1
|
Dong W, Liu Y, Hou J, Zhang J, Xu J, Yang K, Zhu L, Lin D. Nematodes Degrade Extracellular Antibiotic Resistance Genes by Secreting DNase II Encoded by the nuc-1 Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12042-12052. [PMID: 37523858 DOI: 10.1021/acs.est.3c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study investigated the degradation performance and mechanism of extracellular antibiotic resistance genes (eARGs) by nematodes using batch degradation experiments, mutant strain validation, and phylogenetic tree construction. Caenorhabditis elegans, a representative nematode, effectively degraded approximately 99.999% of eARGs (tetM and kan) in 84 h and completely deactivated them within a few hours. Deoxyribonuclease (DNase) II encoded by nuc-1 in the excretory and secretory products of nematodes was the primary mechanism. A neighbor-joining phylogenetic tree indicated the widespread presence of homologs of the NUC-1 protein in other nematodes, such as Caenorhabditis remanei and Caenorhabditis brenneri, whose capabilities of degrading eARGs were then experimentally confirmed. C. elegans remained effective in degrading eARGs under the effects of natural organic matter (5, 10, and 20 mg/L, 5.26-6.22 log degradation), cation (2.0 mM Mg2+ and 2.5 mM Ca2+, 5.02-5.04 log degradation), temperature conditions (1, 20, and 30 °C, 1.21-5.26 log degradation), and in surface water and wastewater samples (4.78 and 3.23 log degradation, respectively). These findings highlight the pervasive but neglected role of nematodes in the natural decay of eARGs and provide novel approaches for antimicrobial resistance mitigation biotechnology by introducing nematodes to wastewater, sludge, and biosolids.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
2
|
Long noncoding RNA CBR3-AS1 mediates tumorigenesis and radiosensitivity of non-small cell lung cancer through redox and DNA repair by CBR3-AS1 /miR-409-3p/SOD1 axis. Cancer Lett 2022; 526:1-11. [PMID: 34801596 DOI: 10.1016/j.canlet.2021.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
The long noncoding RNA CBR3-AS1 has important functions in various cancers. However, the biological functions of CBR3-AS1 in non-small cell lung cancer (NSCLC) remain unclear. This study aimed to investigate the roles and molecular mechanisms of CBR3-AS1 in NSCLC tumorigenesis and radiosensitivity. Here, we demonstrate CBR3-AS1 overexpression in NSCLC tissue compared with adjacent normal tissue. CBR3-AS1 downregulation reduced proliferation, invasion, and migration; inhibited cell cycle progression; and promoted apoptosis of NSCLC cells. CBR3-AS1 also promoted tumor growth in vivo. CBR3-AS1 may regulate the expression and functions of the miR-409-3p target gene SOD1. CBR3-AS1 expression was negatively correlated with radiosensitivity. CBR3-AS1 downregulation decreased post-irradiation SOD1 expression, increased γH2AX formation, raised levels of reactive oxygen species, and promoted apoptosis. Our results suggest that CBR3-AS1 functions as an oncogene through the CBR3-AS1/miR-409-3p/SOD1 pathway, and may represent a new therapeutic target, especially to regulate radiosensitivity in NSCLC.
Collapse
|
3
|
Martens A, Schmid B, Akintola O, Saretzki G. Telomerase Does Not Improve DNA Repair in Mitochondria upon Stress but Increases MnSOD Protein under Serum-Free Conditions. Int J Mol Sci 2019; 21:ijms21010027. [PMID: 31861522 PMCID: PMC6981674 DOI: 10.3390/ijms21010027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Telomerase is best known for its function in maintaining telomeres but has also multiple additional, non-canonical functions. One of these functions is the decrease of oxidative stress and DNA damage due to localisation of the telomerase protein TERT into mitochondria under oxidative stress. However, the exact molecular mechanisms behind these protective effects are still not well understood. We had shown previously that overexpression of human telomerase reverse transcriptase (hTERT) in human fibroblasts results in a decrease of mitochondrial DNA (mtDNA) damage after oxidative stress. MtDNA damage caused by oxidative stress is removed via the base excision repair (BER) pathway. Therefore we aimed to analyse whether telomerase is able to improve this pathway. We applied different types of DNA damaging agents such as irradiation, arsenite treatment (NaAsO2) and treatment with hydrogen peroxide (H2O2). Using a PCR-based assay to evaluate mtDNA damage, we demonstrate that overexpression of hTERT in MRC-5 fibroblasts protects mtDNA from H2O2 and NaAsO2 induced damage, compared with their isogenic telomerase-negative counterparts. However, overexpression of hTERT did not seem to increase repair of mtDNA after oxidative stress, but promoted increased levels of manganese superoxide dismutase (MnSOD) and forkhead-box-protein O3 (FoxO3a) proteins during incubation in serum free medium as well as under oxidative stress, while no differences were found in protein levels of catalase. Together, our results suggest that rather than interfering with mitochondrial DNA repair mechanisms, such as BER, telomerase seems to increase antioxidant defence mechanisms to prevent mtDNA damage and to increase cellular resistance to oxidative stress. However, the result has to be reproduced in additional cellular systems in order to generalise our findings.
Collapse
Affiliation(s)
- Alexander Martens
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Bianca Schmid
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Olasubomi Akintola
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Gabriele Saretzki
- The Ageing Biology Centre, Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
4
|
Horsley A, Thaler DS. Microwave detection and quantification of water hidden in and on building materials: implications for healthy buildings and microbiome studies. BMC Infect Dis 2019; 19:67. [PMID: 30658591 PMCID: PMC6339348 DOI: 10.1186/s12879-019-3720-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Excess water in all its forms (moisture, dampness, hidden water) in buildings negatively impacts occupant health but is hard to reliably detect and quantify. Recent advances in through-wall imaging recommend microwaves as a tool with a high potential to noninvasively detect and quantify water throughout buildings. METHODS Microwaves in both transmission and reflection (radar) modes were used to perform a simple demonstration of the detection of water both on and hidden within building materials. RESULTS We used both transmission and reflection modes to detect as little as 1 mL of water between two 7 cm thicknesses of concrete. The reflection mode was also used to detect 1 mL of water on a metal surface. We observed oscillations in transmitted and reflected microwave amplitude as a function of microwave wavelength and water layer thickness, which we attribute to thin-film interference effects. CONCLUSIONS Improving the detection of water in buildings could help design, maintenance, and remediation become more efficient and effective and perhaps increase the value of microbiome sequence data. Microwave characterization of all forms of water throughout buildings is possible; its practical development would require new collaborations among microwave physicists or engineers, architects, building engineers, remediation practitioners, epidemiologists, and microbiologists.
Collapse
Affiliation(s)
- Andrew Horsley
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland. .,Research School of Physics and Engineering, The Australian National University, Mills Rd., ACT 2601, Canberra, Australia.
| | - David S Thaler
- Research School of Physics and Engineering, The Australian National University, Mills Rd., ACT 2601, Canberra, Australia.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| |
Collapse
|
5
|
Wang H, Lv B, Tang Z, Zhang M, Ge W, Liu Y, He X, Zhao K, Zheng X, He M, Bu W. Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. NANO LETTERS 2018; 18:5768-5774. [PMID: 30052464 DOI: 10.1021/acs.nanolett.8b02409] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
X-ray-induced photodynamic therapy (X-PDT) has high depth of penetration and has considerable potential for applications in cancer therapy. Scintillators and heavy metals have been adopted to absorb X-rays and transmit the energy to photosensitizers. However, the low efficiency of converting X-rays to reactive oxygen species (ROS) presents a challenge for the use of X-PDT to cure cancer. In this study, a new method based on LiLuF4:Ce@SiO2@Ag3PO4@Pt(IV) nanoparticles (LAPNP) is presented that could be used to enhance the curative effects of X-PDT. To make full use of the fluorescence produced by nanoscintillators (LiLuF4:Ce), a cisplatin prodrug Pt(IV) was utilized as a sacrificial electron acceptor to increase the yield of hydroxyl radicals (·OH) by increasing the separation of electrons and holes in photosensitizers (Ag3PO4). Additionally, cisplatin is produced upon the acceptance of electrons by Pt(IV) and further enhances the damage caused by ·OH. Via two-step amplification, the potential of LAPNP to enhance the effects of X-PDT has been demonstrated.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Bin Lv
- Department of Radiation Oncology, Shanghai Huadong Hospital , Fudan University , Shanghai 200040 , China
| | - Zhongmin Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Meng Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Weiqiang Ge
- Department of Radiation Oncology, Shanghai Huadong Hospital , Fudan University , Shanghai 200040 , China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Xinhong He
- Department of Radiology, Shanghai Cancer Hospital , Fudan University , Shanghai 200032 , China
| | - Kuaile Zhao
- Department of Radiology, Shanghai Cancer Hospital , Fudan University , Shanghai 200032 , China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital , Fudan University , Shanghai 200040 , China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Wenbo Bu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| |
Collapse
|
6
|
Hahn MB, Meyer S, Schröter MA, Seitz H, Kunte HJ, Solomun T, Sturm H. Direct electron irradiation of DNA in a fully aqueous environment. Damage determination in combination with Monte Carlo simulations. Phys Chem Chem Phys 2018; 19:1798-1805. [PMID: 28059422 DOI: 10.1039/c6cp07707b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Free University Berlin, Department of Physics, D-14195 Berlin, Germany. and Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Susann Meyer
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany
| | | | - Harald Seitz
- Fraunhofer-Institut für Zelltherapie und Immunologie, Institutsteil Bioanalytik und Bioprozesse, D-14476 Potsdam, Germany
| | - Hans-Jörg Kunte
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and Technical University Berlin, D-10587 Berlin, Germany
| |
Collapse
|
7
|
Spangler R, Goddard NL, Thaler DS. Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria. PLoS One 2009; 4:e7010. [PMID: 19753123 PMCID: PMC2737620 DOI: 10.1371/journal.pone.0007010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022] Open
Abstract
Background PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical. Methodology/Principal Findings This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H2O) while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase. Conclusions/Significance It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved “treatment-free” attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one) in a sample.
Collapse
Affiliation(s)
- Rudolph Spangler
- Sackler Laboratory of Molecular Genetics and Informatics, The Rockefeller University, New York, New York, USA.
| | | | | |
Collapse
|