1
|
Trivedi T, Manaa M, John S, Reiken S, Murthy S, Pagnotti GM, Dole NS, She Y, Suresh S, Hain BA, Regan J, Ofer R, Wright L, Robling A, Cao X, Alliston T, Marks AR, Waning DL, Mohammad KS, Guise TA. Zoledronic acid improves bone quality and muscle function in a high bone turnover state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543305. [PMID: 37333318 PMCID: PMC10274651 DOI: 10.1101/2023.06.01.543305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
SUMMARY Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFβ release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance TGFβ is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFβ causes several bone disorders and skeletal muscle weakness. Reducing excess TGFβ release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.
Collapse
|
2
|
Rbm20 ΔRRM Mice, Expressing a Titin Isoform with Lower Stiffness, Are Protected from Mechanical Ventilation-Induced Diaphragm Weakness. Int J Mol Sci 2022; 23:ijms232415689. [PMID: 36555335 PMCID: PMC9779751 DOI: 10.3390/ijms232415689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.
Collapse
|
3
|
Lee EJ, Jang HC, Koo KH, Kim HY, Lim JY. Mechanical Properties of Single Muscle Fibers: Understanding Poor Muscle Quality in Older Adults with Diabetes. Ann Geriatr Med Res 2020; 24:267-273. [PMID: 33389973 PMCID: PMC7781968 DOI: 10.4235/agmr.20.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background While aging causes muscle weakness, type 2 diabetes mellitus (T2DM) is also considered a high-risk factor for the induction of skeletal muscle weakness. Previous studies have reported increased collagen content in insulin-resistant skeletal muscles. Here, we studied the mechanical properties of aged skeletal muscle in patients with T2DM to investigate whether aged skeletal muscles with T2DM induce higher passive tension due to the abundance of extracellular matrix (ECM) inside or outside of the muscle fibers. Methods Samples from the gluteus maximus muscles of older adults with diabetes (T2DM) and non-diabetic (non-DM) older adults who underwent elective orthopedic surgery were collected. Permeabilized single muscle fibers from these samples were used to identify their mechanical properties. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to quantify titin and fiber type distributions in these samples. Results We confirmed a significant predominance of type I fiber ratio in both T2DM and non-DM aged muscles. While the average cross-sectional area and maximal active tension of the single fibers were smaller in the T2DM group than those in the non-DM group, the difference was not statistically significant. T2DM subjects showed significantly greater passive tension and lower titin-/ECM-based passive tension ratios than those in non-DM subjects, which indicated that more ECM but less titin contributed to the total passive tension. Conclusion Based on our findings, we concluded that T2DM may cause increased passive stiffness of single skeletal muscle fibers in older adults because of an excessive accumulation of ECM in and around single muscle fibers due to increased insulin resistance.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Kinesiology, School of Health and Human Science, Concordia University Irvine, Irvine, CA, USA.,Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung-Hoi Koo
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye-Young Kim
- Division of Liberal Arts and Science, Korea National Sport University, Seoul, Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
4
|
Triggering typical nemaline myopathy with compound heterozygous nebulin mutations reveals myofilament structural changes as pathomechanism. Nat Commun 2020; 11:2699. [PMID: 32483185 PMCID: PMC7264197 DOI: 10.1038/s41467-020-16526-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Nebulin is a giant protein that winds around the actin filaments in the skeletal muscle sarcomere. Compound-heterozygous mutations in the nebulin gene (NEB) cause typical nemaline myopathy (NM), a muscle disorder characterized by muscle weakness with limited treatment options. We created a mouse model with a missense mutation p.Ser6366Ile and a deletion of NEB exon 55, the Compound-Het model that resembles typical NM. We show that Compound-Het mice are growth-retarded and have muscle weakness. Muscles have a reduced myofibrillar fractional-area and sarcomeres are disorganized, contain rod bodies, and have longer thin filaments. In contrast to nebulin-based severe NM where haplo-insufficiency is the disease driver, Compound-Het mice express normal amounts of nebulin. X-ray diffraction revealed that the actin filament is twisted with a larger radius, that tropomyosin and troponin behavior is altered, and that the myofilament spacing is increased. The unique disease mechanism of nebulin-based typical NM reveals novel therapeutic targets. Nebulin-based nemaline myopathy is a heterogenous disease with unclear pathological mechanisms. Here, the authors generate a mouse model that mimics the most common genetic cause of the disease and demonstrate that muscle weakness in this model is associated with twisted actin filaments and altered tropomyosin and troponin behaviour.
Collapse
|
5
|
Li F, Barton ER, Granzier H. Deleting nebulin's C-terminus reveals its importance to sarcomeric structure and function and is sufficient to invoke nemaline myopathy. Hum Mol Genet 2020; 28:1709-1725. [PMID: 30689900 DOI: 10.1093/hmg/ddz016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
Nebulin is a large skeletal muscle protein wound around the thin filaments, with its C-terminus embedded within the Z-disk and its N-terminus extending out toward the thin filament pointed end. While nebulin's C-terminus has been implicated in both sarcomeric structure and function as well as the development of nemaline myopathy, the contributions of this region remain largely unknown. Additionally, the C-terminus is reported to contribute to muscle hypertrophy via the IGF-1 growth pathway. To study the functions of nebulin's C-terminus, we generated a mouse model deleting the final two unique C-terminal domains, the serine-rich region (SRR) and the SH3 domain (NebΔ163-165). Homozygous NebΔ163-165 mice that survive past the neonatal stage exhibit a mild weight deficit. Characterization of these mice revealed that the truncation caused a moderate myopathy phenotype reminiscent of nemaline myopathy despite the majority of nebulin being localized properly in the thin filaments. This phenotype included muscle weight loss, changes in sarcomere structure, as well as a decrease in force production. Glutathione S-transferase (GST) pull-down experiments found novel binding partners with the SRR, several of which are associated with myopathies. While the C-terminus does not appear to be a limiting step in muscle growth, the IGF-1 growth pathway remained functional despite the deleted domains being proposed to be essential for IGF-1 mediated hypertrophy. The NebΔ163-165 mouse model emphasizes that nebulin's C-terminus is necessary for proper sarcomeric development and shows that its loss is sufficient to induce myopathy.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Li F, Kolb J, Crudele J, Tonino P, Hourani Z, Smith JE, Chamberlain JS, Granzier H. Expressing a Z-disk nebulin fragment in nebulin-deficient mouse muscle: effects on muscle structure and function. Skelet Muscle 2020; 10:2. [PMID: 31992366 PMCID: PMC6986074 DOI: 10.1186/s13395-019-0219-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs. Nemaline myopathy causes severe muscle weakness as well as structural defects on a sarcomeric level. There is no known cure for this disease. METHODS We studied whether sarcomeric structure and function can be improved by introducing nebulin's Z-disk region into a nebulin-deficient mouse model (Neb cKO) through adeno-associated viral (AAV) vector therapy. Following this treatment, the structural and functional characteristics of both vehicle-treated and AAV-treated Neb cKO and control muscles were studied. RESULTS Intramuscular injection of this AAV construct resulted in a successful expression of the Z-disk fragment within the target muscles. This expression was significantly higher in Neb cKO mice than control mice. Analysis of protein expression revealed that the nebulin fragment was localized exclusively to the Z-disks and that Neb cKO expressed the nebulin fragment at levels comparable to the level of full-length nebulin in control mice. Additionally, the Z-disk fragment displaced full-length nebulin in control mice, resulting in nemaline rod body formation and a worsening of muscle function. Neb cKO mice experienced a slight functional benefit from the AAV treatment, with a small increase in force and fatigue resistance. Disease progression was also slowed as indicated by improved muscle structure and myosin isoform expression. CONCLUSIONS This study reveals that nebulin fragments are well-received by nebulin-deficient mouse muscles and that limited functional benefits are achievable.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Julie Crudele
- Department of Neurology, University of Washington, Seattle, WA, 98109-8055, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ, 85721, USA.
| |
Collapse
|
7
|
Beecroft SJ, Olive M, Quereda LG, Gallano P, Ojanguren I, McLean C, McCombe P, Laing NG, Ravenscroft G. Cylindrical spirals in two families: Clinical and genetic investigations. Neuromuscul Disord 2019; 30:151-158. [PMID: 31952901 DOI: 10.1016/j.nmd.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/19/2023]
Abstract
Cylindrical spirals are a rare ultrastructural finding on muscle biopsy, with fewer than 20 reported cases since its first description in 1979. These structures are sometimes observed with tubular aggregates and are thought to comprise longitudinal sarcoplasmic reticulum. While mutations in genes encoding key components of Ca2+ handling (ORAI1 and STIM1) underlie tubular aggregate myopathy, no causative genes have been associated with cylindrical spirals. Here we describe two families with cylindrical spirals on muscle biopsy with a suspected genetic cause. In one family we identified a known truncating variant in EBF3, previously associated with a neurodevelopmental disorder. The affected individuals in this family present with clinical features overlapping with those described for EBF3 disease. An isolated proband in the second family harbours bi-allelic truncating variants in TTN and her clinical course and other features on biopsy are highly concordant for titinopathy. From experimental studies, EBF3 is known to be involved in Ca2+ regulation in muscle, thus EBF3 dysregulation may represent a novel mechanism of impaired Ca2+ handling leading to cylindrical spirals. Additional cases of EBF3 disease or titinopathy with cylindrical spirals need to be identified to support the involvement of these genes in the pathogenesis of cylindrical spirals.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Australia
| | - Montse Olive
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona 08907, Spain
| | | | - Pia Gallano
- CIBERER, Genetics Department, Hospital Sant Pau, Barcelona 08041, Spain
| | - Isabel Ojanguren
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | - Catriona McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Commercial Rd, Prahran, VIC 3181, Australia
| | - Pamela McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Australia.
| |
Collapse
|
8
|
Lindqvist J, Lee EJ, Karimi E, Kolb J, Granzier H. Omecamtiv mecarbil lowers the contractile deficit in a mouse model of nebulin-based nemaline myopathy. PLoS One 2019; 14:e0224467. [PMID: 31721788 PMCID: PMC6853306 DOI: 10.1371/journal.pone.0224467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023] Open
Abstract
Nemaline myopathy (NEM) is a congenital neuromuscular disorder primarily caused by nebulin gene (NEB) mutations. NEM is characterized by muscle weakness for which currently no treatments exist. In NEM patients a predominance of type I fibers has been found. Thus, therapeutic options targeting type I fibers could be highly beneficial for NEM patients. Because type I muscle fibers express the same myosin isoform as cardiac muscle (Myh7), the effect of omecamtiv mecarbil (OM), a small molecule activator of Myh7, was studied in a nebulin-based NEM mouse model (Neb cKO). Skinned single fibers were activated by exogenous calcium and force was measured at a wide range of calcium concentrations. Maximal specific force of type I fibers was much less in fibers from Neb cKO animals and calcium sensitivity of permeabilized single fibers was reduced (pCa50 6.12 ±0.08 (cKO) vs 6.36 ±0.08 (CON)). OM increased the calcium sensitivity of type I single muscle fibers. The greatest effect occurred in type I fibers from Neb cKO muscle where OM restored the calcium sensitivity to that of the control type I fibers. Forces at submaximal activation levels (pCa 6.0–6.5) were significantly increased in Neb cKO fibers (~50%) but remained below that of control fibers. OM also increased isometric force and power during isotonic shortening of intact whole soleus muscle of Neb cKO mice, with the largest effects at physiological stimulation frequencies. We conclude that OM has the potential to improve the quality of life of NEM patients by increasing the force of type I fibers at submaximal activation levels.
Collapse
Affiliation(s)
- Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
9
|
Carmody C, Ogawa-Wong AN, Martin C, Luongo C, Zuidwijk M, Sager B, Petersen T, Roginski Guetter A, Janssen R, Wu EY, Bogaards S, Neumann NM, Hau K, Marsili A, Boelen A, Silva JE, Dentice M, Salvatore D, Wagers AJ, Larsen PR, Simonides WS, Zavacki AM. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019; 160:1205-1222. [PMID: 30951174 PMCID: PMC6482039 DOI: 10.1210/en.2019-00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Collapse
Affiliation(s)
| | | | | | - Cristina Luongo
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Naples “Federico II,” Napoli, Italy
| | - Marian Zuidwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Rob Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Sylvia Bogaards
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Kaman Hau
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J Enrique Silva
- Baystate Medical Center, Springfield, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
10
|
Lindqvist J, van den Berg M, van der Pijl R, Hooijman PE, Beishuizen A, Elshof J, de Waard M, Girbes A, Spoelstra-de Man A, Shi ZH, van den Brom C, Bogaards S, Shen S, Strom J, Granzier H, Kole J, Musters RJP, Paul MA, Heunks LMA, Ottenheijm CAC. Positive End-Expiratory Pressure Ventilation Induces Longitudinal Atrophy in Diaphragm Fibers. Am J Respir Crit Care Med 2018; 198:472-485. [PMID: 29578749 PMCID: PMC6118031 DOI: 10.1164/rccm.201709-1917oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.
Collapse
Affiliation(s)
- Johan Lindqvist
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Robbert van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| | | | - Albertus Beishuizen
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands; and
| | | | | | | | | | - Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | | | | | - Shengyi Shen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joshua Strom
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Marinus A. Paul
- Department of Cardiothoracic Surgery, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | | | - Coen A. C. Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| |
Collapse
|
11
|
Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, Slater R, Escobar YN, Smith JE, Yang L, Konhilas J, Lawlor MW, Ottenheijm C, Granzier HL. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet 2015; 24:5219-33. [PMID: 26123491 DOI: 10.1093/hmg/ddv243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/22/2015] [Indexed: 01/07/2023] Open
Abstract
Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine
| | | | - Josine De Winter
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Justin Kolb
- Department of Cellular and Molecular Medicine
| | - Hui Meng
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA and
| | - Camille Birch
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - John Konhilas
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA and
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Buck D, Smith JE, Chung CS, Ono Y, Sorimachi H, Labeit S, Granzier HL. Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy. ACTA ACUST UNITED AC 2014; 143:215-30. [PMID: 24470489 PMCID: PMC4001778 DOI: 10.1085/jgp.201311129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in titin splicing resulting in decreased size and increased stiffness lead to pathological changes in skeletal muscle. Titin is a molecular spring that determines the passive stiffness of muscle cells. Changes in titin’s stiffness occur in various myopathies, but whether these are a cause or an effect of the disease is unknown. We studied a novel mouse model in which titin’s stiffness was slightly increased by deleting nine immunoglobulin (Ig)-like domains from titin’s constitutively expressed proximal tandem Ig segment (IG KO). KO mice displayed mild kyphosis, a phenotype commonly associated with skeletal muscle myopathy. Slow muscles were atrophic with alterations in myosin isoform expression; functional studies in soleus muscle revealed a reduced specific twitch force. Exon expression analysis showed that KO mice underwent additional changes in titin splicing to yield smaller than expected titin isoforms that were much stiffer than expected. Additionally, splicing occurred in the PEVK region of titin, a finding confirmed at the protein level. The titin-binding protein Ankrd1 was highly increased in the IG KO, but this did not play a role in generating small titin isoforms because titin expression was unaltered in IG KO mice crossed with Ankrd1-deficient mice. In contrast, the splicing factor RBM20 (RNA-binding motif 20) was also significantly increased in IG KO mice, and additional differential splicing was reversed in IG KO mice crossed with a mouse with reduced RBM20 activity. Thus, increasing titin’s stiffness triggers pathological changes in skeletal muscle, with an important role played by RBM20.
Collapse
Affiliation(s)
- Danielle Buck
- Department of Physiology and 2 Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | | | | | | | | | | |
Collapse
|
13
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
14
|
Ottenheijm CAC, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, Jasper JR, Malik FI, Meng H, Stienen GJM, Beggs AH, Labeit S, Poggesi C, Lawlor MW, Granzier H. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy. ACTA ACUST UNITED AC 2013; 136:1718-31. [PMID: 23715096 DOI: 10.1093/brain/awt113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nebulin--a giant sarcomeric protein--plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (Neb(ΔExon55)) to replicate a founder mutation seen frequently in patients with nemaline myopathy with Ashkenazi Jewish heritage. Neb(ΔExon55) mice are born close to Mendelian ratios, but show growth retardation after birth. Electron microscopy studies show nemaline bodies--a hallmark feature of nemaline myopathy--in muscle fibres from Neb(ΔExon55) mice. Western blotting studies with nebulin-specific antibodies reveal reduced nebulin levels in muscle from Neb(ΔExon55) mice, and immunofluorescence confocal microscopy studies with tropomodulin antibodies and phalloidin reveal that thin filament length is significantly reduced. In line with reduced thin filament length, the maximal force generating capacity of permeabilized muscle fibres and single myofibrils is reduced in Neb(ΔExon55) mice with a more pronounced reduction at longer sarcomere lengths. Finally, in Neb(ΔExon55) mice the regulation of contraction is impaired, as evidenced by marked changes in crossbridge cycling kinetics and by a reduction of the calcium sensitivity of force generation. A novel drug that facilitates calcium binding to the thin filament significantly augmented the calcium sensitivity of submaximal force to levels that exceed those observed in untreated control muscle. In conclusion, we have characterized the first nebulin-based nemaline myopathy model, which recapitulates important features of the phenotype observed in patients harbouring this particular mutation, and which has severe muscle weakness caused by thin filament dysfunction.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gineste C, De Winter JM, Kohl C, Witt CC, Giannesini B, Brohm K, Le Fur Y, Gretz N, Vilmen C, Pecchi E, Jubeau M, Cozzone PJ, Stienen GJM, Granzier H, Labeit S, Ottenheijm CAC, Bendahan D, Gondin J. In vivo and in vitro investigations of heterozygous nebulin knock-out mice disclose a mild skeletal muscle phenotype. Neuromuscul Disord 2013; 23:357-69. [PMID: 23375831 DOI: 10.1016/j.nmd.2012.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/07/2012] [Accepted: 12/29/2012] [Indexed: 01/30/2023]
Abstract
Nemaline myopathy is the most common congenital skeletal muscle disease, and mutations in the nebulin gene account for 50% of all cases. Recent studies suggest that the disease severity might be related to the nebulin expression levels. Considering that mutations in the nebulin gene are typically recessive, one would expect that a single functional nebulin allele would maintain nebulin protein expression which would result in preserved skeletal muscle function. We investigated skeletal muscle function of heterozygous nebulin knock-out (i.e., nebulin(+/-)) mice using a multidisciplinary approach including protein and gene expression analysis and combined in vivo and in vitro force measurements. Skeletal muscle anatomy and energy metabolism were studied strictly non-invasively using magnetic resonance imaging and 31P-magnetic resonance spectroscopy. Maximal force production was reduced by around 16% in isolated muscle of nebulin(+/-) mice while in vivo force generating capacity was preserved. Muscle weakness was associated with a shift toward a slower proteomic phenotype, but was not related to nebulin protein deficiency or to an impaired energy metabolism. Further studies would be warranted in order to determine the mechanisms leading to a mild skeletal muscle phenotype resulting from the expression of a single nebulin allele.
Collapse
Affiliation(s)
- C Gineste
- Aix-Marseille Université, CRMBM, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
RATIONALE Postoperative pulmonary complications are significant contributors to morbidity in patients who have undergone upper abdominal, thoracic, or cardiac surgery. The pathophysiology of these complications might involve postoperative inspiratory muscle weakness. The nature of postoperative inspiratory muscle weakness is unknown. OBJECTIVE To investigate the effect of surgery on the functioning of the diaphragm, the main muscle of inspiration. METHODS Serial biopsies from the diaphragm and the latissimus dorsi muscle were obtained from 6 patients during thoracotomy for resection of a tumor in the right lung. Biopsies were taken as soon as the diaphragm had been exposed (t(0)) and again after 2 hours (t(2)). The contractile performance of demembranated muscle fibers, as well as fiber morphology and markers for proteolysis, was determined. RESULTS In all patients, the force-generating capacity of diaphragm muscle fibers at t(2) was significantly reduced (~35%) compared with that at t(0), with a more pronounced force loss in type 2 fibers compared with type 1 fibers. Diaphragm weakness was not part of a generalized muscle weakness as contractile performance of latissimus dorsi fibers was preserved at t(2). Diaphragm fiber size and myofibrillar structure were not different at t(2) compared with t0, but myosin heavy chain type 2 was significantly reduced at t(2) and MuRF-1 mRNA and protein levels were elevated at t(2). CONCLUSIONS Only 2 hours of thoracic surgery causes marked, and selective, diaphragm muscle fiber weakness.
Collapse
|
17
|
Ottenheijm CAC, Voermans NC, Hudson BD, Irving T, Stienen GJM, van Engelen BG, Granzier H. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome. J Appl Physiol (1985) 2012; 112:1157-65. [PMID: 22223454 DOI: 10.1152/japplphysiol.01166.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. METHODS we performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. RESULTS passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. CONCLUSION in response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam.
| | | | | | | | | | | | | |
Collapse
|
18
|
Seale SM, Feng Q, Agarwal AK, El-Alfy AT. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav 2011; 101:77-84. [PMID: 22197712 DOI: 10.1016/j.pbb.2011.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/30/2011] [Accepted: 12/10/2011] [Indexed: 01/10/2023]
Abstract
Acrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in juvenile rats. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of a few genes that are involved in muscle contraction, pain, and dopaminergic neuronal pathways. First, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified a few genes previously not implicated in acrylamide neurotoxicity that might be further developed into biomarkers for assessing the risk of adverse health effects induced by acrylamide exposure.
Collapse
Affiliation(s)
- Suzanne M Seale
- Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
19
|
Nogueira L, Ramirez-Sanchez I, Perkins GA, Murphy A, Taub PR, Ceballos G, Villarreal FJ, Hogan MC, Malek MH. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J Physiol 2011; 589:4615-31. [PMID: 21788351 DOI: 10.1113/jphysiol.2011.209924] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The flavanol (-)-epicatechin, a component of cacao (cocoa), has been shown to have multiple health benefits in humans. Using 1-year-old male mice, we examined the effects of 15 days of (-)-epicatechin treatment and regular exercise on: (1) exercise performance, (2) muscle fatigue, (3) capillarity, and (4) mitochondrial biogenesis in mouse hindlimb and heart muscles. Twenty-five male mice (C57BL/6N) were randomized into four groups: (1) water, (2) water-exercise (W-Ex), (3) (-)-epicatechin ((-)-Epi), and (4) (-)-epicatechin-exercise ((-)-Epi-Ex). Animals received 1 mg kg(-1) of (-)-epicatechin or water (vehicle) via oral gavage (twice daily). Exercise groups underwent 15 days of treadmill exercise. Significant increases in treadmill performance (∼50%) and enhanced in situ muscle fatigue resistance (∼30%) were observed with (-)-epicatechin. Components of oxidative phosphorylation complexes, mitofilin, porin, nNOS, p-nNOS, and Tfam as well as mitochondrial volume and cristae abundance were significantly higher with (-)-epicatechin treatment for hindlimb and cardiac muscles than exercise alone. In addition, there were significant increases in skeletal muscle capillarity. The combination of (-)-epicatechin and exercise resulted in further increases in oxidative phosphorylation-complex proteins, mitofilin, porin and capillarity than (-)-epicatechin alone. These findings indicate that (-)-epicatechin alone or in combination with exercise induces an integrated response that includes structural and metabolic changes in skeletal and cardiac muscles resulting in greater endurance capacity. These results, therefore, warrant the further evaluation of the underlying mechanism of action of (-)-epicatechin and its potential clinical application as an exercise mimetic.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Welvaart WN, Paul MA, van Hees HWH, Stienen GJM, Niessen JWM, de Man FS, Sieck GC, Vonk-Noordegraaf A, Ottenheijm CAC. Diaphragm muscle fiber function and structure in humans with hemidiaphragm paralysis. Am J Physiol Lung Cell Mol Physiol 2011; 301:L228-35. [PMID: 21622847 DOI: 10.1152/ajplung.00040.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies proposed that mechanical inactivity of the human diaphragm during mechanical ventilation rapidly causes diaphragm atrophy and weakness. However, conclusive evidence for the notion that diaphragm weakness is a direct consequence of mechanical inactivity is lacking. To study the effect of hemidiaphragm paralysis on diaphragm muscle fiber function and structure in humans, biopsies were obtained from the paralyzed hemidiaphragm in eight patients with hemidiaphragm paralysis. All patients had unilateral paralysis of known duration, caused by en bloc resection of the phrenic nerve with a tumor. Furthermore, diaphragm biopsies were obtained from three control subjects. The contractile performance of demembranated muscle fibers was determined, as well as fiber ultrastructure and morphology. Finally, expression of E3 ligases and proteasome activity was determined to evaluate activation of the ubiquitin-proteasome pathway. The force-generating capacity, as well as myofibrillar ultrastructure, of diaphragm muscle fibers was preserved up to 8 wk of paralysis. The cross-sectional area of slow fibers was reduced after 2 wk of paralysis; that of fast fibers was preserved up to 8 wk. The expression of the E3 ligases MAFbx and MuRF-1 and proteasome activity was not significantly upregulated in diaphragm fibers following paralysis, not even after 72 and 88 wk of paralysis, at which time marked atrophy of slow and fast diaphragm fibers had occurred. Diaphragm muscle fiber atrophy and weakness following hemidiaphragm paralysis develops slowly and takes months to occur.
Collapse
Affiliation(s)
- W N Welvaart
- Department of Surgery, Vrije Universiteit University Medical Center/Institute for Cardiovascular Research, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
de Man FS, van Hees HWH, Handoko ML, Niessen HW, Schalij I, Humbert M, Dorfmüller P, Mercier O, Bogaard HJ, Postmus PE, Westerhof N, Stienen GJM, van der Laarse WJ, Vonk-Noordegraaf A, Ottenheijm CAC. Diaphragm muscle fiber weakness in pulmonary hypertension. Am J Respir Crit Care Med 2010; 183:1411-8. [PMID: 21131469 DOI: 10.1164/rccm.201003-0354oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recently it was suggested that patients with pulmonary hypertension (PH) suffer from inspiratory muscle dysfunction. However, the nature of inspiratory muscle weakness in PH remains unclear. OBJECTIVES To assess whether alterations in contractile performance and in morphology of the diaphragm underlie inspiratory muscle weakness in PH. METHODS PH was induced in Wistar rats by a single injection of monocrotaline (60 mg/kg). Diaphragm (PH n = 8; controls n = 7) and extensor digitorum longus (PH n = 5; controls n = 7) muscles were excised for determination of in vitro contractile properties and cross-sectional area (CSA) of the muscle fibers. In addition, important determinants of protein synthesis and degradation were determined. Finally, muscle fiber CSA was determined in diaphragm and quadriceps of patients with PH, and the contractile performance of single fibers of the diaphragm. MEASUREMENTS AND MAIN RESULTS In rats with PH, twitch and maximal tetanic force generation of diaphragm strips were significantly lower, and the force-frequency relation was shifted to the right (i.e., impaired relative force generation) compared with control subjects. Diaphragm fiber CSA was significantly smaller in rats with PH compared with controls, and was associated with increased expression of E3-ligases MAFbx and MuRF-1. No significant differences in contractility and morphology of extensor digitorum longus muscle fibers were found between rats with PH and controls. In line with the rat data, studies on patients with PH revealed significantly reduced CSA and impaired contractility of diaphragm muscle fibers compared with control subjects, with no changes in quadriceps muscle. CONCLUSIONS PH induces selective diaphragm muscle fiber weakness and atrophy.
Collapse
Affiliation(s)
- Frances S de Man
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ottenheijm CAC, van Hees HWH, Heunks LMA, Granzier H. Titin-based mechanosensing and signaling: role in diaphragm atrophy during unloading? Am J Physiol Lung Cell Mol Physiol 2010; 300:L161-6. [PMID: 21075826 DOI: 10.1152/ajplung.00288.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. One of the very few occasions during which diaphragm loading is arrested is during controlled mechanical ventilation in the intensive care unit. Recent animal studies indicate that the diaphragm is extremely sensitive to unloading, causing rapid muscle fiber atrophy: unloading-induced diaphragm atrophy and the concomitant diaphragm weakness has been suggested to contribute to the difficulties in weaning patients from ventilatory support. Little is known about the molecular triggers that initiate the rapid unloading atrophy of the diaphragm, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere titin is considered to play an important role in the stress-response machinery. Titin is the largest protein known to date and acts as a mechanosensor that regulates muscle protein expression in a sarcomere strain-dependent fashion. Thus, titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin, and its biomechanical sensing and signaling, might be involved in the development of mechanical unloading-induced diaphragm weakness.
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Laboratory for Physiology, Institute for Cardiovascular Research, VU Univ. Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Al-Khayat HA, Kensler RW, Morris EP, Squire JM. Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis. J Mol Biol 2010; 403:763-76. [PMID: 20851129 PMCID: PMC3314970 DOI: 10.1016/j.jmb.2010.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 01/22/2023]
Abstract
The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6′, M4′, M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London, UK.
| | | | | | | |
Collapse
|
24
|
Linke WA, Krüger M. The Giant Protein Titin as an Integrator of Myocyte Signaling Pathways. Physiology (Bethesda) 2010; 25:186-98. [DOI: 10.1152/physiol.00005.2010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The giant muscle protein titin, the “backbone” of the sarcomere, harbors a complex molecular spring whose stiffness is variably tuned in health and disease. Titin is increasingly recognized as a crucial integrator of diverse myocyte signaling pathways. The titin-associated signalosome includes hotspots of protein-protein interactions important for the regulation of protein quality-control mechanisms, hypertrophic gene activation, and mechanosensing.
Collapse
Affiliation(s)
- Wolfgang A. Linke
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Buck D, Hudson BD, Ottenheijm CA, Labeit S, Granzier H. Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development. J Struct Biol 2010; 170:325-33. [PMID: 20176113 PMCID: PMC2856706 DOI: 10.1016/j.jsb.2010.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 01/08/2023]
Abstract
We studied differential splicing of nebulin, a giant filamentous F-actin binding protein (M(r) approximately 700-800kDa) that is found in skeletal muscle. Nebulin spans the thin filament length, its C-terminus is anchored in the Z-disc, and its N-terminal region is located toward the thin filament pointed end. Various lines of evidence indicate that nebulin plays important roles in thin filament and Z-disc structure in skeletal muscle. In the present work we studied nebulin in a range of muscle types during postnatal development and performed transcript studies with a mouse nebulin exon microarray, developed by us, whose results were confirmed by RT-PCR. We also performed protein studies with high-resolution SDS-agarose gels and Western blots, and structural studies with electron microscopy. We found during postnatal development of the soleus muscle major changes in splicing in both the super-repeat region and the Z-disc region of nebulin; interestingly, these changes were absent in other muscle types. Three novel Z-disc exons, previously described in the mouse gene, were upregulated during postnatal development of soleus muscle and this was correlated with a significant increase in Z-disc width. These findings support the view that nebulin plays an important role in Z-disc width regulation. In summary, we discovered changes in both the super-repeat region and the Z-disc region of nebulin, that these changes are muscle-type specific, and that they correlate with differences in sarcomere structure.
Collapse
Affiliation(s)
- Danielle Buck
- Depts of Physiology and Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Bryan D. Hudson
- Depts of Physiology and Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Coen A.C. Ottenheijm
- Depts of Physiology and Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam 1081 BT, the Netherlands
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henk Granzier
- Depts of Physiology and Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Myosin binding protein-C slow: an intricate subfamily of proteins. J Biomed Biotechnol 2010; 2010:652065. [PMID: 20396395 PMCID: PMC2852610 DOI: 10.1155/2010/652065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/01/2010] [Indexed: 01/03/2023] Open
Abstract
Myosin binding protein C (MyBP-C) consists of a family of thick filament associated proteins. Three isoforms of MyBP-C exist in striated muscles: cardiac, slow skeletal, and fast skeletal. To date, most studies have focused on the cardiac form, due to its direct involvement in the development of hypertrophic cardiomyopathy. Here we focus on the slow skeletal form, discuss past and current literature, and present evidence to support that: (i) MyBP-C slow comprises a subfamily of four proteins, resulting from complex alternative shuffling of the single MyBP-C slow gene, (ii) the four MyBP-C slow isoforms are expressed in variable amounts in different skeletal muscles, (iii) at least one MyBP-C slow isoform is preferentially found at the periphery of M-bands and (iv) the MyBP-C slow subfamily may play important roles in the assembly and stabilization of sarcomeric M- and A-bands and regulate the contractile properties of the actomyosin filaments.
Collapse
|
27
|
Gao P, Si LY. Meprin-α metalloproteases enhance lipopolysaccharide-stimulated production of tumour necrosis factor-α and interleukin-1β in peripheral blood mononuclear cells via activation of NF-κB. ACTA ACUST UNITED AC 2010; 160:99-105. [DOI: 10.1016/j.regpep.2009.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/05/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022]
|
28
|
Abstract
The muscular dystrophies are a group of neuromuscular disorders associated with muscle weakness and wasting, which in many forms can lead to loss of ambulation and premature death. A number of muscular dystrophies are associated with loss of proteins required for the maintenance of muscle membrane integrity, in particular with proteins that comprise the dystrophin-associated glycoprotein (DAG) complex. Proper glycosylation of O-linked mannose chains on alpha-dystroglycan, a DAG member, is required for the binding of the extracellular matrix to dystroglycan and for proper DAG function. A number of congenital disorders of glycosylation have now been described where alpha-dystroglycan glycosylation is altered and where muscular dystrophy is a predominant phenotype. Glycosylation is also increasingly being appreciated as a genetic modifier of disease phenotypes in many forms of muscular dystrophy and as a target for the development of new therapies. Here we will review the mouse models available for the study of this group of diseases and outline the methodologies required to describe disease phenotypes.
Collapse
|