1
|
Vernon TN, Terrell JR, Albrecht AV, Germann MW, Wilson WD, Poon GMK. Dissection of integrated readout reveals the structural thermodynamics of DNA selection by transcription factors. Structure 2024; 32:83-96.e4. [PMID: 38042148 DOI: 10.1016/j.str.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Nucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life. Using the ETS-family factor PU.1 as a high-resolution structural framework, inosine substitution for guanine resulted in a sharp dissection of conformational dynamics and hydration and elucidated their role in the DNA specificity of PU.1. Our work suggests an under-exploited utility of modified nucleobases in untangling the structural thermodynamics of interactions, such as the Arg×GC motif, where direct and indirect readout are tightly integrated.
Collapse
Affiliation(s)
- Tyler N Vernon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Amanda V Albrecht
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Department of Biology, Georgia State University, Atlanta, GA 30302, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
2
|
Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J Phys Chem B 2022; 126:4442-4457. [PMID: 35694853 PMCID: PMC9234960 DOI: 10.1021/acs.jpcb.1c10971] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although molecular
dynamics (MD) simulations have been used extensively
to study the structural dynamics of proteins, the role of MD simulation
in studies of nucleic acid based systems has been more limited. One
contributing factor to this disparity is the historically lower level
of accuracy of the physical models used in such simulations to describe
interactions involving nucleic acids. By modifying nonbonded and torsion
parameters of a force field from the Amber family of models, we recently
developed force field parameters for RNA that achieve a level of accuracy
comparable to that of state-of-the-art protein force fields. Here
we report force field parameters for DNA, which we developed by transferring
nonbonded parameters from our recently reported RNA force field and
making subsequent adjustments to torsion parameters. We have also
modified the backbone charges in both the RNA and DNA parameter sets
to make the treatment of electrostatics compatible with our recently
developed variant of the Amber protein and ion force field. We name
the force field resulting from the union of these three parameter
sets (the new DNA parameters, the revised RNA parameters, and the
existing protein and ion parameters) DES-Amber. Extensive
testing of DES-Amber indicates that it can describe the thermal stability
and conformational flexibility of single- and double-stranded DNA
systems with a level of accuracy comparable to or, especially for
disordered systems, exceeding that of state-of-the-art nucleic acid
force fields. Finally, we show that, in certain favorable cases, DES-Amber
can be used for long-timescale simulations of protein–nucleic
acid complexes.
Collapse
Affiliation(s)
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
3
|
Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis. Molecules 2021; 26:molecules26195871. [PMID: 34641414 PMCID: PMC8510488 DOI: 10.3390/molecules26195871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
A-tracts are sequences of repeated adenine bases that, under the proper conditions, are capable of mediating DNA curvature. A-tracts occur naturally in the regulatory regions of many organisms, yet their biological functions are not fully understood. Orienting multiple A-tracts together constructively or destructively in a phase has the potential to create different shapes in the DNA helix axis. One means of detecting these molecular shape differences is from altered DNA mobilities measured using electrophoresis. The small molecule netropsin binds the minor groove of DNA, particularly at AT-rich sequences including A-tracts. Here, we systematically test the hypothesis that netropsin binding eliminates the curvature of A-tracts by measuring the electrophoretic mobilities of seven 98-base pair DNA samples containing different numbers and arrangements of centrally located A-tracts under varying conditions with netropsin. We find that netropsin binding eliminates the mobility difference between the DNA fragments with different A-tract arrangements in a concentration-dependent manner. This work provides evidence for the straightening of A-tracts upon netropsin binding and illustrates an artificial approach to re-sculpt DNA shape.
Collapse
|
4
|
Mondal S, Bandyopadhyay S. Heterogeneous Dynamical Environment at the Interface of a Protein-DNA Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4567-4581. [PMID: 32267701 DOI: 10.1021/acs.langmuir.9b03175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Binding between protein and DNA is an essential process to regulate different biological activities. Two puzzling questions in protein-DNA recognition are (i) how the protein's binding domain identifies the DNA sequence in an aqueous solution and (ii) how the formation of the complex alters the dynamical environment around it. In this work, we present results obtained from molecular dynamics simulations of the N-terminal α-helical domain of the λ-repressor protein (in dimeric form) bound to the corresponding operator DNA. Effects of formation of the complex in modifying the microscopic dynamics of water as well as the kinetics of hydrogen bonds at the interface have been explored. Locally heterogeneous restricted water motions at the complex interface have been observed, the extent of restriction being more significant around the directly bound residues of the protein and the DNA. In particular, the calculation revealed the existence of significantly constrained motionally restricted water layer that can form either bridges around the directly bound residues of the protein and DNA or are engaged in forming water-mediated contacts between a fraction of the unbound residues. More importantly, it is observed that the restricted water motion around the complex is correlated with the hydrogen bond relaxation time scale at the interface. It is further demonstrated that the kinetics of water-water hydrogen bonds involving the bridged water are influenced more due to complex formation.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
- Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
5
|
Mondal S, Bandyopadhyay S. Flexibility of the Binding Regions of a Protein-DNA Complex and the Structure and Ordering of Interfacial Water. J Chem Inf Model 2019; 59:4427-4437. [PMID: 31580657 DOI: 10.1021/acs.jcim.9b00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Noncovalent interactions between protein and DNA are important to comprehend different biological activities in living organisms. One important issue is how the protein identifies the target DNA and the influence of the resulting protein-DNA complex on the hydration environment around it. In this study, we have carried out atomistic molecular dynamics simulations of the protein-DNA complex formed by the dimeric form of the α-helical N-terminal domain of the λ-repressor protein with its operator DNA. Local heterogeneous flexibilities of the residues of the protein and the DNA components that are involved in binding and the microscopic structure and ordering of water around those have been investigated in detail. The calculations revealed concurrent existence of highly ordered as well as disordered water molecules at the interface. It is found that a fraction of doubly coordinated water molecules exhibit high degree of ordering at the interface, while the randomly oriented ones are coordinated with three water molecules. The effect has been found to be more around the protein and DNA residues that are in contact in the complexed state. We believe that such highly ordered two-coordinated water molecules are likely to act as an adhesive to facilitate the formation of a protein-DNA complex and maintain its structural stability.
Collapse
|
6
|
Käppel S, Melzer R, Rümpler F, Gafert C, Theißen G. The floral homeotic protein SEPALLATA3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:341-357. [PMID: 29744943 DOI: 10.1111/tpj.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
SEPALLATA3 of Arabidopsis thaliana is a MADS-domain transcription factor (TF) and a key regulator of flower development. MADS-domain proteins bind to sequences termed 'CArG-boxes' [consensus 5'-CC(A/T)6 GG-3']. Because only a fraction of the CArG-boxes in the Arabidopsis genome are bound by SEPALLATA3, more elaborate principles have to be discovered to better understand which features turn CArG-boxes into genuine recognition sites. Here, we investigate to what extent the shape of the DNA is involved in a 'shape readout' that contributes to the binding of SEPALLATA3. We determined in vitro binding affinities of SEPALLATA3 to DNA probes that all contain the CArG-box motif, but differ in their predicted DNA shape. We found that binding affinity correlates well with a narrow minor groove of the DNA. Substitution of canonical bases with non-standard bases supports the hypothesis of minor groove shape readout by SEPALLATA3. Analysis of mutant SEPALLATA3 proteins further revealed that a highly conserved arginine residue, which is expected to contact the DNA minor groove, contributes significantly to the shape readout. Our studies show that the specific recognition of cis-regulatory elements by a plant MADS-domain TF, and by inference probably also of other TFs of this type, heavily depends on shape readout mechanisms.
Collapse
Affiliation(s)
- Sandra Käppel
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Christian Gafert
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| |
Collapse
|
7
|
Etheve L, Martin J, Lavery R. Decomposing protein-DNA binding and recognition using simplified protein models. Nucleic Acids Res 2017; 45:10270-10283. [PMID: 28973439 PMCID: PMC5622342 DOI: 10.1093/nar/gkx627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
We analyze the role of different physicochemical factors in protein/DNA binding and recognition by comparing the results from all-atom molecular dynamics simulations with simulations using simplified protein models. These models enable us to separate the role of specific amino acid side chains, formal amino acid charges and hydrogen bonding from the effects of the low-dielectric volume occupied by the protein. Comparisons are made on the basis of the conformation of DNA after protein binding, the ionic distribution around the complex and the sequence specificity. The results for four transcription factors, binding in either the minor or major grooves of DNA, show that the protein volume and formal charges, with one exception, play a predominant role in binding. Adding hydrogen bonding and a very small number of key amino acid side chains at the all-atom level yields results in DNA conformations and sequence recognition close to those seen in the reference all-atom simulations.
Collapse
Affiliation(s)
- Loïc Etheve
- MMSB UMR 5086 CNRS / Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Juliette Martin
- MMSB UMR 5086 CNRS / Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- MMSB UMR 5086 CNRS / Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| |
Collapse
|
8
|
Hintze BJ, Richardson JS, Richardson DC. Mismodeled purines: implicit alternates and hidden Hoogsteens. Acta Crystallogr D Struct Biol 2017; 73:852-859. [PMID: 28994414 PMCID: PMC5633910 DOI: 10.1107/s2059798317013729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Hoogsteen base pairs are seen in DNA crystal structures, but only rarely. This study tests whether Hoogsteens or other syn purines are either under-modeled or over-modeled, which are known problems for rare conformations. Candidate purines needing a syn/anti 180° flip were identified by diagnostic patterns of difference electron-density peaks. Manual inspection narrowed 105 flip candidates to 20 convincing cases, all at ≤2.7 Å resolution. Rebuilding and refinement confirmed that 14 of these were authentic purine flips. Seven examples are modeled as Watson-Crick base pairs but should be Hoogsteens (commonest at duplex termini), and three had the opposite issue. Syn/anti flips were also needed for some single-stranded purines. Five of the 20 convincing cases arose from an unmodeled alternate duplex running in the opposite direction. These are in semi-palindromic DNA sequences bound by a homodimeric protein and show flipped-purine-like difference peaks at residues where the palindrome is imperfect. This study documents types of incorrect modeling which are worth avoiding. However, the primary conclusions are that such mistakes are infrequent, the bias towards fitting anti purines is very slight, and the occurrence rate of Hoogsteen base pairs in DNA crystal structures remains unchanged from earlier estimates at ∼0.3%.
Collapse
|
9
|
Etheve L, Martin J, Lavery R. Protein-DNA interfaces: a molecular dynamics analysis of time-dependent recognition processes for three transcription factors. Nucleic Acids Res 2016; 44:9990-10002. [PMID: 27658967 PMCID: PMC5175364 DOI: 10.1093/nar/gkw841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
We have studied the dynamics of three transcription factor-DNA complexes using all-atom, microsecond-scale MD simulations. In each case, the salt bridges and hydrogen bond interactions formed at the protein-DNA interface are found to be dynamic, with lifetimes typically in the range of tens to hundreds of picoseconds, although some interactions, notably those involving specific binding to DNA bases, can be a hundred times longer lived. Depending on the complex studied, this dynamics may or may not lead to the existence of distinct conformational substates. Using a sequence threading technique, it has been possible to determine whether DNA sequence recognition is sensitive or not to such conformational changes, and, in one case, to show that recognition appears to be locally dependent on protein-mediated cation distributions.
Collapse
Affiliation(s)
- Loïc Etheve
- MMSB UMR 5086 CNRS/University of Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Juliette Martin
- MMSB UMR 5086 CNRS/University of Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- MMSB UMR 5086 CNRS/University of Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| |
Collapse
|
10
|
Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages. PLoS One 2016; 11:e0156838. [PMID: 27304881 PMCID: PMC4909266 DOI: 10.1371/journal.pone.0156838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared.
Collapse
|
11
|
Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor. Proc Natl Acad Sci U S A 2016; 113:E2480-8. [PMID: 27099293 DOI: 10.1073/pnas.1602618113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92-198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant.
Collapse
|
12
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
13
|
Harris LA, Williams LD, Koudelka GB. Specific minor groove solvation is a crucial determinant of DNA binding site recognition. Nucleic Acids Res 2014; 42:14053-9. [PMID: 25429976 PMCID: PMC4267663 DOI: 10.1093/nar/gku1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Gerald B Koudelka
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Wen J, Shen X, Shen H, Zhang FS. Hofmeister series and ionic effects of alkali metal ions on DNA conformation transition in normal and less polarised water solvent. Mol Phys 2014. [DOI: 10.1080/00268976.2014.906674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Lindemose S, Nielsen PE, Valentin-Hansen P, Møllegaard NE. A novel indirect sequence readout component in the E. coli cyclic AMP receptor protein operator. ACS Chem Biol 2014; 9:752-60. [PMID: 24387622 DOI: 10.1021/cb4008309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cyclic AMP receptor protein (CRP) from Escherichia coli has been extensively studied for several decades. In particular, a detailed characterization of CRP interaction with DNA has been obtained. The CRP dimer recognizes a consensus sequence AANTGTGANNNNNNTCACANTT through direct amino acid nucleobase interactions in the major groove of the two operator half-sites. Crystal structure analyses have revealed that the interaction results in two strong kinks at the TG/CA steps closest to the 6-base-pair spacer (N6). This spacer exhibits high sequence variability among the more than 100 natural binding sites in the E. coli genome, but the exact role of the N6 region in CRP interaction has not previously been systematic examined. Here we employ an in vitro selection system based on a randomized N6 spacer region to demonstrate that CRP binding to the lacP1 site may be enhanced up to 14-fold or abolished by varying the N6 spacer sequences. Furthermore, on the basis of sequence analysis and uranyl (UO2(2+)) probing data, we propose that the underlying mechanism relies on N6 deformability.
Collapse
Affiliation(s)
- Søren Lindemose
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Peter Eigil Nielsen
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Poul Valentin-Hansen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Niels Erik Møllegaard
- Department
of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Tan BG, Vijgenboom E, Worrall JAR. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans. Nucleic Acids Res 2013; 42:1326-40. [PMID: 24121681 PMCID: PMC3902906 DOI: 10.1093/nar/gkt902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control.
Collapse
Affiliation(s)
- Benedict G Tan
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK and Molecular Biotechnology, Institute of Biology Leiden, Sylvius Laboratory, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
18
|
Stellwagen E, Peters JP, Maher LJ, Stellwagen NC. DNA A-tracts are not curved in solutions containing high concentrations of monovalent cations. Biochemistry 2013; 52:4138-48. [PMID: 23675817 PMCID: PMC3727640 DOI: 10.1021/bi400118m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intrinsic curvature of seven 98 bp DNA molecules containing up to four centrally located A6-tracts has been measured by gel and capillary electrophoresis as a function of the number and arrangement of the A-tracts. At low cation concentrations, the electrophoretic mobility observed in polyacrylamide gels and in free solution decreases progressively with the increasing number of phased A-tracts, as expected for DNA molecules with increasingly curved backbone structures. Anomalously slow electrophoretic mobilities are also observed for DNA molecules containing two pairs of phased A-tracts that are out of phase with each other, suggesting that out-of-phase distortions of the helix backbone do not cancel each other out. The mobility decreases observed for the A-tract samples are due to curvature, not cation binding in the A-tract minor groove, because identical free solution mobilities are observed for a molecule with four out-of-phase A-tracts and one with no A-tracts. Surprisingly, the curvature of DNA A-tracts is gradually lost when the monovalent cation concentration is increased to ∼200 mM, regardless of whether the cation is a hydrophilic ion like Na+, NH4+, or Tris+ or a hydrophobic ion like tetrabutylammonium. The decrease in A-tract curvature with increasing ionic strength, along with the known decrease in A-tract curvature with increasing temperature, suggests that DNA A-tracts are not significantly curved under physiological conditions.
Collapse
Affiliation(s)
- Earle Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 United States
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 United States
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 United States
| | - Nancy C. Stellwagen
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 United States
| |
Collapse
|
19
|
Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res 2013; 41:6750-60. [PMID: 23661683 PMCID: PMC3711457 DOI: 10.1093/nar/gkt357] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rettig M, Germann MW, Wang S, Wilson WD. Molecular basis for sequence-dependent induced DNA bending. Chembiochem 2013; 14:323-31. [PMID: 23355266 DOI: 10.1002/cbic.201200706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Indexed: 12/18/2022]
Abstract
With a growing understanding of the microstructural variations of DNA, it has become apparent that subtle conformational features are essential for specific DNA molecular recognition and function. DNA containing an A-tract has a narrow minor groove and a globally bent conformation but the structural features of alternating AT DNA are less well understood. Several studies indicate that alternating AT sequences are polymorphic with different global and local properties from A-tracts. The mobility of alternating AT DNA in gel electrophoresis is extensively reduced upon binding with minor-groove binding agents such as netropsin. Although this suggests that such complexes are bent, similarly to A-tract DNA, direct evidence and structural information on AT DNA and the induced conformational change is lacking. We have used NMR spectroscopy and residual dipolar coupling together with restrained molecular-dynamics simulations to determine the solution structures of an alternating AT DNA segment, with and without netropsin, in order to evaluate the molecular basis of the binding-induced effects. Complex formation causes a significant narrowing of the minor groove and a pronounced change in bending, from a slight bend towards the major groove for the free DNA to a pronounced bend towards the minor groove in the complex. This observation demonstrates that conformational features and the inherent malleability of AT sequences are essential for specific molecular recognition and function. These results take the field of DNA structures into new areas while opening up avenues to target novel DNA sequences.
Collapse
Affiliation(s)
- Michael Rettig
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
21
|
Harris LA, Watkins D, Williams LD, Koudelka GB. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation. J Mol Biol 2012; 425:133-43. [PMID: 23085222 DOI: 10.1016/j.jmb.2012.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/24/2022]
Abstract
The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The "indirect readout" of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R-DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B' state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B' state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B'-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R-DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B' state and therefore play a key role in indirect readout by P22R.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
22
|
Zhang Z, Liu M, Li B, Wang Y, Yue J, Liang L, Sun J. Exploring the mechanism of a regulatory SNP of KLK3 by molecular dynamics simulation. J Biomol Struct Dyn 2012; 31:426-40. [PMID: 22877366 DOI: 10.1080/07391102.2012.703067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SNP -158G>A of KLK3 has been validated as a regulatory SNP (rSNP) by molecular biology assays, but the mechanism of how it affects the binding of an androgen receptor (AR) homodimer with DNA is unclear. In the current study, molecular dynamics simulation was adopted to explain its inner cause. Based on a recent review), three types of intermolecular forces were analyzed, and the differences among them were compared between complexes containing -158 A:T and -158 G:C. Extra hydrophobic contacts caused by the methyl group on the mutated thymine were the most crucial factor to the regulatory effect of this rSNP. Further analysis concerning the relative motion of the two recognition helixes of the AR homodimer indicated that the hydrophobic interactions between the recognition helix B and the major groove containing -158 A:T changed that helix's motion greatly from swaying in a plane at free state to vibrating slightly around an equilibrium position. A relatively full explanation on the occurrence of rSNP -158G>A is presented here.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Functional specificity of a protein-DNA complex mediated by two arginines bound to the minor groove. J Bacteriol 2012; 194:4727-35. [PMID: 22753063 DOI: 10.1128/jb.00677-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A bacteriophage Ø29 transcriptional regulator, protein p4, interacts with its DNA target by employing two mechanisms: by direct readout of the chemical signatures of only one DNA base and by inducing local modification on the topology of short A tracts (indirect readout). p4 binds as a dimer to targets consisting of imperfect inverted repeats. Here we used molecular dynamic simulation to define interactions of a cluster of 12 positively charged amino acids of p4 with DNA and biochemical assays with modified DNA targets and mutated proteins to quantify the contribution of residues in the nucleoprotein complex. Our results show the implication of Arg54, with non-base-specific interaction in the central A tract, in p4 binding affinity. Despite being chemically equivalent and in identical protein monomers, the two Arg54 residues differed in their interactions with DNA. We discuss an indirect-readout mechanism for p4-DNA recognition mediated by dissimilar interaction of arginines penetrating the minor groove and the inherent properties of the A tract. Our findings extend the current understanding of protein-DNA recognition and contribute to the relevance of the sequence-dependent conformational malleability of the DNA, shedding light on the role of arginines in binding affinity. Characterization of mutant p4R54A shows that the residue is required for the activity of the protein as a transcriptional regulator.
Collapse
|
24
|
Shen X, Atamas NA, Zhang FS. Competition between Na⁺ and Rb⁺ in the minor groove of DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051913. [PMID: 23004793 DOI: 10.1103/physreve.85.051913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 06/01/2023]
Abstract
The competition between Na⁺ and Rb⁺ ions in the minor groove of a synthetic B-DNA dodecamer d (CGCGAATTCGCG) is studied using molecular dynamics simulations as the ratio of these two ions changing from 9:1 to 1:9 with the DNA merged into the solvent of water molecule at 298 K. When the concentration of Rb⁺ ions increases, from minority to majority, Na⁺ ions are gradually released from the A tract, and the binding sites in the minor groove are occupied by Rb⁺ ions, extending from the A tract to the whole minor groove. Comparing Na⁺ with Rb⁺ ions, the conformation of the minor groove is influenced strongly by Na⁺ ions.
Collapse
Affiliation(s)
- X Shen
- Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
25
|
Sinha SK, Bandyopadhyay S. Conformational fluctuations of a protein-DNA complex and the structure and ordering of water around it. J Chem Phys 2012; 135:245104. [PMID: 22225189 DOI: 10.1063/1.3670877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein-DNA binding is an important process responsible for the regulation of genetic activities in living organisms. The most crucial issue in this problem is how the protein recognizes the DNA and identifies its target base sequences. Water molecules present around the protein and DNA are also expected to play an important role in mediating the recognition process and controlling the structure of the complex. We have performed atomistic molecular dynamics simulations of an aqueous solution of the protein-DNA complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. The conformational fluctuations of the protein and DNA and the microscopic structure and ordering of water around them in the complex have been explored. In agreement with experimental studies, the calculations reveal conformational immobilization of the terminal segments of the protein on complexation. Importantly, it is discovered that both structural adaptations of the protein and DNA, and the subsequent correlation between them to bind, contribute to the net entropy loss associated with the complex formation. Further, it is found that water molecules around the DNA are more structured with significantly higher density and ordering than that around the protein in the complex.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
26
|
Bullwinkle TJ, Samorodnitsky D, Rosati RC, Koudelka GB. Determinants of bacteriophage 933W repressor DNA binding specificity. PLoS One 2012; 7:e34563. [PMID: 22509323 PMCID: PMC3317979 DOI: 10.1371/journal.pone.0034563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/06/2012] [Indexed: 11/22/2022] Open
Abstract
We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein.
Collapse
Affiliation(s)
- Tammy J. Bullwinkle
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Daniel Samorodnitsky
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Rayna C. Rosati
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Gerald B. Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
28
|
Sinha SK, Bandyopadhyay S. Dynamic properties of water around a protein-DNA complex from molecular dynamics simulations. J Chem Phys 2012; 135:135101. [PMID: 21992339 DOI: 10.1063/1.3634004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | | |
Collapse
|
29
|
Khan IA, Saxena AK. Employing lactams for the unprecedented enantiopure synthesis of non-natural amino acid derivatives. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Maehigashi T, Hsiao C, Woods KK, Moulaei T, Hud NV, Williams LD. B-DNA structure is intrinsically polymorphic: even at the level of base pair positions. Nucleic Acids Res 2011; 40:3714-22. [PMID: 22180536 PMCID: PMC3333872 DOI: 10.1093/nar/gkr1168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increasingly exact measurement of single crystal X-ray diffraction data offers detailed characterization of DNA conformation, hydration and electrostatics. However, instead of providing a more clear and unambiguous image of DNA, highly accurate diffraction data reveal polymorphism of the DNA atomic positions and conformation and hydration. Here we describe an accurate X-ray structure of B-DNA, painstakingly fit to a multistate model that contains multiple competing positions of most of the backbone and of entire base pairs. Two of ten base-pairs of CCAGGCCTGG are in multiple states distinguished primarily by differences in slide. Similarly, all the surrounding ions are seen to fractionally occupy discrete competing and overlapping sites. And finally, the vast majority of water molecules show strong evidence of multiple competing sites. Conventional resolution appears to give a false sense of homogeneity in conformation and interactions of DNA. In addition, conventional resolution yields an average structure that is not accurate, in that it is different from any of the multiple discrete structures observed at high resolution. Because base pair positional heterogeneity has not always been incorporated into model-building, even some high and ultrahigh-resolution structures of DNA do not indicate the full extent of conformational polymorphism.
Collapse
Affiliation(s)
- Tatsuya Maehigashi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | |
Collapse
|
31
|
Shen X, Gu B, Che SA, Zhang FS. Solvent effects on the conformation of DNA dodecamer segment: A simulation study. J Chem Phys 2011; 135:034509. [DOI: 10.1063/1.3610549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
32
|
Laughton CA, Harris SA. The atomistic simulation of DNA. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Boryskina OP, Tkachenko MY, Shestopalova AV. Protein-DNA complexes: specificity and DNA readout mechanisms. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.00007c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- O. P. Boryskina
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - M. Yu. Tkachenko
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| | - A. V. Shestopalova
- O. Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine
| |
Collapse
|
34
|
Chen WS, Chen WH, Chen Z, Gooding AA, Lin KJ, Kiang CH. Direct observation of multiple pathways of single-stranded DNA stretching. PHYSICAL REVIEW LETTERS 2010; 105:218104. [PMID: 21231359 DOI: 10.1103/physrevlett.105.218104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Indexed: 05/30/2023]
Abstract
We observed multiple pathways of stretching single-stranded polydeoxynucleotides, poly(dA). Poly(dA) has been shown to undergo unique transitions under mechanical force, and such transitions were attributed to the stacking characteristics of poly(dA). Using single-molecule manipulation studies, we found that poly(dA) has two stretching pathways at high forces. The previously observed pathway has a free energy that is less than what is expected of single-stranded DNA with a random sequence, indicating the existence of a novel conformation of poly(dA) at large extensions. We also observed stepwise transitions between the two pathways by pulling the molecule with constant force, and found that the transitions are cooperative. These results suggest that the unique mechanical property of poly(dA) may play an important role in biological processes such as gene expression.
Collapse
Affiliation(s)
- Wuen-Shiu Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|