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res 2011; 39:9768-78. [PMID: 21890900 PMCID: PMC3239184 DOI: 10.1093/nar/gkr664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop–loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gswloop) in the absence of Mg2+. However, if Mg2+ is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop–loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gswloop is tunable through variation of the Mg2+ concentration. We quantitatively describe the influence of distinct Mg2+ concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.
Collapse
Affiliation(s)
- Janina Buck
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7 & 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch. Nat Chem Biol 2011; 7:748-55. [PMID: 21841796 PMCID: PMC3781940 DOI: 10.1038/nchembio.631] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/08/2011] [Indexed: 01/15/2023]
Abstract
Purine riboswitches play an essential role in genetic regulation of bacterial metabolism. This family includes the 2′-deoxyguanosine (dG) riboswitch, involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of natural Mesoplasma florum riboswitch bound to cognate dG, as well as non-cognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity by modifying key interactions involving the nucleobase and through rearrangement of the ligand-binding pocket, so as to accommodate the additional sugar moiety. In addition, we observe novel conformational changes beyond the junctional binding pocket, extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and that structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.
Collapse
|
39
|
Kondo J, Westhof E. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes. Nucleic Acids Res 2011; 39:8628-37. [PMID: 21737431 PMCID: PMC3201857 DOI: 10.1093/nar/gkr452] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.
Collapse
Affiliation(s)
- Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan.
| | | |
Collapse
|
40
|
Tremblay R, Lemay JF, Blouin S, Mulhbacher J, Bonneau É, Legault P, Dupont P, Penedo JC, Lafontaine DA. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant. J Biol Chem 2011; 286:27406-15. [PMID: 21676871 DOI: 10.1074/jbc.m111.229047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The exquisite specificity of the adenine-responsive riboswitch toward its cognate metabolite has been shown to arise from the formation of a Watson-Crick interaction between the adenine ligand and residue U65. A recent crystal structure of a U65C adenine aptamer variant has provided a rationale for the phylogenetic conservation observed at position 39 for purine aptamers. The G39-C65 variant adopts a compact ligand-free structure in which G39 is accommodated by the ligand binding site and is base-paired to the cytosine at position 65. Here, we demonstrate using a combination of biochemical and biophysical techniques that the G39-C65 base pair not only severely impairs ligand binding but also disrupts the functioning of the riboswitch in vivo by constitutively activating gene expression. Folding studies using single-molecule FRET revealed that the G39-C65 variant displays a low level of dynamic heterogeneity, a feature reminiscent of ligand-bound wild-type complexes. A restricted conformational freedom together with an ability to significantly fold in monovalent ions are exclusive to the G39-C65 variant. This work provides a mechanistic framework to rationalize the evolutionary exclusion of certain nucleotide combinations in favor of sequences that preserve ligand binding and gene regulation functionalities.
Collapse
Affiliation(s)
- Renaud Tremblay
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garst AD, Edwards AL, Batey RT. Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003533. [PMID: 20943759 DOI: 10.1101/cshperspect.a003533] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A critical feature of the hypothesized RNA world would have been the ability to control chemical processes in response to environmental cues. Riboswitches present themselves as viable candidates for a sophisticated mechanism of regulatory control in RNA-based life. These regulatory elements in the modern world are most commonly found in the 5'-untranslated regions of bacterial mRNAs, directly interacting with metabolites as a means of regulating expression of the coding region via a secondary structural switch. In this review, we focus on recent insights into how these RNAs fold into complex architectures capable of both recognizing a specific small molecule compound and exerting regulatory control over downstream sequences, with an emphasis on transcriptional regulation.
Collapse
Affiliation(s)
- Andrew D Garst
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 80309-0215, USA
| | | | | |
Collapse
|
42
|
Wacker A, Buck J, Mathieu D, Richter C, Wöhnert J, Schwalbe H. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy. Nucleic Acids Res 2011; 39:6802-12. [PMID: 21576236 PMCID: PMC3159443 DOI: 10.1093/nar/gkr238] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mfl-riboswitch regulates expression of ribonucleotide reductase subunit in Mesoplasma florum by binding to 2′-deoxyguanosine and thereby promoting transcription termination. We characterized the structure of the ligand-bound aptamer domain by NMR spectroscopy and compared the mfl-aptamer to the aptamer domain of the closely related purine-sensing riboswitches. We show that the mfl-aptamer accommodates the extra 2′-deoxyribose unit of the ligand by forming a more relaxed binding pocket than these found in the purine-sensing riboswitches. Tertiary structures of the xpt-aptamer bound to guanine and of the mfl-aptamer bound to 2′-deoxyguanosine exhibit very similar features, although the sequence of the mfl-aptamer contains several alterations compared to the purine-aptamer consensus sequence. These alterations include the truncation of a hairpin loop which is crucial for complex formation in all purine-sensing riboswitches characterized to date. We further defined structural features and ligand binding requirements of the free mfl-aptamer and found that the presence of Mg2+ is not essential for complex formation, but facilitates ligand binding by promoting pre-organization of key structural motifs in the free aptamer.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Max von Laue-Strasse 7, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Ling B, Zhang R, Wang Z, Dong L, Liu Y, Zhang C, Liu C. Theoretical studies on the interaction of guanine riboswitch with guanine and its closest analogues. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.492833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Low JT, Weeks KM. SHAPE-directed RNA secondary structure prediction. Methods 2010; 52:150-8. [PMID: 20554050 DOI: 10.1016/j.ymeth.2010.06.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/25/2022] Open
Abstract
The diverse functional roles of RNA are determined by its underlying structure. Accurate and comprehensive knowledge of RNA structure would inform a broader understanding of RNA biology and facilitate exploiting RNA as a biotechnological tool and therapeutic target. Determining the pattern of base pairing, or secondary structure, of RNA is a first step in these endeavors. Advances in experimental, computational, and comparative analysis approaches for analyzing secondary structure have yielded accurate structures for many small RNAs, but only a few large (>500 nts) RNAs. In addition, most current methods for determining a secondary structure require considerable effort, analytical expertise, and technical ingenuity. In this review, we outline an efficient strategy for developing accurate secondary structure models for RNAs of arbitrary length. This approach melds structural information obtained using SHAPE chemistry with structure prediction using nearest-neighbor rules and the dynamic programming algorithm implemented in the RNAstructure program. Prediction accuracies reach >or=95% for RNAs on the kilobase scale. This approach facilitates both development of new models and refinement of existing RNA structure models, which we illustrate using the Gag-Pol frameshift element in an HIV-1 M-group genome. Most promisingly, integrated experimental and computational refinement brings closer the ultimate goal of efficiently and accurately establishing the secondary structure for any RNA sequence.
Collapse
Affiliation(s)
- Justin T Low
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
46
|
Jain N, Zhao L, Liu JD, Xia T. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Biochemistry 2010; 49:3703-14. [PMID: 20345178 DOI: 10.1021/bi1000036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | | | | | | |
Collapse
|
47
|
Kondo J, Westhof E. Base pairs and pseudo pairs observed in RNA-ligand complexes. J Mol Recognit 2010; 23:241-52. [PMID: 19701919 DOI: 10.1002/jmr.978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, a geometric nomenclature was proposed in which RNA base pairs were classified by their interaction edges (Watson-Crick, Hoogsteen or sugar-edge) and the glycosidic bond orientations relative to the hydrogen bonds formed (cis or trans). Here, base pairs and pseudo pairs observed in RNA-ligand complexes are classified in a similar manner. Twenty-one basic geometric families are geometrically possible (18 for base pairs formed between a nucleic acid base and a ligand containing heterocycle and 3 families for pseudo pairs). Of those, 16 of them have been observed in X-ray and/or NMR structures.
Collapse
Affiliation(s)
- Jiro Kondo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
48
|
Abstract
The ability to independently control the expression of multiple genes by addition of distinct small-molecule modulators has many applications from synthetic biology, functional genomics, pharmaceutical target validation, through to gene therapy. Riboswitches are relatively simple, small-molecule-dependent, protein-free, mRNA genetic switches that are attractive targets for reengineering in this context. Using a combination of chemical genetics and genetic selection, we have developed riboswitches that are selective for synthetic "nonnatural" small molecules and no longer respond to the natural intracellular ligands. The orthogonal selectivity of the riboswitches is also demonstrated in vitro using isothermal titration calorimetry and x-ray crystallography. The riboswitches allow highly responsive, dose-dependent, orthogonally selective, and dynamic control of gene expression in vivo. It is possible that this approach may be further developed to reengineer other natural riboswitches for application as small-molecule responsive genetic switches in both prokaryotes and eukaryotes.
Collapse
|
49
|
Delfosse V, Bouchard P, Bonneau E, Dagenais P, Lemay JF, Lafontaine DA, Legault P. Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res 2009; 38:2057-68. [PMID: 20022916 PMCID: PMC2847212 DOI: 10.1093/nar/gkp1080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson–Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39–C65 and A39–U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Gilbert SD, Reyes FE, Edwards AL, Batey RT. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure 2009; 17:857-68. [PMID: 19523903 DOI: 10.1016/j.str.2009.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/30/2022]
Abstract
Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity.
Collapse
Affiliation(s)
- Sunny D Gilbert
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|