1
|
Fan W, Zhang S, Yang N, Li Y, Zhang X, Niu C, Liu X, Wang B. Studies on the synthesis, crystal structures, biological activities and molecular docking of novel natural methylxanthine derivatives containing piperazine moiety. Mol Divers 2024:10.1007/s11030-024-10972-z. [PMID: 39511124 DOI: 10.1007/s11030-024-10972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 11/15/2024]
Abstract
A series of novel methylxanthine Mannich base derivatives containing substituted piperazine groups were synthesized through Mannich reaction. The structures of these new compounds were confirmed by NMR, HRMS or elemental analyses, and X-ray single crystal diffraction. Bioassay results showed that some of the compounds exhibit favorable fungicidal and insecticidal potentials. Particularly, compounds IIk, IIq, IIs and compounds If, IIk against Physalospora piricola and Rhizoctonia cerealis, respectively, were comparable with Azoxystrobin and Chlorothalonil; compound Ik exhibited higher potency than Triflumuron against Plutella xylostella L., suggesting its potential as a lead compound for further development in insecticidal applications. Despite possessing weak herbicidal activities, the target compounds, especially the methylxanthine S-Mannich base derivatives I displayed remarkable inhibitory activities toward ketol-acid reductoisomerase (KARI); compounds Ib, If, and Ik which had Ki values of 2.41-8.08 µmol/L can be novel potent KARI inhibitors for deeper exploration. The SARs were analyzed in detail. The molecular docking studies on the highly active inhibitors with KARI provided possible binding modes between inhibitor and the target enzyme. The physicochemical parameter predictions indicated that compounds Ik, IIk, IIq and IIs have "druglike structure" features. The research results in this article may bring a new inspiration to the extensive explorations on new methylxanthine derivatives in pesticide area.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuyun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yonghong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Thakuria S, Paul S. Salt-bridge mediated conformational dynamics in the figure-of-eight knotted ketol acid reductoisomerase (KARI). Phys Chem Chem Phys 2024; 26:24963-24974. [PMID: 39297222 DOI: 10.1039/d4cp02677b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.
Collapse
Affiliation(s)
- Sanjib Thakuria
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Min LJ, Shen ZH, Bajsa-Hirschel J, Cantrell CL, Han L, Hua XW, Liu XH, Duke SO. Synthesis, crystal structure, herbicidal activity and mode of action of new cyclopropane-1,1-dicarboxylic acid analogues. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105228. [PMID: 36464348 DOI: 10.1016/j.pestbp.2022.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/17/2023]
Abstract
A new series of cyclopropane-1,1-dicarboxylic (CPD) acid analogues were designed and synthesized. CPD is an inhibitor of ketol-acid reductoisomerase (KARI), an enzyme of the branched chain amino acid pathway in plants. The structures of CPD analogues were characterized by 1H NMR and HRMS. The structure of N,N'-bis(4-(tert-butyl)phenyl)cyclopropane-1,1-dicarboxamide was further elucidated by X-ray diffraction. The herbicidal activities of these compounds were tested against lettuce (Lactuca sativa) and bentgrass (Agrostis stolonifera). Most of these compounds exhibited low herbicidal activity against both plant species. Among them, N,N'-bis(2-ethylphenyl)cyclopropane-1,1-dicarboxamide displayed moderate activity against bentgrass. Inhibition of KARI activity by the CPD analogues was also assessed experimentally and by molecular docking simulation with results supporting inhibition of KARI as their mode of action. These results provide the basis for design of more effective KARI inhibitors.
Collapse
Affiliation(s)
- Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Zhong-Hua Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, MS 38677, USA
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 1848, MS 38677, USA
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, MS, 38677, USA.
| |
Collapse
|
4
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Zhuang YC, Ye DS, Weng SU, Tsai HHG. Double Proton Transfer during a Novel Tertiary α-Ketol Rearrangement in Ketol-Acid Reductoisomerase: A Water-Mediated, Metal-Catalyzed, Base-Induced Mechanism. J Phys Chem B 2021; 125:11893-11906. [PMID: 34618450 DOI: 10.1021/acs.jpcb.1c07137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(KARI) catalyzes the conversion of (S)-2-acetolactate or (S)-2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-alkylbutyrate, the second step in the biosynthesis of branched chain amino acids (BCAAs). Because the BCAA biosynthetic pathway is present in bacteria, plants, and fungi, but absent in animals, it is an excellent target for the development of new-generation antibiotics and herbicides. Nevertheless, the mechanism of the KARI-catalyzed reaction has not yet been fully solved. In this study, we used iterative molecular dynamics (MD) flexible fitting-Rosetta techniques to optimize the three-dimensional solution structure of archaea KARI from Sulfolobus solfataricus (Sso-KARI) determined from cryo-electron microscopy. On the basis of the structure of the Sso-KARI/2Mg2+/NADH/(S)-2-acetolactate complex, we deciphered the catalytic mechanism of the KARI-mediated reaction through hybrid quantum mechanics/molecular mechanics MD simulations in conjunction with umbrella sampling. With an activation energy of only 6.06 kcal/mol, a water-mediated, metal-catalyzed, base-induced (WMMCBI) mechanism was preferred for deprotonation of the tertiary OH group of (S)-2-acetolactate in Sso-KARI. The WMMCBI mechanism for double proton transfer occurred within a proton wire route with two steps involving the formation of hydroxide: (i) Glu233 served as a general base to deprotonate the Mg2+-bound water, forming a hydroxide-coordinated Mg2+ ion; (ii) this hydroxide ion acted as a strong base that rapidly deprotonated the ternary OH group of the substrate. In contrast, the direct deprotonation of the substrate by Glu233 was kinetically unfavorable. This mechanism suggests a novel approach for designing catalysts for deprotonation and provides clues for the development of new-generation antibiotics and herbicides.
Collapse
Affiliation(s)
- Yi-Chuan Zhuang
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Dong-Sheng Ye
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Sheng-Uei Weng
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan.,Research Center of New-Generation Light-Driven Photovoltaic Modules, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
6
|
Kandale A, Patel K, Hussein WM, Wun SJ, Zheng S, Tan L, West NP, Schenk G, Guddat LW, McGeary RP. Analogues of the Herbicide, N-Hydroxy- N-isopropyloxamate, Inhibit Mycobacterium tuberculosis Ketol-Acid Reductoisomerase and Their Prodrugs Are Promising Anti-TB Drug Leads. J Med Chem 2021; 64:1670-1684. [PMID: 33512163 DOI: 10.1021/acs.jmedchem.0c01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs to treat tuberculosis (TB) are urgently needed to combat the increase in resistance observed among the current first-line and second-line treatments. Here, we propose ketol-acid reductoisomerase (KARI) as a target for anti-TB drug discovery. Twenty-two analogues of IpOHA, an inhibitor of plant KARI, were evaluated as antimycobacterial agents. The strongest inhibitor of Mycobacterium tuberculosis (Mt) KARI has a Ki value of 19.7 nM, fivefold more potent than IpOHA (Ki = 97.7 nM). This and four other potent analogues are slow- and tight-binding inhibitors of MtKARI. Three compounds were cocrystallized with Staphylococcus aureus KARI and yielded crystals that diffracted to 1.6-2.0 Å resolution. Prodrugs of these compounds possess antimycobacterial activity against H37Rv, a virulent strain of human TB, with the most active compound having an MIC90 of 2.32 ± 0.04 μM. This compound demonstrates a very favorable selectivity window and represents a highly promising lead as an anti-TB agent.
Collapse
Affiliation(s)
- Ajit Kandale
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Khushboo Patel
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Lin X, Kurz JL, Patel KM, Wun SJ, Hussein WM, Lonhienne T, West NP, McGeary RP, Schenk G, Guddat LW. Discovery of a Pyrimidinedione Derivative with Potent Inhibitory Activity against Mycobacterium tuberculosis Ketol-Acid Reductoisomerase. Chemistry 2021; 27:3130-3141. [PMID: 33215746 DOI: 10.1002/chem.202004665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/26/2022]
Abstract
New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 μm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.
Collapse
Affiliation(s)
- Xin Lin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Julia L Kurz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Khushboo M Patel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan University, Helwan, Egypt
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
8
|
Ardini M, Bellelli A, Williams DL, Di Leandro L, Giansanti F, Cimini A, Ippoliti R, Angelucci F. Taking Advantage of the Morpheein Behavior of Peroxiredoxin in Bionanotechnology. Bioconjug Chem 2021; 32:43-62. [PMID: 33411522 PMCID: PMC8023583 DOI: 10.1021/acs.bioconjchem.0c00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Morpheeins
are proteins that reversibly assemble into different
oligomers, whose architectures are governed by conformational changes
of the subunits. This property could be utilized in bionanotechnology
where the building of nanometric and new high-ordered structures is
required. By capitalizing on the adaptability of morpheeins to create
patterned structures and exploiting their inborn affinity toward inorganic
and living matter, “bottom-up” creation of nanostructures
could be achieved using a single protein building block, which may
be useful as such or as scaffolds for more complex materials. Peroxiredoxins
represent the paradigm of a morpheein that can be applied to bionanotechnology.
This review describes the structural and functional transitions that
peroxiredoxins undergo to form high-order oligomers, e.g., rings,
tubes, particles, and catenanes, and reports on the chemical and genetic
engineering approaches to employ them in the generation of responsive
nanostructures and nanodevices. The usefulness of the morpheeins’
behavior is emphasized, supporting their use in future applications.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Roma "Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Luana Di Leandro
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Francesco Giansanti
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
9
|
Wun SJ, Johnson LA, You L, McGeary RP, Brueck T, Schenk G, Guddat LW. Inhibition studies of ketol-acid reductoisomerases from pathogenic microorganisms. Arch Biochem Biophys 2020; 692:108516. [DOI: 10.1016/j.abb.2020.108516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
|
10
|
Chen CY, Chang YC, Lin BL, Huang CH, Tsai MD. Temperature-Resolved Cryo-EM Uncovers Structural Bases of Temperature-Dependent Enzyme Functions. J Am Chem Soc 2019; 141:19983-19987. [PMID: 31829582 DOI: 10.1021/jacs.9b10687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein functions are temperature-dependent, but protein structures are usually solved at a single (often low) temperature because of limitations on the conditions of crystal growth or protein vitrification. Here we demonstrate the feasibility of solving cryo-EM structures of proteins vitrified at high temperatures, solve 12 structures of an archaeal ketol-acid reductoisomerase (KARI) vitrified at 4-70 °C, and show that structures of both the Mg2+ form (KARI:2Mg2+) and its ternary complex (KARI:2Mg2+:NADH:inhibitor) are temperature-dependent in correlation with the temperature dependence of enzyme activity. Furthermore, structural analyses led to dissection of the induced-fit mechanism into ligand-induced and temperature-induced effects and to capture of temperature-resolved intermediates of the temperature-induced conformational change. The results also suggest that it is preferable to solve cryo-EM structures of protein complexes at functional temperatures. These studies should greatly expand the landscapes of protein structure-function relationships and enhance the mechanistic analysis of enzymatic functions.
Collapse
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences , National Central University , Taoyuan 32001 , Taiwan
| | | | | | - Chun-Hsiang Huang
- Experimental Facility Division , National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
| | - Ming-Daw Tsai
- Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
11
|
Lee D, Hong J, Kim KJ. Crystal Structure and Biochemical Characterization of Ketol-Acid Reductoisomerase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8527-8535. [PMID: 31298526 DOI: 10.1021/acs.jafc.9b03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
l-Valine belongs to the branched-chain amino acids (BCAAs) and is an essential amino acid that is crucial for all living organisms. l-Valine is industrially produced by the nonpathogenic bacterium Corynebacterium glutamicum and is synthesized by the BCAA biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in the BCAA pathway and catalyzes the conversion of (S)-2-acetolactate into (R)-2,3-dihydroxy-isovalerate, or the conversion of (S)-2-aceto-2-hydroxybutyrate into (R)-2,3-dihydroxy-3-methylvalerate. To elucidate the enzymatic properties of KARI from C. glutamicum (CgKARI), we successfully produced CgKARI protein and determined its crystal structure in complex with NADP+ and two Mg2+ ions. Based on the complex structure, docking simulations, and site-directed mutagenesis experiments, we revealed that CgKARI belongs to Class I KARI and identified key residues involved in stabilization of the substrate, metal ions, and cofactor. Furthermore, we confirmed the difference in the binding of metal ions that depended on the conformational change.
Collapse
Affiliation(s)
- Donghoon Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Jiyeon Hong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Daehak-ro 80, Buk-ku , Daegu 702-701 , Korea
- KNU Institute for Microorganisms , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
12
|
Chen CY, Chang YC, Lin BL, Lin KF, Huang CH, Hsieh DL, Ko TP, Tsai MD. Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. J Am Chem Soc 2019; 141:6136-6140. [DOI: 10.1021/jacs.9b01354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | | | - Kuan-Fu Lin
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Hsiang Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Dong-Lin Hsieh
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | | | - Ming-Daw Tsai
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
13
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
14
|
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Sci Rep 2018; 8:7176. [PMID: 29739976 PMCID: PMC5940873 DOI: 10.1038/s41598-018-25361-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2′-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with KM values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.
Collapse
|
15
|
Patel KM, Teran D, Zheng S, Kandale A, Garcia M, Lv Y, Schembri MA, McGeary RP, Schenk G, Guddat LW. Crystal Structures of Staphylococcus aureus Ketol-Acid Reductoisomerase in Complex with Two Transition State Analogues that Have Biocidal Activity. Chemistry 2017; 23:18289-18295. [PMID: 28975665 DOI: 10.1002/chem.201704481] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 01/19/2023]
Abstract
Ketol-acid reductoisomerase (KARI) is an NAD(P)H and Mg2+ -dependent enzyme of the branched-chain amino acid (BCAA) biosynthesis pathway. Here, the first crystal structures of Staphylococcus aureus (Sa) KARI in complex with two transition state analogues, cyclopropane-1,1-dicarboxylate (CPD) and N-isopropyloxalyl hydroxamate (IpOHA) are reported. These compounds bind competitively and in multi-dentate manner to KARI with Ki values of 2.73 μm and 7.9 nm, respectively; however, IpOHA binds slowly to the enzyme. Interestingly, intact IpOHA is present in only ≈25 % of binding sites, whereas its deoxygenated form is present in the remaining sites. This deoxy form of IpOHA binds rapidly to Sa KARI, but with much weaker affinity (Ki =21 μm). Thus, our data pinpoint the origin of the slow binding mechanism of IpOHA. Furthermore, we propose that CPD mimics the early stage of the catalytic reaction (preceding the reduction step), whereas IpOHA mimics the late stage (after the reduction took place). These structural insights will guide strategies to design potent and rapidly binding derivatives of these compounds for the development of novel biocides.
Collapse
Affiliation(s)
- Khushboo M Patel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - David Teran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ajit Kandale
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Mario Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - You Lv
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
16
|
Xu HH, Liu SJ, Song SH, Wang WQ, Møller IM, Song SQ. Proteome changes associated with dormancy release of Dongxiang wild rice seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:68-86. [PMID: 27697673 DOI: 10.1016/j.jplph.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
17
|
Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J. Natural supramolecular protein assemblies. Chem Soc Rev 2016; 45:24-39. [PMID: 26497225 DOI: 10.1039/c5cs00157a] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular protein assemblies are an emerging area within the chemical sciences, which combine the topological structures of the field of supramolecular chemistry and the state-of-the-art chemical biology approaches to unravel the formation and function of protein assemblies. Recent chemical and biological studies on natural multimeric protein structures, including fibers, rings, tubes, catenanes, knots, and cages, have shown that the quaternary structures of proteins are a prerequisite for their highly specific biological functions. In this review, we illustrate that a striking structural diversity of protein assemblies is present in nature. Furthermore, we describe structure-function relationship studies for selected classes of protein architectures, and we highlight the techniques that enable the characterisation of supramolecular protein structures.
Collapse
Affiliation(s)
- Bas J G E Pieters
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Mark B van Eldijk
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Folding analysis of the most complex Stevedore's protein knot. Sci Rep 2016; 6:31514. [PMID: 27527519 PMCID: PMC4985754 DOI: 10.1038/srep31514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures.
Collapse
|
19
|
Tadrowski S, Pedroso MM, Sieber V, Larrabee JA, Guddat LW, Schenk G. Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol-Acid Reductoisomerase. Chemistry 2016; 22:7427-36. [PMID: 27136273 DOI: 10.1002/chem.201600620] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023]
Abstract
Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the μ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions.
Collapse
Affiliation(s)
- Sonya Tadrowski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Volker Sieber
- Straubing Center of Science, Technische Universität München, Straubing, Germany
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
21
|
Lv Y, Kandale A, Wun SJ, McGeary RP, Williams SJ, Kobe B, Sieber V, Schembri MA, Schenk G, Guddat LW. Crystal structure of
Mycobacterium tuberculosis
ketol‐acid reductoisomerase at 1.0 Å resolution – a potential target for anti‐tuberculosis drug discovery. FEBS J 2016; 283:1184-96. [DOI: 10.1111/febs.13672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Affiliation(s)
- You Lv
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Ajit Kandale
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Shun Jie Wun
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Volker Sieber
- Straubing Center of Science Technische Universität München Straubing Germany
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre University of Queensland Brisbane Australia
| |
Collapse
|
22
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
23
|
Zhang YX, Xu HH, Liu SJ, Li N, Wang WQ, Møller IM, Song SQ. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:1394. [PMID: 27708655 PMCID: PMC5031166 DOI: 10.3389/fpls.2016.01394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.
Collapse
Affiliation(s)
- Ying-Xue Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ni Li
- Hunan Hybrid Rice Research Center/State Key Laboratory of Hybrid RiceChangsha, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ian M. Møller
- Department of Molecular Biology and Genetics, Aarhus UniversityFlakkebjerg, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Song-Quan Song
| |
Collapse
|
24
|
Cahn JKB, Brinkmann-Chen S, Buller AR, Arnold FH. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases. Protein Sci 2015; 25:1241-8. [PMID: 26644020 DOI: 10.1002/pro.2852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
25
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
26
|
Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, Li X, Yan Y. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 2015; 15:1544-63. [DOI: 10.1002/pmic.201400179] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Pengchao Hao
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Jiantang Zhu
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Aiqin Gu
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Dongwen Lv
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Pei Ge
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Guanxing Chen
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Xiaohui Li
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Yueming Yan
- College of Life Science; Capital Normal University; Beijing P. R. China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI); Jingzhou P. R. China
| |
Collapse
|
27
|
Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases. Biochem J 2015; 468:475-84. [PMID: 25849365 DOI: 10.1042/bj20150183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue β2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site.
Collapse
|
28
|
Identification and optimization of a novel thermo- and solvent stable ketol-acid reductoisomerase for cell free isobutanol biosynthesis. Biochimie 2015; 108:76-84. [DOI: 10.1016/j.biochi.2014.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022]
|
29
|
Brinkmann-Chen S, Cahn JKB, Arnold FH. Uncovering rare NADH-preferring ketol-acid reductoisomerases. Metab Eng 2014; 26:17-22. [PMID: 25172159 DOI: 10.1016/j.ymben.2014.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 11/25/2022]
Abstract
All members of the ketol-acid reductoisomerase (KARI) enzyme family characterized to date have been shown to prefer the nicotinamide adenine dinucleotide phosphate hydride (NADPH) cofactor to nicotinamide adenine dinucleotide hydride (NADH). However, KARIs with the reversed cofactor preference are desirable for industrial applications, including anaerobic fermentation to produce branched-chain amino acids. By applying insights gained from structural and engineering studies of this enzyme family to a comprehensive multiple sequence alignment of KARIs, we identified putative NADH-utilizing KARIs and characterized eight whose catalytic efficiencies using NADH were equal to or greater than NADPH. These are the first naturally NADH-preferring KARIs reported and demonstrate that this property has evolved independently multiple times, using strategies unlike those used previously in the laboratory to engineer a KARI cofactor switch.
Collapse
Affiliation(s)
- S Brinkmann-Chen
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| | - J K B Cahn
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| | - F H Arnold
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 E California Blvd, MC 210-41, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc Natl Acad Sci U S A 2013; 110:10946-51. [PMID: 23776225 DOI: 10.1073/pnas.1306073110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.
Collapse
|
31
|
Zabalza A, Zulet A, Gil-Monreal M, Igal M, Royuela M. Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:814-21. [PMID: 23394788 DOI: 10.1016/j.jplph.2013.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/08/2023]
Abstract
Acetolactate synthase (ALS; EC 4.1.3.18) and ketol-acid reductoisomerase (KARI; EC 1.1.1.86) are two consecutive enzymes in the biosynthesis of branched-chain amino acids. Several commercial herbicides inhibit ALS as their primary site of action. KARI has also attracted attention as a potential target for herbicides. Although potent and selective inhibitors of KARI have been discovered, these inhibitors display less herbicidal activity than ALS-inhibiting herbicides. To obtain a better understanding of these findings, we have compared the physiological effects induced in pea plants after KARI or ALS inhibition. Although, both types of inhibitors induce growth arrest and photosynthesis inhibition, plant death occurs more rapidly under ALS inhibition than KARI inhibition. Carbohydrates accumulated in the leaves and roots following treatments with both inhibitors. The carbohydrate accumulation in the leaves occurred as a consequence of a decrease in sink strength. In contrast, the free amino acid content was only affected through ALS inhibition. These results indicate that although KARI and ALS inhibition block the same biosynthetic pathway and exert common effects on carbon metabolism, nitrogen metabolism is more affected via ALS than KARI inhibition. Thus, metabolic alterations in nitrogen metabolism induced through ALS inhibitors might contribute to the increased efficacy of these chemicals as herbicides.
Collapse
Affiliation(s)
- Ana Zabalza
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de Arrosadia, E-31006, Pamplona, Spain
| | | | | | | | | |
Collapse
|
32
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
33
|
Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle. J Mol Biol 2012; 424:168-79. [PMID: 23036858 DOI: 10.1016/j.jmb.2012.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/09/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022]
Abstract
Ketol-acid reductoisomerase (KARI) is the second enzyme in the branched-chain amino acid biosynthesis pathway, which is found in plants, fungi and bacteria but not in animals. This difference in metabolism between animals and microorganisms makes KARI an attractive target for the development of antimicrobial agents. Herein we report the crystal structure of Escherichia coli KARI in complex with Mg(2+) and NADPH at 2.3Å resolution. Ultracentrifugation studies confirm that the enzyme exists as a tetramer in solution, and isothermal titration calorimetry shows that the binding of Mg(2+) increases structural disorder while the binding of NADPH increases the structural rigidity of the enzyme. Comparison of the structure of the E. coli KARI-Mg(2+)-NADPH complex with that of enzyme in the absence of cofactors shows that the binding of Mg(2+) and NADPH opens the interface between the N- and C-domains, thereby allowing access for the substrates to bind: the existence of only a small opening between the domains in the crystal structure of the unliganded enzyme signifies restricted access to the active site. This observation contrasts with that in the plant enzyme, where the N-domain can rotate freely with respect to the C-domain until the binding of Mg(2+) and/or NADPH stabilizes the relative positions of these domains. Support is thereby provided for the idea that plant and bacterial KARIs have evolved different mechanisms of induced fit to prepare the active site for catalysis.
Collapse
|
34
|
Kochevenko A, Fernie AR. The genetic architecture of branched-chain amino acid accumulation in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3895-906. [PMID: 21436187 PMCID: PMC3134350 DOI: 10.1093/jxb/err091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Previous studies of the genetic architecture of fruit metabolic composition have allowed us to identify four strongly conserved co-ordinate quantitative trait loci (QTL) for the branched-chain amino acids (BCAAs). This study has been extended here to encompass the other 23 enzymes described to be involved in the pathways of BCAA synthesis and degradation. On coarse mapping the chromosomal location of these enzymes, it was possible to define the map position of 24 genes. Of these genes eight co-localized, or mapped close to BCAA QTL including those encoding ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), and isopropylmalate dehydratase (IPMD). Quantitative evaluation of the expression levels of these genes revealed that the S. pennellii allele of IPMD demonstrated changes in the expression level of this gene, whereas those of KARI and DHAD were invariant across the genotypes. Whilst the antisense inhibition of IPMD resulted in increased BCAA, the antisense inhibition of neither KARI nor DHAD produced a clear effect in fruit BCAA contents. The results are discussed both with respect to the roles of these specific enzymes within plant amino acid metabolism and within the context of current understanding of the regulation of plant branched-chain amino acid metabolism.
Collapse
|
35
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|
36
|
Joshi V, Joung JG, Fei Z, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010; 39:933-47. [DOI: 10.1007/s00726-010-0505-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/25/2010] [Indexed: 11/27/2022]
|
37
|
Binder S. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2010; 8:e0137. [PMID: 22303262 PMCID: PMC3244963 DOI: 10.1199/tab.0137] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Stefan Binder
- Institute Molecular Botany, Ulm University, Albert-Einstein-Allee 11, 89060 Ulm, Germany Address correspondence to
| |
Collapse
|