1
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
2
|
Archana Vasuki K, Jemmy Christy H, Chandramohan V, Anand DA. Study of mangal based naphthoquinone derivatives anticancer potential towards chemo-resistance related Never in mitosis gene A-related kinase 2-Insilico approach. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1948545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- K. Archana Vasuki
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| | - H. Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Daniel Alex Anand
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai-, India
| |
Collapse
|
3
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Byrne MJ, Nasir N, Basmadjian C, Bhatia C, Cunnison RF, Carr KH, Mas-Droux C, Yeoh S, Cano C, Bayliss R. Nek7 conformational flexibility and inhibitor binding probed through protein engineering of the R-spine. Biochem J 2020; 477:1525-1539. [PMID: 32242624 PMCID: PMC7200626 DOI: 10.1042/bcj20200128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Nek7 is a serine/threonine-protein kinase required for proper spindle formation and cytokinesis. Elevated Nek7 levels have been observed in several cancers, and inhibition of Nek7 might provide a route to the development of cancer therapeutics. To date, no selective and potent Nek7 inhibitors have been identified. Nek7 crystal structures exhibit an improperly formed regulatory-spine (R-spine), characteristic of an inactive kinase. We reasoned that the preference of Nek7 to crystallise in this inactive conformation might hinder attempts to capture Nek7 in complex with Type I inhibitors. Here, we have introduced aromatic residues into the R-spine of Nek7 with the aim to stabilise the active conformation of the kinase through R-spine stacking. The strong R-spine mutant Nek7SRS retained catalytic activity and was crystallised in complex with compound 51, an ATP-competitive inhibitor of Nek2 and Nek7. Subsequently, we obtained the same crystal form for wild-type Nek7WT in apo form and bound to compound 51. The R-spines of the three well-ordered Nek7WT molecules exhibit variable conformations while the R-spines of the Nek7SRS molecules all have the same, partially stacked configuration. Compound 51 bound to Nek2 and Nek7 in similar modes, but differences in the precise orientation of a substituent highlights features that could be exploited in designing inhibitors that are selective for particular Nek family members. Although the SRS mutations are not required to obtain a Nek7-inhibitor structure, we conclude that it is a useful strategy for restraining the conformation of a kinase in order to promote crystallogenesis.
Collapse
Affiliation(s)
- Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Nazia Nasir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Christine Basmadjian
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Chitra Bhatia
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Rory F. Cunnison
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Katherine H. Carr
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Corine Mas-Droux
- Section of Structural Biology, The Institute of Cancer Research, London, U.K
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - Céline Cano
- Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| |
Collapse
|
5
|
Sonntag T, Moresco JJ, Yates JR, Montminy M. The KLDpT activation loop motif is critical for MARK kinase activity. PLoS One 2019; 14:e0225727. [PMID: 31794565 PMCID: PMC6890249 DOI: 10.1371/journal.pone.0225727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022] Open
Abstract
MAP/microtubule-affinity regulating kinases (MARK1-4) are members of the AMPK family of Ser/Thr-specific kinases, which phosphorylate substrates at consensus LXRXXSXXXL motifs. Within microtubule-associated proteins, MARKs also mediate phosphorylation of variant KXGS or ζXKXGSXXNΨ motifs, interfering with the ability of tau and MAP2/4 to bind to microtubules. Here we show that, although MARKs and the closely related salt-inducible kinases (SIKs) phosphorylate substrates with consensus AMPK motifs comparably, MARKs are more potent in recognizing variant ζXKXGSXXNΨ motifs on cellular tau. In studies to identify regions of MARKs that confer catalytic activity towards variant sites, we found that the C-terminal kinase associated-1 (KA1) domain in MARK1-3 mediates binding to microtubule-associated proteins CLASP1/2; but this interaction is dispensable for ζXKXGSXXNΨ phosphorylation. Mutational analysis of MARK2 revealed that the N-terminal kinase domain of MARK2 is sufficient for phosphorylation of both consensus and variant ζXKXGSXXNΨ sites. Within this domain, the KLDpT activation loop motif promotes MARK2 activity both intracellularly and in vitro, but has no effect on SIK2 activity. As KLDpT is conserved in all vertebrates MARKs, we conclude that this sequence is crucial for MARK-dependent regulation of cellular polarity.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
De Donato M, Righino B, Filippetti F, Battaglia A, Petrillo M, Pirolli D, Scambia G, De Rosa MC, Gallo D. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep 2018; 8:16047. [PMID: 30375481 PMCID: PMC6207720 DOI: 10.1038/s41598-018-34471-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
The NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), which is implicated in cell cycle control and plays significant roles in tumorigenesis, is an attractive target for the development of novel anti-cancer drugs. Here we describe the discovery of a potent ATP site-directed inhibitor of NEK6 identified by virtual screening, adopting both structure- and ligand-based techniques. Using a homology-built model of NEK6 as well as the pharmacophoric features of known NEK6 inhibitors we identified novel binding scaffolds. Twenty-five compounds from the top ranking hits were subjected to in vitro kinase assays. The best compound, i.e. compound 8 ((5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)methylidene]-5,6-dihydropyridine-3-carbonitrile), was able to inhibit NEK6 with low micromolar IC50 value, also displaying antiproliferative activity against a panel of human cancer cell lines. Our results suggest that the identified inhibitor can be used as lead candidate for the development of novel anti-cancer agents, thus opening the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Marta De Donato
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Benedetta Righino
- Institute of Biochemistry and Clinical Biochemistry - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Filippetti
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Gynecologic and Obstetric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Davide Pirolli
- Institute of Chemistry of Molecular Recognition (ICRM) - CNR, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Daniela Gallo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
8
|
Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism. Biochem J 2018; 475:2209-2224. [DOI: 10.1042/bcj20180077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
The type VI secretion system (T6SS) is a versatile and widespread export system found in many Gram-negative bacteria that delivers effector proteins into target cells. The functions of T6SSs are tightly regulated by diverse mechanisms at multiple levels, including post-translational modification through threonine phosphorylation via the Ser/Thr protein kinase (STPK) PpkA. Here, we identified that PpkA is essential for T6SS secretion in Serratia marcescens since its deletion eliminated the secretion of haemolysin co-regulated protein, while the periplasmic and transmembrane portion of PpkA was found to be disposable for T6SS secretion. We further determined the crystal structure of the kinase domain of PpkA (PpkA-294). The structure of PpkA-294 was determined in its apo form to a 1.6 Å resolution as well as in complex with ATP to a 1.41 Å resolution and with an ATP analogue AMP-PCP to a 1.45 Å resolution. The residues in the activation loop of PpkA-294 were fully determined, and the N-terminus of the loop was folded into an unprecedented inhibitory helix, revealing that the PpkA kinase domain was in an auto-inhibitory state. The ternary MgATP–PpkA-294 complex was also inactive with nucleotide ribose and phosphates in unexpected and unproductive conformations. The αC-helix in the inactive PpkA-294 adopted a conformation towards the active site but with the conserved glutamate in the helix rotated away, which we suggest to be a general conformation for all STPK kinases in the inactive form. Structural comparison of PpkA with its eukaryotic homologues reinforced the universal regulation mechanism of protein kinases.
Collapse
|
9
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
10
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
11
|
Coxon CR, Wong C, Bayliss R, Boxall K, Carr KH, Fry AM, Hardcastle IR, Matheson CJ, Newell DR, Sivaprakasam M, Thomas H, Turner D, Yeoh S, Wang LZ, Griffin RJ, Golding BT, Cano C. Structure-guided design of purine-based probes for selective Nek2 inhibition. Oncotarget 2017; 8:19089-19124. [PMID: 27833088 PMCID: PMC5386672 DOI: 10.18632/oncotarget.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC50 = 7.0 μM; Nek2 IC50 = 0.62 μM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC50 = 2.70 μM; Nek2 IC50 = 0.27 μM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.
Collapse
Affiliation(s)
- Christopher R. Coxon
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Wong
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Richard Bayliss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kathy Boxall
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Katherine H. Carr
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ian R. Hardcastle
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J. Matheson
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - David R. Newell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Mangaleswaran Sivaprakasam
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Huw Thomas
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - David Turner
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Sharon Yeoh
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Lan Z. Wang
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Roger J. Griffin
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Bernard T. Golding
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| | - Céline Cano
- Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
A new tool for the chemical genetic investigation of the Plasmodium falciparum Pfnek-2 NIMA-related kinase. Malar J 2016; 15:535. [PMID: 27821169 PMCID: PMC5100313 DOI: 10.1186/s12936-016-1580-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Examining essential biochemical pathways in Plasmodium falciparum presents serious challenges, as standard molecular techniques such as siRNA cannot be employed in this organism, and generating gene knock-outs of essential proteins requires specialized conditional approaches. In the study of protein kinases, pharmacological inhibition presents a feasible alternative option. However, as in mammalian systems, inhibitors often lack the desired selectivity. Described here is a chemical genetic approach to selectively inhibit Pfnek-2 in P. falciparum, a member of the NIMA-related kinase family that is essential for completion of the sexual development of the parasite. Results Introduction of a valine to cysteine mutation at position 24 in the glycine rich loop of Pfnek-2 does not affect kinase activity but confers sensitivity to the protein kinase inhibitor 4-(6-ethynyl-9H-purin-2-ylamino) benzene sulfonamide (NCL-00016066). Using a combination of in vitro kinase assays and mass spectrometry, (including phosphoproteomics) the study shows that this compound acts as an irreversible inhibitor to the mutant Pfnek2 likely through a covalent link with the introduced cysteine residue. In particular, this was shown by analysis of total protein mass using mass spectrometry which showed a shift in molecular weight of the mutant kinase in the presence of the inhibitor to be precisely equivalent to the molecular weight of NCL-00016066. A similar molecular weight shift was not observed in the wild type kinase. Importantly, this inhibitor has little activity towards the wild type Pfnek-2 and, therefore, has all the properties of an effective chemical genetic tool that could be employed to determine the cellular targets for Pfnek-2. Conclusions Allelic replacement of wild-type Pfnek-2 with the mutated kinase will allow for targeted inhibition of Pfnek-2 with NCL-00016066 and hence pave the way for comparative studies aimed at understanding the biological role and transmission-blocking potential of Pfnek-2.
Collapse
|
13
|
Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting Mitosis in Cancer: Emerging Strategies. Mol Cell 2016; 60:524-36. [PMID: 26590712 DOI: 10.1016/j.molcel.2015.11.006] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic. This review briefly examines past cell-cycle-targeted therapeutics and outlines how experience with these agents has provided valuable insight to refine and improve anti-mitotic strategies. An overview of emerging anti-mitotic approaches with promising pre-clinical results is provided, and the concept of exploiting the genomic instability of tumor cells through therapeutic inhibition of mitotic checkpoints is discussed. We believe this strategy has a high likelihood of success given its potential to enhance therapeutic index by targeting tumor-specific vulnerabilities. This reasoning stimulated our development of novel inhibitors targeting the critical regulators of genomic stability and the mitotic checkpoint: AURKA, PLK4, and Mps1/TTK.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Jacqueline M Mason
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Heiko Blaser
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Mark R Bray
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
14
|
Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Nat Commun 2015; 6:8771. [PMID: 26522158 PMCID: PMC4632185 DOI: 10.1038/ncomms9771] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023] Open
Abstract
Mitotic spindle assembly requires the regulated activities of protein kinases such as Nek7 and Nek9. Nek7 is autoinhibited by the protrusion of Tyr97 into the active site and activated by the Nek9 non-catalytic C-terminal domain (CTD). CTD binding apparently releases autoinhibition because mutation of Tyr97 to phenylalanine increases Nek7 activity independently of Nek9. Here we find that self-association of the Nek9-CTD is needed for Nek7 activation. We map the minimal Nek7 binding region of Nek9 to residues 810-828. A crystal structure of Nek7(Y97F) bound to Nek9(810-828) reveals a binding site on the C-lobe of the Nek7 kinase domain. Nek7(Y97F) crystallizes as a back-to-back dimer between kinase domain N-lobes, in which the specific contacts within the interface are coupled to the conformation of residue 97. Hence, we propose that the Nek9-CTD activates Nek7 through promoting back-to-back dimerization that releases the autoinhibitory tyrosine residue, a mechanism conserved in unrelated kinase families.
Collapse
|
15
|
78495111110.1016/j.molcel.2015.11.006" />
|
16
|
Burgess SG, Peset I, Joseph N, Cavazza T, Vernos I, Pfuhl M, Gergely F, Bayliss R. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genet 2015; 11:e1005345. [PMID: 26134678 PMCID: PMC4489650 DOI: 10.1371/journal.pgen.1005345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022] Open
Abstract
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.
Collapse
Affiliation(s)
- Selena G. Burgess
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Isabel Peset
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King’s College London, London, United Kingdom
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Bayliss R, Haq T, Yeoh S. The Ys and wherefores of protein kinase autoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1586-94. [PMID: 25936518 DOI: 10.1016/j.bbapap.2015.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is a key reaction in the regulation of cellular events and is catalysed by over 500 protein kinases in humans. The activities of protein kinases are strictly controlled through a diverse set of mechanisms. Structural studies have shown that the conformation adopted by kinases in their active state is highly similar, whereas inactive kinases can adopt a variety of conformations. Many kinases are maintained in a catalytically inactive state through autoinhibition. This involves a conformation of the kinase active site that is unable to support catalysis and requires activation through a signal such as binding of a regulatory protein. In this review, we briefly summarise some of the well-established autoinhibitory mechanisms and then focus on a relatively unexplored mode of autoinhibition that was first discovered in the Nek family of kinases and is also relevant to IRE1. This involves a tyrosine side-chain that blocks the active site and which must undergo a conformational change to enable kinase activity. We have termed this the Tyr-down autoinhibitory mechanism. We summarise the evidence for this mechanism and describe its role in kinase inhibitor design. Finally, we survey the kinome to identify other kinases with the potential to be governed by an autoinhibitory Tyr-down mechanism. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom.
| | - Tamanna Haq
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom
| | - Sharon Yeoh
- Department of Biochemistry, University of Leicester, Lancaster Road, LE1 9HN, United Kingdom
| |
Collapse
|
18
|
Moraes EC, Meirelles GV, Honorato RV, de Souza TDACB, de Souza EE, Murakami MT, de Oliveira PSL, Kobarg J. Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity. Molecules 2015; 20:1176-91. [PMID: 25591119 PMCID: PMC6272266 DOI: 10.3390/molecules20011176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Eduardo Cruz Moraes
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Gabriela Vaz Meirelles
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Rodrigo Vargas Honorato
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Edmarcia Elisa de Souza
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Mario Tyago Murakami
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Jörg Kobarg
- Programa de Pós-graduação em Biologia Funcional e Molecular, Departamento de Bioquímica e BiologiaTecidual, Instituto de Biologia, UniversidadeEstadual de Campinas, Campinas, 13083-862 SP, Brazil.
| |
Collapse
|
19
|
Saloura V, Cho HS, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, Tsunoda T, Seiwert T, Lingen M, Licht J, Nakamura Y, Hamamoto R. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res 2014; 13:293-304. [PMID: 25280969 DOI: 10.1158/1541-7786.mcr-14-0292-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Squamous cell carcinoma of the head and neck (SCCHN) is a relatively common malignancy with suboptimal long-term prognosis, thus new treatment strategies are urgently needed. Over the last decade, histone methyltransferases (HMT) have been recognized as promising targets for cancer therapy, but their mechanism of action in most solid tumors, including SCCHN, remains to be elucidated. This study investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), an NSD family HMT, in SCCHN. Immunohistochemical analysis of locoregionally advanced SCCHN, dysplastic, and normal epithelial tissue specimens revealed that WHSC1 expression and dimethylation of histone H3 lysine 36 (H3K36me2) were significantly higher in SCCHN tissues than in normal epithelium. Both WHSC1 expression and H3K36me2 levels were significantly correlated with histologic grade. WHSC1 knockdown in multiple SCCHN cell lines resulted in significant growth suppression, induction of apoptosis, and delay of the cell-cycle progression. Immunoblot and immunocytochemical analyses in SCCHN cells demonstrated that WHSC1 induced H3K36me2 and H3K36me3. Microarray expression profile analysis revealed NIMA-related kinase-7 (NEK7) to be a downstream target gene of WHSC1, and chromatin immunoprecipitation (ChIP) assays showed that NEK7 was directly regulated by WHSC1 through H3K36me2. Furthermore, similar to WHSC1, NEK7 knockdown significantly reduced cell-cycle progression, indicating that NEK7 is a key player in the molecular pathway regulated by WHSC1. IMPLICATIONS WHSC1 possesses oncogenic functions in SCCHN and represents a potential molecular target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Hyun-Soo Cho
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois. Genomics Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Kazuma Kiyotani
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Houda Alachkar
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Zhixiang Zuo
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Makoto Nakakido
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tanguy Seiwert
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Mark Lingen
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Jonathan Licht
- Section of Hematology and Oncology, Northwestern University, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Ryuji Hamamoto
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Inhibition of Nek2 by small molecules affects proteasome activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:273180. [PMID: 25313354 PMCID: PMC4182079 DOI: 10.1155/2014/273180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022]
Abstract
Background. Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. Materials and Methods. To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in several cancer cell lines, including multiple myeloma lines. Small-molecule inhibitors of Nek2 were discovered using an in-house library of compounds. We tested the inhibitors on proteasome and cell cycle activity in several cell lines. Results. Proteasome activity was elevated in Nek2-overexpressing cell lines. The Nek2 inhibitors inhibited proteasome activity in these cancer cell lines. Treatment with these inhibitors resulted in inhibition of proteasome-mediated degradation of several cell cycle regulators in HeLa cells, leaving them arrested in G2/M. Combining these Nek2 inhibitors with bortezomib increased the efficacy of bortezomib in decreasing proteasome activity in vitro. Treatment with these novel Nek2 inhibitors successfully mitigated drug resistance in bortezomib-resistant multiple myeloma. Conclusion. Nek2 plays a central role in proteasome-mediated cell cycle regulation and in conferring resistance to bortezomib in cancer cells. Taken together, our results introduce Nek2 as a therapeutic target in bortezomib-resistant multiple myeloma.
Collapse
|
21
|
Abstract
![]()
Although ADP release is the rate
limiting step in product turnover
by protein kinase A, the steps and motions involved in this process
are not well resolved. Here we report the apo and ADP bound structures
of the myristylated catalytic subunit of PKA at 2.9 and 3.5 Å
resolution, respectively. The ADP bound structure adopts a conformation
that does not conform to the previously characterized open, closed,
or intermediate states. In the ADP bound structure, the C-terminal
tail and Gly-rich loop are more closed than in the open state adopted
in the apo structure but are also much more open than the intermediate
or closed conformations. Furthermore, ADP binds at the active site
with only one magnesium ion, termed Mg2 from previous structures.
These structures thus support a model where ADP release proceeds through
release of the substrate and Mg1 followed by lifting of the Gly-rich
loop and disengagement of the C-terminal tail. Coupling of these two
structural elements with the release of the first metal ion fills
in a key step in the catalytic cycle that has been missing and supports
an ensemble of correlated conformational states that mediate the full
catalytic cycle for a protein kinase.
Collapse
Affiliation(s)
- Adam C Bastidas
- Department of Pharmacology, University of California, San Diego , San Diego, California 92093, United States
| | | | | |
Collapse
|
22
|
Structure-functional prediction and analysis of cancer mutation effects in protein kinases. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:653487. [PMID: 24817905 PMCID: PMC4000980 DOI: 10.1155/2014/653487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/31/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.
Collapse
|
23
|
Frett B, Brown RV, Ma M, Hu W, Han H, Li HY. Therapeutic melting pot of never in mitosis gene a related kinase 2 (Nek2): a perspective on Nek2 as an oncology target and recent advancements in Nek2 small molecule inhibition. J Med Chem 2014; 57:5835-44. [PMID: 24517277 DOI: 10.1021/jm401719n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global incidence of cancer is on the rise, and within the next decade, the disease is expected to become the leading cause of death worldwide. Forthcoming strategies used to treat cancers focus on the design and implementation of multidrug therapies to target complementary cancer specific pathways. A more direct means by which this multitargeted approach can be achieved is by identifying and targeting interpathway regulatory factors. Recent advances in understanding Nek2 (NIMA related kinase 2) biology suggest that the kinase potentially represents a multifaceted therapeutic target. In this regard, pharmacologic modulation of Nek2 with a single agent may effect several mechanisms important for tumor growth, survival, progression, and metastasis. We herein review the development of Nek2 as an oncology target and provide a succinct chronology of drug discovery campaigns focused on targeting Nek2.
Collapse
Affiliation(s)
- Brendan Frett
- Department of Pharmacoloy and Toxicology, College of Pharmacy, The University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
In eukaryotic cells, the peak of protein phosphorylation occurs during mitosis, switching the activities of a significant proportion of proteins and orchestrating a wholesale reorganization of cell shape and internal architecture. Most mitotic protein phosphorylation events are catalysed by a small subset of serine/threonine protein kinases. These include members of the Cdk (cyclin-dependent kinase), Plk (Polo-like kinase), Aurora, Nek (NimA-related kinase) and Bub families, as well as Haspin, Greatwall and Mps1/TTK. There has been steady progress in resolving the structural mechanisms that regulate the catalytic activities of these mitotic kinases. From structural and biochemical perspectives, kinase activation appears not as a binary process (from inactive to active), but as a series of states that exhibit varying degrees of activity. In its lowest activity state, a mitotic kinase may exhibit diverse autoinhibited or inactive conformations. Kinase activation proceeds via phosphorylation and/or association with a binding partner. These remodel the structure into an active conformation that is common to almost all protein kinases. However, all mitotic kinases of known structure have divergent features, many of which are key to understanding their specific regulatory mechanisms. Finally, mitotic kinases are an important class of drug target, and their structural characterization has facilitated the rational design of chemical inhibitors.
Collapse
|
25
|
Jeong AL, Lee S, Park JS, Han S, Jang CY, Lim JS, Lee MS, Yang Y. Cancerous inhibitor of protein phosphatase 2A (CIP2A) protein is involved in centrosome separation through the regulation of NIMA (never in mitosis gene A)-related kinase 2 (NEK2) protein activity. J Biol Chem 2013; 289:28-40. [PMID: 24214971 DOI: 10.1074/jbc.m113.507954] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is overexpressed in most human cancers and has been described as being involved in the progression of several human malignancies via the inhibition of protein phosphatase 2A (PP2A) activity toward c-Myc. However, with the exception of this role, the cellular function of CIP2A remains poorly understood. On the basis of yeast two-hybrid and coimmunoprecipitation assays, we demonstrate here that NIMA (never in mitosis gene A)-related kinase 2 (NEK2) is a binding partner for CIP2A. CIP2A exhibited dynamic changes in distribution, including the cytoplasm and centrosome, depending on the cell cycle stage. When CIP2A was depleted, centrosome separation and the mitotic spindle dynamics were impaired, resulting in the activation of spindle assembly checkpoint signaling and, ultimately, extension of the cell division time. Our data imply that CIP2A strongly interacts with NEK2 during G2/M phase, thereby enhancing NEK2 kinase activity to facilitate centrosome separation in a PP1- and PP2A-independent manner. In conclusion, CIP2A is involved in cell cycle progression through centrosome separation and mitotic spindle dynamics.
Collapse
Affiliation(s)
- Ae Lee Jeong
- From the Research Center for Women's Disease, Department of Life Systems and
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis. Oncogenesis 2013; 2:e69. [PMID: 24018644 PMCID: PMC3816224 DOI: 10.1038/oncsis.2013.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
Abstract
Centrosomal kinase Nek2 is overexpressed in different cancers, yet how it contributes toward tumorigenesis remains poorly understood. dNek2 overexpression in a Drosophila melanogaster model led to upregulation of Drosophila Wnt ortholog wingless (Wg), and alteration of cell migration markers—Rho1, Rac1 and E-cadherin (Ecad)—resulting in changes in cell shape and tissue morphogenesis. dNek2 overexpression cooperated with receptor tyrosine kinase and mitogen-activated protein kinase signaling to upregulate activated Akt, Diap1, Mmp1 and Wg protein to promote local invasion, distant seeding and metastasis. In tumor cell injection assays, dNek2 cooperated with Ras and Src signaling to promote aggressive colonization of tumors into different adult fly tissues. Inhibition of the PI3K pathway suppressed the cooperation of dNek2 with other growth pathways. Consistent with our fly studies, overexpression of human Nek2 in A549 lung adenocarcinoma and HEK293T cells led to activation of the Akt pathway and increase in β-catenin protein levels. Our computational approach identified a class of Nek2-inhibitory compounds and a novel drug-like pharmacophore that reversed the Nek2 overexpression phenotypes in flies and human cells. Our finding posits a novel role for Nek2 in promoting metastasis in addition to its currently defined role in promoting chromosomal instability. It provides a rationale for the selective advantage of centrosome amplification in cancer.
Collapse
|
27
|
Dodson CA, Yeoh S, Haq T, Bayliss R. A kinetic test characterizes kinase intramolecular and intermolecular autophosphorylation mechanisms. Sci Signal 2013; 6:ra54. [PMID: 23821772 DOI: 10.1126/scisignal.2003910] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Many protein kinases catalyze their own activation by autophosphorylation. The mechanism of this is generally considered to be intermolecular and similar to that used in substrate phosphorylation. We derived the kinetic signatures of the four simplest autophosphorylation reactions and developed a test to determine the autoactivation mechanism of individual kinases. Whereas autophosphorylation of Nek7 and Plk4 occurred through an intermolecular mechanism, the kinases Aurora-A and Chk2 followed an intramolecular mechanism. Autophosphorylation of Aurora-A was accelerated in the presence of its protein activator TPX2. Nek9, the binding partner for Nek7, had a concentration-dependent effect such that low amounts enhanced autoactivation of Nek7 and high amounts were inhibitory. A structural model of Aurora-A undergoing autophosphorylation confirmed that an intramolecular mechanism is physically possible, and provided an explanation for how TPX2 could stimulate both autophosphorylation and substrate phosphorylation. The distinct mechanisms of autoactivation have consequences for cellular regulation because each molecule of a kinase that undergoes intramolecular autophosphorylation is activated individually, whereas the activity of kinases that undergo intermolecular autophosphorylation can be rapidly self-amplified in the cell. Local control of individual molecules, such as Aurora-A, may be particularly advantageous for a kinase with multiple, distinct cellular roles.
Collapse
Affiliation(s)
- Charlotte A Dodson
- Division of Structural Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | | | | | |
Collapse
|
28
|
Bayliss R, Fry A, Haq T, Yeoh S. On the molecular mechanisms of mitotic kinase activation. Open Biol 2013; 2:120136. [PMID: 23226601 PMCID: PMC3513839 DOI: 10.1098/rsob.120136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
29
|
Chen CT, Gubbels MJ. The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant. J Cell Sci 2013; 126:3344-55. [PMID: 23729737 DOI: 10.1242/jcs.123364] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenesis and organelle partitioning. The molecular control mechanism of this process is poorly understood. Here, we characterized a T. gondii NIMA-related kinase (Nek) ortholog that was identified in a chemical mutagenesis screen. A temperature-sensitive mutant, V-A15, possesses a Cys316Arg mutation in TgNek1 (a novel mutant allele in Neks), which is responsible for growth defects at the restrictive temperature. Phenotypic analysis of V-A15 indicated that TgNek1 is essential for centrosome splitting, proper formation of daughter cells and faithful segregation of genetic material. In vitro kinase assays showed that the mutation abolishes the kinase activity of TgNek1. TgNek1 is recruited to the centrosome prior to its duplication and localizes on the duplicated centrosomes facing the spindle poles in a cell-cycle-dependent manner. Mutational analysis of the activation loop suggests that localization and activity are spatio-temporally regulated by differential phosphorylation. Collectively, our results identified a novel temperature-sensitive allele for a Nek kinase and highlight its essential function in centrosome splitting in Toxoplasma. Moreover, these results conclusively show for the first time that Toxoplasma bud assembly is facilitated by the centrosome because defective centrosome splitting results in single daughter cell budding.
Collapse
Affiliation(s)
- Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
30
|
Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 2012; 125:4423-33. [PMID: 23132929 DOI: 10.1242/jcs.111195] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
31
|
Wang S, Li W, Liu N, Zhang F, Liu H, Liu F, Liu J, Zhang T, Niu Y. Nek2A contributes to tumorigenic growth and possibly functions as potential therapeutic target for human breast cancer. J Cell Biochem 2012; 113:1904-14. [PMID: 22234886 DOI: 10.1002/jcb.24059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nek2A (NIMA-related kinases 2A) has been known as an important centrosome regulatory factor. The aim of this study was to investigate the expression of Nek2A and the role it played in different stages of breast cancer. We detected the expression of Nek2A in both mRNA and protein levels in MCF10 cell lines including MCF-10A, MCF-10DCIS.com, MCF-10CA1a and in human breast samples which contained normal breast tissue (NBT), breast ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Our study revealed that the mRNA and protein expression of Nek2A were significantly up-regulated in MCF-10DCIS.com and MCF-10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). Our study also presented a correlation between Nek2A mRNA expression and some clinic pathological factors. We found that Nek2A mRNA expression was associated with molecular subtypes, ER, PR and Ki-67 immunoreactivity (P<0.05) in DCIS and associated with histological grade, lymph node metastasis, molecular subtypes, c-erbB-2, and Ki-67 expression (P<0.05) in IDC. In addition, we observed that ectopic expression of Nek2A in "normal" immortalized MCF-10A breast epithelial cell resulted in increased Nek2A which lead to abnormal centrosomes. Furthermore, knockdown of Nek2A in MCF-10DCIS.com could remarkably inhibit cell proliferation and induce cell cycle arrest in MCF-10DCIS.com cell line. These data suggested that Nek2A might bear a close relationship with development and progression of breast carcinoma, and highlighted its role as a novel potential biomarker for diagnosis and a possible therapeutic target for human breast cancer especially for DCIS.
Collapse
Affiliation(s)
- Shuling Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Crystal structures of human CaMKIα reveal insights into the regulation mechanism of CaMKI. PLoS One 2012; 7:e44828. [PMID: 23028635 PMCID: PMC3447817 DOI: 10.1371/journal.pone.0044828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/07/2012] [Indexed: 12/04/2022] Open
Abstract
Human calcium/calmodulin-dependent protein kinase I (CaMKI) plays pivotal roles in the nervous system. The activity of human CaMKI is regulated by a regulatory region including an autoinhibitory segment and a CaM-binding segment. We report here four structures of three CaMKIα truncates in apo form and in complexes with ATP. In an apo, autoinhibited structure, the activation segment adopts a unique helical conformation which together with the autoinhibitory segment constrains helices αC and αD in inactive conformations, sequesters Thr177 from being phosphorylated, and occludes the substrate-binding site. In an ATP-bound, inactive structure, the activation segment is largely disordered and the CaM-binding segment protrudes out ready for CaM binding. In an ATP-bound, active structure, the regulatory region is dissociated from the catalytic core and the catalytic site assumes an active conformation. Detailed structural analyses reveal the interplay of the regulatory region, the activation segment, and the nucleotide-binding site in the regulation of CaMKI.
Collapse
|
33
|
Epstein LF, Chen H, Emkey R, Whittington DA. The R1275Q neuroblastoma mutant and certain ATP-competitive inhibitors stabilize alternative activation loop conformations of anaplastic lymphoma kinase. J Biol Chem 2012; 287:37447-57. [PMID: 22932897 DOI: 10.1074/jbc.m112.391425] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that, when genetically altered by mutation, amplification, chromosomal translocation or inversion, has been shown to play an oncogenic role in certain cancers. Small molecule inhibitors targeting the kinase activity of ALK have proven to be effective therapies in certain ALK-driven malignancies and one such inhibitor, crizotinib, is now approved for the treatment of EML4-ALK-driven, non-small cell lung cancer. In neuroblastoma, activating point mutations in the ALK kinase domain can drive disease progression, with the two most common mutations being F1174L and R1275Q. We report here crystal structures of the ALK kinase domain containing the F1174L and R1275Q mutations. Also included are crystal structures of ALK in complex with novel small molecule ALK inhibitors, including a classic type II inhibitor, that stabilize previously unobserved conformations of the ALK activation loop. Collectively, these structures illustrate a different series of activation loop conformations than has been observed in previous ALK crystal structures and provide insight into the activating nature of the R1275Q mutation. The novel active site topologies presented here may also aid the structure-based drug design of a new generation of ALK inhibitors.
Collapse
Affiliation(s)
- Linda F Epstein
- Department of Molecular Structure and Characterization, Amgen Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
34
|
Liu Z, Wang Y, Wang S, Zhang J, Zhang F, Niu Y. Nek2C functions as a tumor promoter in human breast tumorigenesis. Int J Mol Med 2012; 30:775-82. [PMID: 22824957 DOI: 10.3892/ijmm.2012.1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/15/2012] [Indexed: 11/06/2022] Open
Abstract
The serine⁄threonine kinase Nek2 has been proposed as a requirement for the progression of breast cancer. The aim of this study was to investigate the expression of Nek2C, which is a splice variant of Nek2, and the role it plays in the different stages of breast cancer. We investigated the role of Nek2C in the MCF10 breast cancer cell lines, MCF10A, MCF10AT, MCF10DCIS.com and MCF10CA1a, using RNA interference and plasmid transfection, as well as breast tissue samples of normal breast tissue (NBT), atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). We detected the mRNA Nek2C expression levels in the MCF10 cell lines and in human breast samples. Our results revealed that the mRNA expression of Nek2C was significantly upregulated in the MCF10DCIS.com and MCF10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). As expected, the Nek2C downregulation, using RNA interference, decreased the survival, invasion and migration of MCF10DCIS.com and MCF10CA1a cells. Consistent with these results, the Nek2C upregulation in MCF10A and MCF10AT cells using plasmid transfection increased the survival ability of these cells. Our results also revealed a correlation between Nek2C mRNA expression levels and tumor grade. Taken together, our findings suggest that Nek2C plays a signicficant role in breast cancer development and that Nek2C inhibition may be a useful therapeutic approach to targeting human breast tumors.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Wang S, Li W, Lv S, Wang Y, Liu Z, Zhang J, Liu T, Niu Y. Abnormal expression of Nek2 and β-catenin in breast carcinoma: clinicopathological correlations. Histopathology 2012; 59:631-42. [PMID: 22014044 DOI: 10.1111/j.1365-2559.2011.03941.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS NIMA-related kinase 2 (Nek2) and β-catenin are important centrosome regulatory factors. The aim of this study was to detect the possible disparity in their expression among normal breast tissue, invasive ductal carcinoma (IDC), concomitant ductal carcinoma in situ (DCIS), and pure DCIS, and to explore its correlation with clinicopathological factors. METHODS AND RESULTS We used immunohistochemistry to detect protein expression of Nek2 and β-catenin in breast cancer tissues from 60 cases of pure DCIS, 348 cases of IDC and 137 cases of concomitant DCIS with that in normal breast tissues from the same 137 concomitant DCIS patients as controls. As compared with normal tissue, expression of Nek2 and β-catenin in the cytoplasm was significantly increased in IDC and DCIS (P < 0.05), and variation in expression was also observed in different grades of IDC (P < 0.01). Also, cytoplasmic expression of Nek2 and and of β-catenin were correlated with each other in IDC and DCIS (P < 0.01). In addition, they were both related to Ki67 immunoreactivity (P < 0.05). Furthermore, our study also revealed a correlation between their expression and some clinicopathological factors. We found that Nek2 cytoplasmic expression was associated with grade and tumour size (P < 0.01) in IDC, whereas β-catenin cytomembrane expression showed significant variation with grades, TNM stages, lymphoid node status, oestrogen receptor status, and molecular subtype (P < 0.05); a difference in expression was also observed between IDC and DCIS (P < 0.05). Also, β-catenin cytoplasmic expression was associated with TNM stage (P < 0.05). Expression of Nek2 at the mRNA level was detected in 50 pairs of breast cancer specimens and matched normal tissues by reverse transcriptase polymerase chain reaction, and the result showed increased expression in IDC. CONCLUSIONS This study suggests that abnormal expression of Nek2 and β-catenin might be one of the mechanisms of tumorigenesis, especially of abnormal tumour proliferation. They may represent new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shuling Wang
- Department of Breast Cancer Pathology and Research Laboratory of Tianjin Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang Y, Shen Y, Li S, Jin N, Liu H, Yao X. Molecular dynamics and free energy studies on Aurora kinase A and its mutant bound with MLN8054: insight into molecular mechanism of subtype selectivity. MOLECULAR BIOSYSTEMS 2012; 8:3049-60. [DOI: 10.1039/c2mb25217a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Zhang J, Lushington GH, Huan J. The BioAssay network and its implications to future therapeutic discovery. BMC Bioinformatics 2011; 12 Suppl 5:S1. [PMID: 21988927 PMCID: PMC3226251 DOI: 10.1186/1471-2105-12-s5-s1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Despite intense investment growth and technology development, there is an observed bottleneck in drug discovery and development over the past decade. NIH started the Molecular Libraries Initiative (MLI) in 2003 to enlarge the pool for potential drug targets, especially from the “undruggable” part of human genome, and potential drug candidates from much broader types of drug-like small molecules. All results are being made publicly available in a web portal called PubChem. Results In this paper we construct a network from bioassay data in PubChem, apply network biology concepts to characterize this bioassay network, integrate information from multiple biological databases (e.g. DrugBank, OMIM, and UniHI), and systematically analyze the potential of bioassay targets being new drug targets in the context of complex biological networks. We propose a model to quantitatively prioritize this druggability of bioassay targets, and literature evidence was found to confirm our prioritization of bioassay targets at a roughly 70% accuracy. Conclusions Our analysis provide some measures of the value of the MLI data as a resource for both basic chemical biology research and future therapeutic discovery.
Collapse
Affiliation(s)
- Jintao Zhang
- Center for Bioinformatics, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
38
|
Characterization of acute renal allograft rejection by proteomic analysis of renal tissue in rat. Mol Biol Rep 2011; 39:1315-22. [DOI: 10.1007/s11033-011-0864-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
|
39
|
Solanki S, Innocenti P, Mas-Droux C, Boxall K, Barillari C, van Montfort RLM, Aherne GW, Bayliss R, Hoelder S. Benzimidazole Inhibitors Induce a DFG-Out Conformation of Never in Mitosis Gene A-Related Kinase 2 (Nek2) without Binding to the Back Pocket and Reveal a Nonlinear Structure−Activity Relationship. J Med Chem 2011; 54:1626-39. [DOI: 10.1021/jm1011726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Savade Solanki
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Paolo Innocenti
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Corine Mas-Droux
- The Institute of Cancer Research, Section of Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Kathy Boxall
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Caterina Barillari
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
- The Institute of Cancer Research, Section of Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Rob L. M. van Montfort
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
- The Institute of Cancer Research, Section of Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - G. Wynne Aherne
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- The Institute of Cancer Research, Section of Structural Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Swen Hoelder
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| |
Collapse
|
40
|
Meirelles GV, Silva JC, Mendonça YDA, Ramos CHI, Torriani IL, Kobarg J. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain. BMC STRUCTURAL BIOLOGY 2011; 11:12. [PMID: 21320329 PMCID: PMC3053220 DOI: 10.1186/1472-6807-11-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. RESULTS In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). CONCLUSIONS Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain.
Collapse
Affiliation(s)
- Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Júlio C Silva
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Yuri de A Mendonça
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos HI Ramos
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Iris L Torriani
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
41
|
Whelligan DK, Solanki S, Taylor D, Thomson DW, Cheung KMJ, Boxall K, Mas-Droux C, Barillari C, Burns S, Grummitt CG, Collins I, van Montfort RLM, Aherne GW, Bayliss R, Hoelder S. Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization. J Med Chem 2010; 53:7682-98. [PMID: 20936789 PMCID: PMC2972649 DOI: 10.1021/jm1008727] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report herein the first systematic exploration of inhibitors of the mitotic kinase Nek2. Starting from HTS hit aminopyrazine 2, compounds with improved activity were identified using structure-based design. Our structural biology investigations reveal two notable observations. First, 2 and related compounds bind to an unusual, inactive conformation of the kinase which to the best of our knowledge has not been reported for other types of kinase inhibitors. Second, a phenylalanine residue at the center of the ATP pocket strongly affects the ability of the inhibitor to bind to the protein. The implications of these observations are discussed, and the work described here defines key features for potent and selective Nek2 inhibition, which will aid the identification of more advanced inhibitors of Nek2.
Collapse
Affiliation(s)
- Daniel K Whelligan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem J 2010; 430:425-37. [PMID: 20632993 DOI: 10.1042/bj20100609] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ALK (anaplastic lymphoma kinase) is an RTK (receptor tyrosine kinase) of the IRK (insulin receptor kinase) superfamily, which share an YXXXYY autophosphorylation motif within their A-loops (activation loops). A common activation and regulatory mechanism is believed to exist for members of this superfamily typified by IRK and IGF1RK (insulin-like growth factor receptor kinase-1). Chromosomal translocations involving ALK were first identified in anaplastic large-cell lymphoma, a subtype of non-Hodgkin's lymphoma, where aberrant fusion of the ALK kinase domain with the NPM (nucleophosmin) dimerization domain results in autophosphosphorylation and ligand-independent activation. Activating mutations within the full-length ALK kinase domain, most commonly R1275Q and F1174L, which play a major role in neuroblastoma, were recently identified. To provide a structural framework for understanding these mutations and to guide structure-assisted drug discovery efforts, the X-ray crystal structure of the unphosphorylated ALK catalytic domain was determined in the apo, ADP- and staurosporine-bound forms. The structures reveal a partially inactive protein kinase conformation distinct from, and lacking, many of the negative regulatory features observed in inactive IGF1RK/IRK structures in their unphosphorylated forms. The A-loop adopts an inhibitory pose where a short proximal A-loop helix (alphaAL) packs against the alphaC helix and a novel N-terminal beta-turn motif, whereas the distal portion obstructs part of the predicted peptide-binding region. The structure helps explain the reported unique peptide substrate specificity and the importance of phosphorylation of the first A-loop Tyr1278 for kinase activity and NPM-ALK transforming potential. A single amino acid difference in the ALK substrate peptide binding P-1 site (where the P-site is the phosphoacceptor site) was identified that, in conjunction with A-loop sequence variation including the RAS (Arg-Ala-Ser)-motif, rationalizes the difference in the A-loop tyrosine autophosphorylation preference between ALK and IGF1RK/IRK. Enzymatic analysis of recombinant R1275Q and F1174L ALK mutant catalytic domains confirms the enhanced activity and transforming potential of these mutants. The transforming ability of the full-length ALK mutants in soft agar colony growth assays corroborates these findings. The availability of a three-dimensional structure for ALK will facilitate future structure-function and rational drug design efforts targeting this receptor tyrosine kinase.
Collapse
|
43
|
Hayward DG, Newbatt Y, Pickard L, Byrne E, Mao G, Burns S, Sahota NK, Workman P, Collins I, Aherne W, Fry AM. Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle-regulated nek2 kinase. ACTA ACUST UNITED AC 2010; 15:918-927. [PMID: 20664067 DOI: 10.1177/1087057110376537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nek2 is a serine/threonine protein kinase that localizes to the centrosome and is implicated in mitotic regulation. Overexpression of Nek2 induces premature centrosome separation and nuclear defects indicative of mitotic errors, whereas depletion of Nek2 interferes with cell growth. As Nek2 expression is upregulated in a range of cancer cell lines and primary human tumors, inhibitors of Nek2 may have therapeutic value in cancer treatment. The authors used a radiometric proximity assay in a high-throughput screen to identify small-molecule inhibitors of Nek2 kinase activity. The assay was based on the measurement of the radiolabeled phosphorylated product of the kinase reaction brought into contact with the surface of wells of solid scintillant-coated microplates. Seventy nonaggregating hits were identified from approximately 73,000 compounds screened and included a number of toxoflavins and a series of viridin/wortmannin-like compounds. The viridin-like compounds were >70-fold selective for Nek2 over Nek6 and Nek7 and inhibited the growth of human tumor cell lines at concentrations consistent with their biochemical potencies. An automated mechanism-based microscopy assay in which centrosomes were visualized using pericentrin antibodies confirmed that 2 of the viridin inhibitors reduced centrosome separation in a human tumor cell line. The data presented show that pharmacological inhibition of Nek2 kinase results in the expected phenotype of disruption to centrosome function associated with growth inhibition and further supports Nek2 as a target for cancer drug discovery.
Collapse
Affiliation(s)
- Daniel G Hayward
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Yvette Newbatt
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Lisa Pickard
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Eilis Byrne
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Guojie Mao
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Samantha Burns
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Navdeep K Sahota
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Ian Collins
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Wynne Aherne
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
44
|
Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: insights into selectivity and drug design. Biochem J 2010; 427:19-28. [PMID: 20067443 DOI: 10.1042/bj20091530] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of selective protein kinase inhibitors is often frustrated by the similarity of the enzyme active sites. For this reason, it is challenging to design inhibitors that discriminate between the three Aurora kinases, which are important targets in cancer drug discovery. We have used a triple-point mutant of Aurora-A (AurAx3) which mimics the active site of Aurora-B to investigate the structural basis of MLN8054 selectivity. The bias toward Aurora-A inhibition by MLN8054 is fully recapitulated by AurAx3 in vitro. X-ray crystal structures of the complex suggest that the basis for the discrimination is electrostatic repulsion due to the T217E substitution, which we have confirmed using a single-point mutant. The activation loop of Aurora-A in the AurAx3-MLN8054 complex exhibits an unusual conformation in which Asp274 and Phe275 side chains point into the interior of the protein. There is to our knowledge no documented precedent for this conformation, which we have termed DFG-up. The sequence requirements of the DFG-up conformation suggest that it might be accessible to only a fraction of kinases. MLN8054 thus circumvents the problem of highly homologous active sites. Binding of MLN8054 to Aurora-A switches the character of a pocket within the active site from polar to a hydrophobic pocket, similar to what is observed in the structure of Aurora-A bound to a compound that induces DFG-out. We propose that targeting this pocket may be a productive route in the design of selective kinase inhibitors and describe the structural basis for the rational design of these compounds.
Collapse
|
45
|
Richards MW, O'Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R. An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell 2009; 36:560-70. [PMID: 19941817 PMCID: PMC2807034 DOI: 10.1016/j.molcel.2009.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/24/2009] [Accepted: 09/04/2009] [Indexed: 02/06/2023]
Abstract
Mitosis is controlled by multiple protein kinases, many of which are abnormally expressed in human cancers. Nek2, Nek6, Nek7, and Nek9 are NIMA-related kinases essential for proper mitotic progression. We determined the atomic structure of Nek7 and discovered an autoinhibited conformation that suggests a regulatory mechanism not previously described in kinases. Additionally, Nek2 adopts the same conformation when bound to a drug-like molecule. In both structures, a tyrosine side chain points into the active site, interacts with the activation loop, and blocks the alphaC helix. Tyrosine mutants of Nek7 and the related kinase Nek6 are constitutively active. The activity of Nek6 and Nek7, but not the tyrosine mutant, is increased by interaction with the Nek9 noncatalytic C-terminal domain, suggesting a mechanism in which the tyrosine is released from its autoinhibitory position. The autoinhibitory conformation is common to three Neks and provides a potential target for selective kinase inhibitors.
Collapse
Affiliation(s)
- Mark W. Richards
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laura O'Regan
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Corine Mas-Droux
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Joelle M.Y. Blot
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Jack Cheung
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Swen Hoelder
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Richard Bayliss
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|