1
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Carico C, Placzek WJ. Reviewing PTBP1 Domain Modularity in the Pre-Genomic Era: A Foundation to Guide the Next Generation of Exploring PTBP1 Structure-Function Relationships. Int J Mol Sci 2023; 24:11218. [PMID: 37446395 DOI: 10.3390/ijms241311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
4
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
5
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
6
|
Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. Biochem Soc Trans 2017; 44:1058-65. [PMID: 27528752 DOI: 10.1042/bst20160080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.
Collapse
|
7
|
Abstract
Proteins and RNA are often found in ribonucleoprotein particles (RNPs), where they function in cellular processes to synthesize proteins (the ribosome), chemically modify RNAs (small nucleolar RNPs), splice pre-mRNAs (the spliceosome), and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli). Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
8
|
Duvignaud JB, Bédard M, Nagata T, Muto Y, Yokoyama S, Gagné SM, Vincent M. Structure, Dynamics, and Interaction of p54(nrb)/NonO RRM1 with 5' Splice Site RNA Sequence. Biochemistry 2016; 55:2553-66. [PMID: 27064654 DOI: 10.1021/acs.biochem.5b01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
p54(nrb)/NonO is a nuclear RNA-binding protein involved in many cellular events such as pre-mRNA processing, transcription, and nuclear retention of hyper-edited RNAs. In particular, it participates in the splicing process by directly binding the 5' splice site of pre-mRNAs. The protein also concentrates in a nuclear body called paraspeckle by binding a G-rich segment of the ncRNA NEAT1. The N-terminal section of p54(nrb)/NonO contains tandem RNA recognition motifs (RRMs) preceded by an HQ-rich region including a threonine residue (Thr15) whose phosphorylation inhibits its RNA binding ability, except for G-rich RNAs. In this work, our goal was to understand the rules that characterize the binding of the p54(nrb)/NonO RRMs to their RNA target. We have done in vitro RNA binding experiments which revealed that only the first RRM of p54(nrb)/NonO binds to the 5' splice site RNA. We have then determined the structure of the p54(nrb)/NonO RRM1 by liquid-state NMR which revealed the presence of a canonical fold (β1α1β2β3α2β4) and the conservation of aromatic amino acids at the protein surface. We also investigated the dynamics of this domain by NMR. The p54(nrb)/NonO RRM1 displays some motional properties that are typical of a well-folded protein with some regions exhibiting more flexibility (loops and β-strands). Furthermore, we determined the affinity of p54(nrb)/NonO RRM1 interaction to the 5' splice site RNA by NMR and fluorescence quenching and mapped its binding interface by NMR, concluding in a classical nucleic acid interaction. This study provides an improved understanding of the molecular basis (structure and dynamics) that governs the binding of the p54(nrb)/NonO RRM1 to one of its target RNAs.
Collapse
Affiliation(s)
| | | | - Takashi Nagata
- RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yutaka Muto
- RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Faculty of Pharmacy and Research Institute of Pharmaceutical Science, Musashino University , Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
9
|
Understanding the distinguishable structural and functional features in zebrafish TLR3 and TLR22, and their binding modes with fish dsRNA viruses: an exploratory structural model analysis. Amino Acids 2014; 47:381-400. [DOI: 10.1007/s00726-014-1872-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
|
10
|
Mickleburgh I, Kafasla P, Cherny D, Llorian M, Curry S, Jackson RJ, Smith CWJ. The organization of RNA contacts by PTB for regulation of FAS splicing. Nucleic Acids Res 2014; 42:8605-20. [PMID: 24957602 PMCID: PMC4117754 DOI: 10.1093/nar/gku519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained.
Collapse
Affiliation(s)
- Ian Mickleburgh
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Panagiota Kafasla
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Dmitry Cherny
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Stephen Curry
- Division of Cell and Molecular Biology, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Richard J Jackson
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
11
|
Arieti F, Gabus C, Tambalo M, Huet T, Round A, Thore S. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs. Nucleic Acids Res 2014; 42:6742-52. [PMID: 24748666 PMCID: PMC4041450 DOI: 10.1093/nar/gku277] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions.
Collapse
Affiliation(s)
- Fabiana Arieti
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Margherita Tambalo
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Tiphaine Huet
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation and Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, Grenoble 38042, France
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
12
|
Joshi A, Esteve V, Buckroyd AN, Blatter M, Allain FHT, Curry S. Solution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB). PeerJ 2014; 2:e305. [PMID: 24688880 PMCID: PMC3961105 DOI: 10.7717/peerj.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic polypyrimidine tract binding protein (PTB) serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB) is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA binding specificities and effects on RNA splicing, differential expression of PTB and nPTB can lead to the generation of alternatively spliced mRNAs. RNA binding by PTB and nPTB is mediated by four RNA recognition motifs (RRMs). We present here the crystal and solution structures of the C-terminal domain of nPTB (nPTB34) which contains RRMs 3 and 4. As expected the structures are similar to each other and to the solution structure of the equivalent fragment from PTB (PTB34). The result confirms that, as found for PTB, RRMs 3 and 4 of nPTB interact with one another to form a stable unit that presents the RNA-binding surfaces of the component RRMs on opposite sides that face away from each other. The major differences between PTB34 and nPTB34 arise from amino acid side chain substitutions on the exposed β-sheet surfaces and adjoining loops of each RRM, which are likely to modulate interactions with RNA.
Collapse
Affiliation(s)
- Amar Joshi
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vicent Esteve
- Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland
| | - Adrian N Buckroyd
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland
| | | | - Stephen Curry
- Department of Life Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
13
|
New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14:22906-32. [PMID: 24264039 PMCID: PMC3856098 DOI: 10.3390/ijms141122906] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Polypyrimidine Tract Binding Protein (PTB) is an intensely studied RNA binding protein involved in several post-transcriptional regulatory events of gene expression. Initially described as a pre-mRNA splicing regulator, PTB is now widely accepted as a multifunctional protein shuttling between nucleus and cytoplasm. Accordingly, PTB can interact with selected RNA targets, structural elements and proteins. There is increasing evidence that PTB and its paralog PTBP2 play a major role as repressors of alternatively spliced exons, whose transcription is tissue-regulated. In addition to alternative splicing, PTB is involved in almost all steps of mRNA metabolism, including polyadenylation, mRNA stability and initiation of protein translation. Furthermore, it is well established that PTB recruitment in internal ribosome entry site (IRES) activates the translation of picornaviral and cellular proteins. Detailed studies of the structural properties of PTB have contributed to our understanding of the mechanism of RNA binding by RNA Recognition Motif (RRM) domains. In the present review, we will describe the structural properties of PTB, its paralogs and co-factors, the role in post-transcriptional regulation and actions in cell differentiation and pathogenesis. Defining the multifunctional roles of PTB will contribute to the understanding of key regulatory events in gene expression.
Collapse
|
14
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
15
|
Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2012. [PMID: 23201338 DOI: 10.1016/j.jmb.2012.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Saccharomyces cerevisiae RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1-β1 loop (α1-β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1-β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1-β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1-β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing invivo. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.
Collapse
Affiliation(s)
- Elon Hartman
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
16
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|