1
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
2
|
Tessmer I. The roles of non-productive complexes of DNA repair proteins with DNA lesions. DNA Repair (Amst) 2023; 129:103542. [PMID: 37453245 DOI: 10.1016/j.dnarep.2023.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proc Natl Acad Sci U S A 2022; 119:e2116218119. [PMID: 35259021 PMCID: PMC8931253 DOI: 10.1073/pnas.2116218119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT. The O6-alkylguanine DNA alkyltransferase (AGT) is an important DNA repair protein. AGT repairs highly mutagenic and cytotoxic alkylguanine lesions that result from metabolic products but are also deliberately introduced during chemotherapy, making a better understanding of the working mechanism of AGT essential. To investigate lesion interactions by AGT, we present a protocol to insert a single alkylguanine lesion at a well-defined position in long DNA substrates for single-molecule fluorescence microscopy coupled with dual-trap optical tweezers. Our studies address the longstanding enigma in the field of how monomeric AGT complexes at alkyl lesions seen in crystal structures can be reconciled with AGT clusters on DNA at high protein concentrations that have been observed from atomic force microscopy (AFM) and biochemical studies. A role of AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Interestingly, a possible role of these clusters is indicated by preferential cluster formation at alkyl lesions in our studies. From our data, we derive a model for the lesion search and repair mechanism of AGT.
Collapse
|
4
|
Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proc Natl Acad Sci U S A 2020; 117:9318-9328. [PMID: 32273391 DOI: 10.1073/pnas.1916860117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.
Collapse
|
5
|
The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
|
6
|
Miggiano R, Valenti A, Rossi F, Rizzi M, Perugino G, Ciaramella M. Every OGT Is Illuminated … by Fluorescent and Synchrotron Lights. Int J Mol Sci 2017; 18:ijms18122613. [PMID: 29206193 PMCID: PMC5751216 DOI: 10.3390/ijms18122613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
O6-DNA-alkyl-guanine-DNA-alkyl-transferases (OGTs) are evolutionarily conserved, unique proteins that repair alkylation lesions in DNA in a single step reaction. Alkylating agents are environmental pollutants as well as by-products of cellular reactions, but are also very effective chemotherapeutic drugs. OGTs are major players in counteracting the effects of such agents, thus their action in turn affects genome integrity, survival of organisms under challenging conditions and response to chemotherapy. Numerous studies on OGTs from eukaryotes, bacteria and archaea have been reported, highlighting amazing features that make OGTs unique proteins in their reaction mechanism as well as post-reaction fate. This review reports recent functional and structural data on two prokaryotic OGTs, from the pathogenic bacterium Mycobacterium tuberculosis and the hyperthermophilic archaeon Sulfolobus solfataricus, respectively. These studies provided insight in the role of OGTs in the biology of these microorganisms, but also important hints useful to understand the general properties of this class of proteins.
Collapse
Affiliation(s)
- Riccardo Miggiano
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Franca Rossi
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Menico Rizzi
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Maria Ciaramella
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
7
|
Melikishvili M, Fried MG. Quaternary interactions and supercoiling modulate the cooperative DNA binding of AGT. Nucleic Acids Res 2017; 45:7226-7236. [PMID: 28575445 PMCID: PMC5737729 DOI: 10.1093/nar/gkx223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/25/2017] [Indexed: 01/11/2023] Open
Abstract
Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found that while nearest-neighbor contacts were significant, long-range interactions dominated cooperativity and this pattern held true whether the DNA was single-stranded or duplex. Experiments with single plasmid topoisomers showed that the average cooperativity was sensitive to DNA twist, and was strongest when the DNA was slightly underwound. This suggests that AGT proteins are optimally juxtaposed when the DNA is near its torsionally-relaxed state. Most striking was the decline of binding stoichiometry with linking number. As stoichiometry and affinity differences were not correlated, we interpret this as evidence that supercoiling occludes AGT binding sites. These features suggest that AGT's lesion-search distributes preferentially to sites containing torsionally-relaxed DNA, in vivo.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Michael G Fried
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Nwaneri AC, McBeth L, Hinds TD. Sweet-P inhibition of glucocorticoid receptor β as a potential cancer therapy. CANCER CELL & MICROENVIRONMENT 2016; 3:e1362. [PMID: 27468424 PMCID: PMC4959805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for the development of new cancer therapies and push for the design of new targeting techniques is on the rise, and would be useful for cancers that are resistant to current drug treatments. The understanding of the genome has significantly advanced cancer therapy, as well as prevention and earlier detection. This research highlight discusses a potential new type of cancer-targeting molecule, Sweet-P, which is the first of its kind. Sweet-P specifically targets the microRNA-144 binding site in the 3' untranslated region (3' UTR) of the human glucocorticoid receptor β (GRβ), which has been demonstrated to increase expression. GRβ has been shown to be highly expressed in cells from solid tumors of uroepithelial carcinomas, gliomas, osteosarcomas, and hepatocellular carcinomas, as well as in liquid tumor cells from leukemia patients. In non-cancerous diseases, GRβ has been shown to be highly expressed in glucocorticoid-resistant asthma. These maladies brought the need for the development of the Sweet-P anti-GRβ molecule. Sweet-P was shown to repress the migration of bladder cancer cells, and may serve as a new therapeutic for GRβ-related diseases.
Collapse
|
9
|
Crystal structure of Mycobacterium tuberculosis O6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochem J 2015; 473:123-33. [PMID: 26512127 DOI: 10.1042/bj20150833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis O(6)-methylguanine-DNA methyltransferase (MtOGT) contributes to protect the bacterial GC-rich genome against the pro-mutagenic potential of O(6)-methylated guanine in DNA. Several strains of M. tuberculosis found worldwide encode a point-mutated O(6)-methylguanine-DNA methyltransferase (OGT) variant (MtOGT-R37L), which displays an arginine-to-leucine substitution at position 37 of the poorly functionally characterized N-terminal domain of the protein. Although the impact of this mutation on the MtOGT activity has not yet been proved in vivo, we previously demonstrated that a recombinant MtOGT-R37L variant performs a suboptimal alkylated-DNA repair in vitro, suggesting a direct role for the Arg(37)-bearing region in catalysis. The crystal structure of MtOGT complexed with modified DNA solved in the present study reveals details of the protein-protein and protein-DNA interactions occurring during alkylated-DNA binding, and the protein capability also to host unmodified bases inside the active site, in a fully extrahelical conformation. Our data provide the first experimental picture at the atomic level of a possible mode of assembling three adjacent MtOGT monomers on the same monoalkylated dsDNA molecule, and disclose the conformational flexibility of discrete regions of MtOGT, including the Arg(37)-bearing random coil. This peculiar structural plasticity of MtOGT could be instrumental to proper protein clustering at damaged DNA sites, as well as to protein-DNA complexes disassembling on repair.
Collapse
|
10
|
Melikishvili M, Fried MG. Resolving the contributions of two cooperative mechanisms to the DNA binding of AGT. Biopolymers 2015; 103:509-16. [PMID: 26017689 PMCID: PMC5016775 DOI: 10.1002/bip.22684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 11/25/2022]
Abstract
The O(6)-alkylguanine DNA alkyltransferase (AGT) is a DNA repair enzyme that binds DNA with moderate cooperativity. This cooperativity is important for its search for alkylated bases. A structural model of the cooperative complex of AGT with DNA predicts short-range interactions between nearest protein neighbors and long-range interactions between proteins separated in the array. DNA substrates ranging from 11bp to 30bp allowed us to use differences in binding stoichiometry to resolve short- and long-range protein contributions to the stability of AGT complexes. We found that the short-range component of ΔG°(coop) was nearly independent of DNA length and protein packing density. In contrast the long-range component oscillated with DNA length, with a period equal to the occluded binding site size (4bp). The amplitude of the long-range component decayed from ∼-4 kcal/mole of interaction to ∼-1.2 kcal/mol of interaction as the size of cooperative unit increased from 4 to 7 proteins, suggesting a mechanism to limit the size of cooperative clusters. These features allow us to make testable predictions about AGT distributions and interactions with chromatin structures in vivo.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, 40536
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
11
|
McManus FP, Wilds CJ. O(6) -alkylguanine-DNA alkyltransferase-mediated repair of O(4) -alkylated 2'-deoxyuridines. Chembiochem 2014; 15:1966-77. [PMID: 25087488 DOI: 10.1002/cbic.201402169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/06/2022]
Abstract
O(6) -Alkylguanine-DNA alkyltransferases (AGTs) are responsible for the removal of O(6) -alkyl 2'-deoxyguanosine (dG) and O(4) -alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O(6) -alkylguanine-DNA-alkyltransferase) protein, which can repair a range of O(4) -alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O(4) -alkyl 2'-deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada-C and OGT), human AGT, and an OGT/hAGT chimera to remove O(4) -methyl and larger adducts (4-hydroxybutyl and 7-hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O(4) -methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O(4) atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct-containing oligonucleotides and the amounts of repair measured.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6 (Canada)
| | | |
Collapse
|
12
|
Hellman LM, Spear TJ, Koontz CJ, Melikishvili M, Fried MG. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res 2014; 42:9781-91. [PMID: 25080506 PMCID: PMC4150771 DOI: 10.1093/nar/gku659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs.
Collapse
Affiliation(s)
- Lance M Hellman
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Tyler J Spear
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Colton J Koontz
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
13
|
Insight into the cooperative DNA binding of the O⁶-alkylguanine DNA alkyltransferase. DNA Repair (Amst) 2014; 20:14-22. [PMID: 24553127 DOI: 10.1016/j.dnarep.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/18/2014] [Indexed: 11/22/2022]
Abstract
The O(6)-alkylguanine DNA alkyltransferase (AGT) is a highly conserved protein responsible for direct repair of alkylated guanine and to a lesser degree thymine bases. While specific DNA lesion-bound complexes in crystal structures consist of monomeric AGT, several solution studies have suggested that cooperative DNA binding plays a role in the physiological activities of AGT. Cooperative AGT-DNA complexes have been described by theoretical models, which can be tested by atomic force microscopy (AFM). Direct access to structural features of AGT-DNA complexes at the single molecule level by AFM imaging revealed non-specifically bound, cooperative complexes with limited cluster length. Implications of cooperative binding in AGT-DNA interactions are discussed.
Collapse
|
14
|
Kotsarenko KV, Lylo VV, Macewicz LL, Babenko LA, Kornelyuk AI, Ruban TA, Lukash LL. Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch. Mol Cell Biol 2013; 33:3667-74. [PMID: 23858060 DOI: 10.1128/mcb.00646-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA-binding transcriptional activator Gal4 and its regulators Gal80 and Gal3 constitute a galactose-responsive switch for the GAL genes of Saccharomyces cerevisiae. Gal4 binds to GAL gene UASGAL (upstream activation sequence in GAL gene promoter) sites as a dimer via its N-terminal domain and activates transcription via a C-terminal transcription activation domain (AD). In the absence of galactose, a Gal80 dimer binds to a dimer of Gal4, masking the Gal4AD. Galactose triggers Gal3-Gal80 interaction to rapidly initiate Gal4-mediated transcription activation. Just how Gal3 alters Gal80 to relieve Gal80 inhibition of Gal4 has been unknown, but previous analyses of Gal80 mutants suggested a possible competition between Gal3-Gal80 and Gal80 self-association interactions. Here we assayed Gal80-Gal80 interactions and tested for effects of Gal3. Immunoprecipitation, cross-linking, and denaturing and native PAGE analyses of Gal80 in vitro and fluorescence imaging of Gal80 in live cells show that Gal3-Gal80 interaction occurs concomitantly with a decrease in Gal80 multimers. Consistent with this, we find that newly discovered nuclear clusters of Gal80 dissipate in response to galactose-triggered Gal3-Gal80 interaction. We discuss the effect of Gal3 on the quaternary structure of Gal80 in light of the evidence pointing to multimeric Gal80 as the form required to inhibit Gal4.
Collapse
|
16
|
Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol 2013; 195:2728-36. [PMID: 23564173 DOI: 10.1128/jb.02298-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis displays remarkable genetic stability despite continuous exposure to the hostile environment represented by the host's infected macrophages. Similarly to other organisms, M. tuberculosis possesses multiple systems to counteract the harmful potential of DNA alkylation. In particular, the suicidal enzyme O(6)-methylguanine-DNA methyltransferase (OGT) is responsible for the direct repair of O(6)-alkylguanine in double-stranded DNA and is therefore supposed to play a central role in protecting the mycobacterial genome from the risk of G · C-to-A · T transition mutations. Notably, a number of geographically widely distributed M. tuberculosis strains shows nonsynonymous single-nucleotide polymorphisms in their OGT-encoding gene, leading to amino acid substitutions at position 15 (T15S) or position 37 (R37L) of the N-terminal domain of the corresponding protein. However, the role of these mutations in M. tuberculosis pathogenesis is unknown. We describe here the in vitro characterization of M. tuberculosis OGT (MtOGT) and of two point-mutated versions of the protein mimicking the naturally occurring ones, revealing that both mutated proteins are impaired in their activity as a consequence of their lower affinity for alkylated DNA than the wild-type protein. The analysis of the crystal structures of MtOGT and MtOGT-R37L confirms the high level of structural conservation of members of this protein family and provides clues to an understanding of the molecular bases for the reduced affinity for the natural substrate displayed by mutated MtOGT. Our in vitro results could contribute to validate the inferred participation of mutated OGTs in M. tuberculosis phylogeny and biology.
Collapse
|
17
|
Abstract
Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Collapse
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
18
|
McManus FP, Wilds CJ. Engineering of a O6-alkylguanine-DNA alkyltransferase chimera and repair of O4-alkyl thymidine adducts and O6-alkylene-2′-deoxyguanosine cross-linked DNA. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20075a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Melikishvili M, Fried MG. Lesion-specific DNA-binding and repair activities of human O⁶-alkylguanine DNA alkyltransferase. Nucleic Acids Res 2012; 40:9060-72. [PMID: 22810209 PMCID: PMC3467069 DOI: 10.1093/nar/gks674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accumulation of a 1:1 intermediate. This establishes a role for cooperative interactions in lesion binding. Similar specific complexes could not be detected with single-stranded DNA. The small difference between specific and non-specific binding affinities strongly limits the roles that specific binding can play in the lesion search process. Alkyl-transfer kinetics with a single-stranded substrate indicate that two or more AGT monomers participate in the rate-limiting step, showing for the first time a functional link between cooperative binding and the repair reaction. Alkyl-transfer kinetics with a duplex substrate suggest that two pathways contribute to the formation of the specific 6mG-complex; one at least first order in AGT, we interpret as direct lesion binding. The second, independent of [AGT], is likely to include AGT transfer from distal sites to the lesion in a relatively slow unimolecular step. We propose that transfer between distal and lesion sites is a critical step in the repair process.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
20
|
Tessmer I, Melikishvili M, Fried MG. Cooperative cluster formation, DNA bending and base-flipping by O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res 2012; 40:8296-308. [PMID: 22730295 PMCID: PMC3458534 DOI: 10.1093/nar/gks574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
O6-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in DNA, protecting the genome and also contributing to the resistance of tumors to chemotherapeutic alkylating agents. AGT binds DNA cooperatively, and cooperative interactions are likely to be important in lesion search and repair. We examined morphologies of complexes on long, unmodified DNAs, using analytical ultracentrifugation and atomic force microscopy. AGT formed clusters of ≤11 proteins. Longer clusters, predicted by the McGhee–von Hippel model, were not seen even at high [protein]. Interestingly, torsional stress due to DNA unwinding has the potential to limit cluster size to the observed range. DNA at cluster sites showed bend angles (∼0, ∼30 and ∼60°) that are consistent with models in which each protein induces a bend of ∼30°. Distributions of complexes along the DNA are incompatible with sequence specificity but suggest modest preference for DNA ends. These properties tell us about environments in which AGT may function. Small cooperative clusters and the ability to accommodate a range of DNA bends allow function where DNA topology is constrained, such as near DNA-replication complexes. The low sequence specificity allows efficient and unbiased lesion search across the entire genome.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | |
Collapse
|
21
|
McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. O4-Alkyl-2′-deoxythymidine cross-linked DNA to probe recognition and repair by O6-alkylguanine DNA alkyltransferases. Org Biomol Chem 2012; 10:7078-90. [DOI: 10.1039/c2ob25705j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Melikishvili M, Rodgers DW, Fried MG. 6-Carboxyfluorescein and structurally similar molecules inhibit DNA binding and repair by O⁶-alkylguanine DNA alkyltransferase. DNA Repair (Amst) 2011; 10:1193-202. [PMID: 21982443 DOI: 10.1016/j.dnarep.2011.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/18/2022]
Abstract
Human O⁶-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O⁶-alkylguanine and O⁴-alkylthymine adducts in single-stranded and duplex DNAs. These activities protect normal cells and tumor cells against drugs that alkylate DNA; drugs that inactivate AGT are under test as chemotherapeutic enhancers. In studies using 6-carboxyfluorescein (FAM)-labeled DNAs, AGT reduced the fluorescence intensity by ∼40% at binding saturation, whether the FAM was located at the 5' or the 3' end of the DNA. AGT protected residual fluorescence from quenching, indicating a solute-inaccessible binding site for FAM. Sedimentation equilibrium analyses showed that saturating AGT-stoichiometries were higher with FAM-labeled DNAs than with unlabeled DNAs, suggesting that the FAM provides a protein binding site that is not present in unlabeled DNAs. Additional fluorescence and sedimentation measurements showed that AGT forms a 1:1 complex with free FAM. Active site benzylation experiments and docking calculations support models in which the primary binding site is located in or near the active site of the enzyme. Electrophoretic analyses show that FAM inhibits DNA binding (IC₅₀∼76μM) and repair of DNA containing an O⁶-methylguanine residue (IC₅₀∼63μM). Similar results were obtained with other polycyclic aromatic compounds. These observations demonstrate the existence of a new class of non-covalent AGT-inhibitors. After optimization for binding-affinity, members of this class might be useful in cancer chemotherapy.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536-0509, United States
| | | | | |
Collapse
|
23
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
24
|
Lopez S, Margison GP, Stanley McElhinney R, Cordeiro A, McMurry TBH, Rozas I. Towards more specific O6-methylguanine-DNA methyltransferase (MGMT) inactivators. Bioorg Med Chem 2011; 19:1658-65. [DOI: 10.1016/j.bmc.2011.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
25
|
Adams CA, Fried MG. Mutations that probe the cooperative assembly of O⁶-alkylguanine-DNA alkyltransferase complexes. Biochemistry 2011; 50:1590-8. [PMID: 21226457 DOI: 10.1021/bi101970d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O(6)-alkylguanine and O(4)-alkylthymine adducts present in DNA that has been exposed to alkylating agents. AGT binds DNA cooperatively, and models of cooperative complexes predict that residues 1-7 of one protein molecule and residues 163-169 of a neighboring protein are closely juxtaposed. To test these models, we used directed mutagenesis to substitute triplets of alanine for triplets of native residues across these two sequences. Six of eight designed mutants expressed AGT at detectable levels. All mutant AGTs that were expressed were folded compactly, bound DNA with stoichiometries equivalent to that of the wild-type protein, and were able to protect Escherichia coli to varying degrees from the potent alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). All mutations attenuated DNA binding cooperativity, but unexpectedly, they also reduced the affinity of AGT for DNA. This suggests that the protein-protein and protein-DNA interactions of AGT are strongly coupled. When normalized for differences in AGT expression, cells expressing mutants KDC(3-5)-AAA, DCE(4-6)-AAA, and KEW(165-167)-AAA were significantly more susceptible to MNNG than wild-type cells. This is the first evidence, to the best of our knowledge, of a role for residues at the protein-protein interface and, by implication, cooperative protein-protein interactions in the cell-protective mechanisms of AGT.
Collapse
Affiliation(s)
- Claire A Adams
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | | |
Collapse
|
26
|
Histidine-tag-directed chromophores for tracer analyses in the analytical ultracentrifuge. Methods 2010; 54:31-8. [PMID: 21187151 DOI: 10.1016/j.ymeth.2010.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022] Open
Abstract
Many recombinant proteins carry an oligohistidine (His(X))-tag that allows their purification by immobilized metal affinity chromatography (IMAC). This tag can be exploited for the site-specific attachment of chromophores and fluorophores, using the same metal ion-nitrilotriacetic acid (NTA) coordination chemistry that forms the basis of popular versions of IMAC. Labeling proteins in this way can allow their detection at wavelengths outside of the absorption envelopes of un-modified proteins and nucleic acids. Here we describe use of this technology in tracer sedimentation experiments that can be performed in a standard analytical ultracentrifuge equipped with absorbance or fluorescence optics. Examples include sedimentation velocity in the presence of low molecular weight chromophoric solutes, sedimentation equilibrium in the presence of high concentrations of background protein and selective labeling to simplify the assignment of species in a complex interacting mixture.
Collapse
|
27
|
Abstract
The experiments described here demonstrate ways in which DNA length can be used as an experimental variable for the characterization of positively cooperative, sequence nonspecific DNA binding. Examples are drawn from recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with duplex DNAs (Melikishvili et al. (2008). Interactions of human O(6)-alkylguanine-DNA alkyltransferase (AGT) with short double-stranded DNAs. Biochemistry 47, 13754-13763). Oscillations in binding density and apparent binding site size (S(app)) are predicted by models in which a single cooperative assembly forms on each DNA molecule and in which enzyme molecules bind full-length binding sites, but not partial ones. These oscillations provide an accurate, DNA-length independent measure of the occluded binding site size (the length of DNA that one protein molecule occupies to the exclusion of others). In addition, length-dependent oscillations in association constant (K) and cooperativity (ω) reveal the degree to which substrate length can influence these parameters.
Collapse
|